

Single Pile Analysis Zeena Farook

www.oasys-software.com

The webinar has started

Can you hear us? Please type in the questions box if you can.

Who is Oasys?

- Wholly owned by Arup
- Formed in 1976 to develop software for in-house and external use
- Most programming and sales staff are engineers
- In recent years have added marketing and sales staff
- Have expanded the development team worldwide

Oasys Customers

Gensler

expedition

SKANSKA

Lend Lease

FAIRHURST

Buro Happold

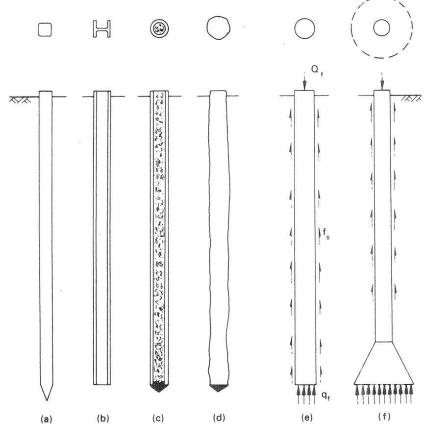
TECHNIKER

Webinar Objectives

AdSec Alp

- 1. Introduce theory for Pile, Alp and AdSec
- 2. Set up analysis files and examine results
- 3. Apply partial factors to results
- 4. Case Study Example

Previous webinars:

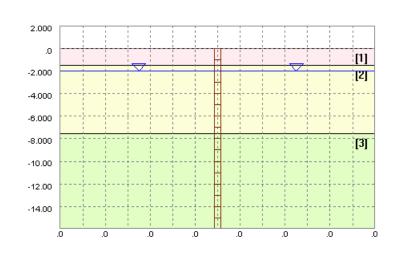

- Tips and Tricks
- Advanced Analysis Options
- Step by step guide

The design of a single pile - Definition

What is a single pile?

- A pile that when loaded does not have any interaction effects with the adjacent pile
- Spacing between the piles will depend on solution modelled and the ground conditions

Fig. 8.17 Principal types of pile: (a) precast RC pile, (b) steel H pile, (c) shell pile, (d) concrete pile cast as driven tube withdrawn, (e) bored pile (cast *in-situ*), (f) under-reamed bored pile (cast *in-situ*).


Craig's Soil Mechanics, 7th Edition

The design of a single pile - Analysis

Program	Analysis	Design Outputs
Pile	Pile vertical capacity and settlement analyses	Required length Pile settlement Soil settlement (utilities)
Alp	Pile lateral loads and displacements	Moment Cage length
AdSec	Non-linear concrete and composite section analysis	Stiffness Cracking

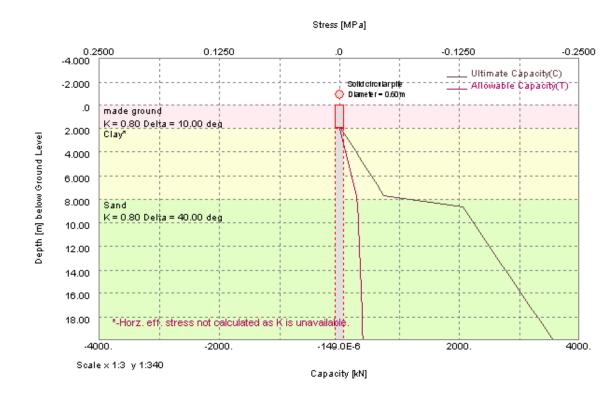
but, if you are interested in:

- Pile Groups Oasys GSA Raft
- Retaining Walls Oasys Frew

Pile

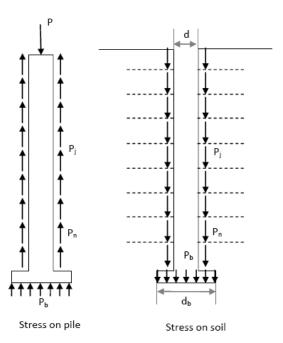
Pile Capacity and Settlement

Pile – Capacity What does it do?


- Determines the vertical load capacity of a pile for:
 - Different pile types
 - Different pile materials
 - A range of pile lengths
 - Numerous different soil layers
 - Site specific groundwater conditions
 - Different factors of safety or design resistance

Pile - Capacity

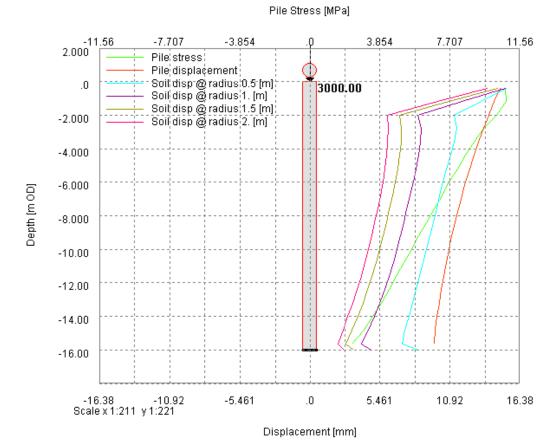
- Ultimate and allowable capacities
- Tension and compression capacities
- Input
 - Pile section
 - Under-reams
 - Soil parameters


Pile – Capacity Why use it?

- Replaces the need for spreadsheet calculations and errors that maybe within them!
- Calculates shaft and base capacity for:
 - Total stress (undrained parameters)
 - Effective stress (drained parameters)
 - Combination of both
- Models plugged and unplugged behaviour for tubular and H piles
- Can incorporate negative skin friction (not used in tension calculations)

Pile – Settlement Theory

- Purely elastic model
- Young's Modulus of
 - Soil above pile toe
 - Soil below pile toe
 - Pile
- Compressible pile in sections
- Continuum soil
- Based on paper by Mattes and Poulos (1969)



Pile - Settlement

Pile

Settlement of a pile and surrounding soil

- Output
 - Pile settlement
 - Soil settlement away from pile
 - Pile stresses
- Input
 - Pile dimensions
 - Soil stiffness
 - Negative skin friction
 - Heave

Pilset.ptw: Total Applied Load = 3000.00 [kN]

Advanced features

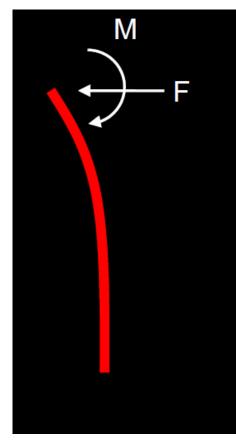
- t-z curves
- Thermal piles
- Cyclic loading
- Stages
- Negative skin friction

Pile Set-up

Pile Capacity and Settlement

Horizontal Loading and Displacements on Pile

