Terms & Conditions

Data Security

We are committed to ensuring that your information is secure. In order to prevent unauthorised access or disclosure we have put in place suitable physical, electronic and managerial procedures to safeguard and secure the information we collect.

All data is stored in secure electronic systems accessible only to Oasys staff with both valid network login credentials and specific authorisation to access the system.  Our systems further limit data access by role to ensure data is available only to those who have a specific need to see it.

If at any point you suspect or receive a suspicious communication from someone suggesting they work for Oasys or a website claiming to be affiliated with Oasys, please forward the communication to us or report the incident by email to [email protected] or in writing to Oasys, 8 Fitzroy Street, London, UK, W1T 4BJ as soon as possible.

Data Security Notice Updated 27th February 2020

top ]


Website Terms and Conditions

The contents of this web site are protected by copyright and other intellectual property rights under international conventions. No copying of any words, images, graphic representations or other information contained in this web site is permitted without the prior written permission of the webmaster for this site.

Oasys accepts no responsibility for the content of any external site that links to or from this site.

top ]



Software Licensing Terms

Terms and Conditions of Purchase

The full conditions of purchase and maintenance for all Oasys desktop software are set out in the Oasys Software Licence and Support Agreement.

The full conditions of purchase and maintenance for Oasys Gofer and Oasys Giraphe are set out in the Gofer SaaS Agreement  and the Giraphe SaaS agreement.

All prices are subject to TAX at the current rate.

Prices and specifications are subject to change without notice – please ask for a written quotation.

Although every care has been taken to ensure the accuracy of all information contained herein, the contents do not form or constitute a representation, warranty, or part of any contract.

Superseded Versions of Terms and Conditions

Oasys keeps copies of all superseded versions of its terms and conditions.

Maintenance & Support Services

Support and maintenance is included with all subscription licences for their full duration.

Annual maintenance contracts are available for software under a perpetual licence, prices are based on a percentage of the most recent list price.

This service includes:


top ]



Cookies Policies

View available cookies policies below:


top ]


The Architecture of the Dragonfly Wing

Software Used on this Project

Project Overview

The work presented herein is part of a technical paper co-authored by Maria Mingallon (Arup, Senior Structural Engineer) and Sakthivel Ramaswamy (KRR Engineering, Director), published and presented at ASME 2011. The paper outlines the main findings of a broader biomimetics research study done at the Architectural Association as part of the master program in Emergent Technologies and Design. The aim was to derive the adaptable and performative logics of the dragonfly wing. Digital simulations in GSA were necessary to understand the multiple-pattern and corrugated geometries that give the wings their unique structural behavior and which are responsible for the high performance of dragonflies in passive flight.

Click here to download the full paper.

The morphology of the dragonfly wing is an optimal natural construction built by a complex patterning process, developed through evolution as a response to force flows and material organisation. The seemingly random variations of quadrangular and polygonal patterns follow multi-hierarchical organisational logics enabling it to alter between rigid and flexible configurations.

How Oasys proved invaluable

As the dragonfly wing is a highly dynamic structure, vibration studies were necessary to obtain realistic deformation patterns and understand the structural behaviour. Ten vibration modes were extracted from the modal analysis performed in GSA. Our eyes have difficulties distinguishing the third, fourth and fifth vibration modes (which occur almost simultaneously) due to the high frequencies exhibited. In our case, slow motion pictures featuring the real flight of the dragonfly allowed us to identify up to the third mode of vibration by comparison with that calculated in the analysis.

The resulting images featuring the different modes of vibration of the wing illustrate the correlation described earlier between the geometrical patterns and the different degrees of flexibility. The rectangular pattern found at the uppermost zone of the wing is designed to withstand load perpendicular to the leading edge taken by the wing during flight, while corrugations help with resisting loads perpendicular to the plane of the wing.


A torsional wave at the trailing edge can be observed throughout the different modes; this is due to the tendency of the elements closer to the wing’s tip to twist ahead of those nearer to the base. The nodus, located at the leading edge, acts as both reinforcement and shock absorber to the wing. The nodus copes with combined torsion and bending stress concentrations at the junction of the rigid concave ante-nodal and the torsionally compliant post-nodal spars. The concentration of stresses and bending moments must have imposed strong selection pressure in the development of the nodus, which combines a stress absorbing strip of soft cuticle with strong, three dimensional cross bars across the entire spar between the costal margin and the leading edge.

The deformed modal shapes demonstrate that the pentagonal-hexagonal pattern is designed to deform and thus provide the thrust necessary to keep the dragonfly in the air. The 120° angle present in these geometries allows for the polygons to reorganise from a single plane to form a concave surface, using much less energy than that of the rectangular pattern.

What is your query?

  • This field is for validation purposes and should be left unchanged.

Newsletter Sign up

Please fill out your details below to receive the latest oasys news.

  • This field is for validation purposes and should be left unchanged.