Oasys

Geotechnical Analysis

Automation in Geotechnics Case Studies and Future Innovation

Zeena Farook

Application Specialist and Geotechnical Engineer

'# Iterate pile length until within limits Iterations — O InLimit — False

> set toe level lpModel.SetToeLevel ToeLev, fail

d IT heck that toe level doesn't clash with soil layer (causes problems in ALP)

sToe = True Then nt = AnCount + 1 Cation.StatusBar = "Case " & CID + 1 & " " & Fcd & ": Iterating: " & ToeLev

Discuss

1. Drive for Automation in Geotechnics

2. Case Study Examples

3. Opportunities and challenges from Automation

4. How to find out more

Authors

• Mark Skinner – Senior Geotechnical Engineer, Arup

Matthew Brown – Senior Geotechnical Engineer, Arup

• Carol Matthews – Associate, Arup and Lead Geotechnical Developer, Oasys

Zeena Farook

Oasys Customers

Gensler

SKANSKA

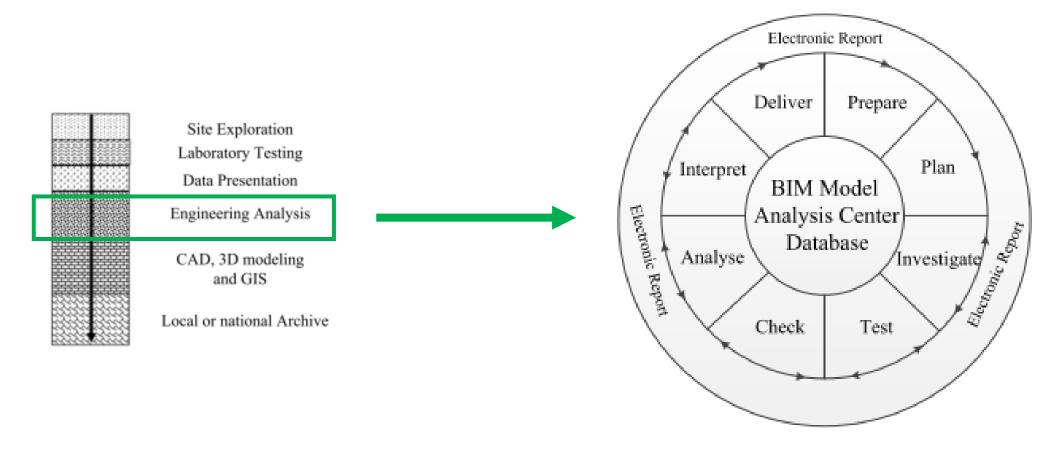
FAIRHURST

Universities using Oasys

INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

Coventry University





Why Automate?

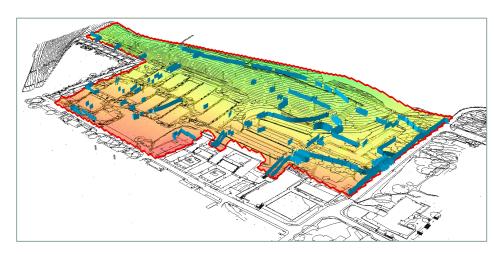
Figures for concept illustration from Zhang et al (2016), The Workflow and Operational Model for Geotechnical Investigation based on BIM, IEEE Open Access Journal

How do we Automate?

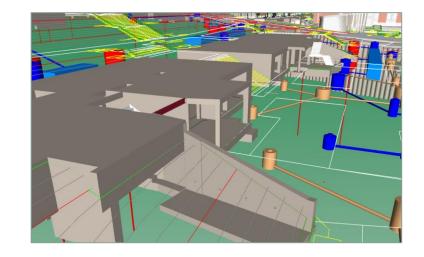
 Allow external programs to pass information and instructions to and from each other

Use COM (Component Object Model).
 Can use Excel (VBA), MATLAB and Python

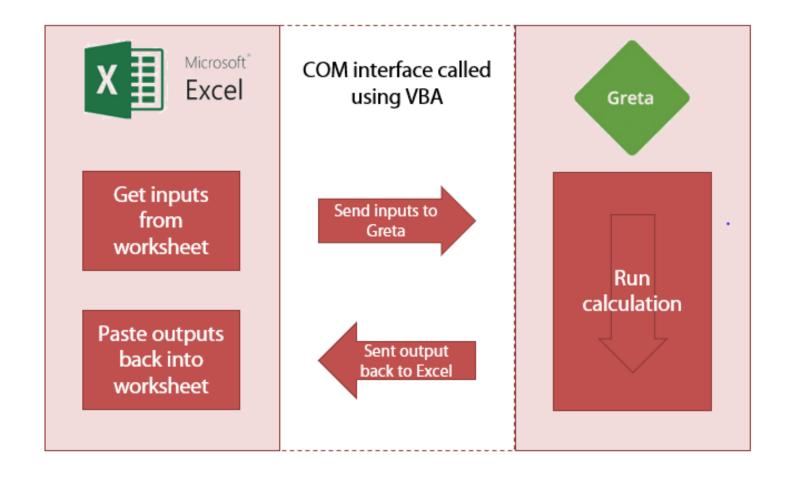
Where can we Automate?


- Input
 - Import of data from various other sources
 - Geometry from GIS or CAD
 - SI data from AGS format? What about interpretation?
 - Instrumentation data
- Analysis
 - Sensitivity analyses / iteration / optimisation
 - Back-analysis
- Output
 - Export for post-processing
 - Databases

Case Study 1 – Retaining Wall Automation

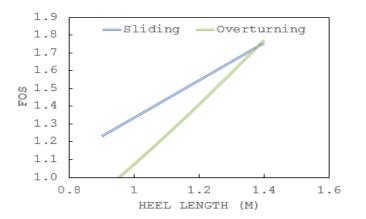

• Large site on a ~1:6 slope.

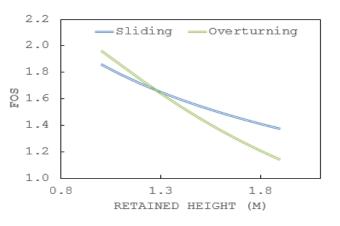
Lots of terracing of the ground profile required


Retained height, retained slope and geology varied

• Wanted an 'off the shelf' L section retaining wall solution to each situation, as the site layout was still being developed.

Case Study – Retaining Wall Automation





Why did we automate?

- Design lots of walls very quickly, with just a table of input parameters.
 - Changing geometry
 - Changing soil parameters
- Easy to optimise designs
 - Iterate heel length to optimise FoS
 - Calculate max retained height for a given geometry
 - Sensitivity investigations quickly plot outputs
- Incremental analyses
 - Get max bending moment from compaction pressures during incremental backfilling

Case Study 2 – Single Bored Pile Design

Inputs

7

Loads

Ground model

Base models

Pile properties

Displacement limit

Automated calculations

1) Lateral calculations

Four alp models per load case.

Length iterated to iteration

2) Axial calculations

Axial (compression and tension) capacity calculations completed, for ULS1, ULS2 and SLS.
Pile length iterated until FoS = 1 in each case.

ULS

ULS

SLS

3) Determination of design length

... is the longest of any case (lateral or axial).

Outputs

Pile length

Critical case

Iterated models and log file

Extracted BM and displacement

Displacement interpretation

Opportunities from Automation

- Time saving
 - Overall time reduction dependant of size of analysis. The bigger the analysis the bigger the saving
 - Input data (40%)
 - Output generation / plotting maps (40%)
- Help us to avoid and prevent human errors
- Iterative / multiple analysis (RW movements, etc)
- Future plans for real-time monitoring.
 Back analysis and Observational Method

Challenges from Automation

Only small numbers of calculations or load cases required?
 Use on larger projects

• Less checking and reviewing could potentially and incorrectly be justified Check base model and outputs carefully. Models need to be created

• Difficult to check the code rather than calculations that have been presented step-by-step

Developers within design teams?

Future Trends

ARUP

• Engineers or developers?

Modular automation

Interdisciplinary automation

Design on demand

Discuss

1. Drive for Automation in Geotechnics

2. Case Study Examples

3. Opportunities and challenges from Automation

4. How to find out more

Oasys

Automation in Geotechnics Case Studies and Future Innovation

Visit us at Booth 15 (near the lifts)

Any Questions?

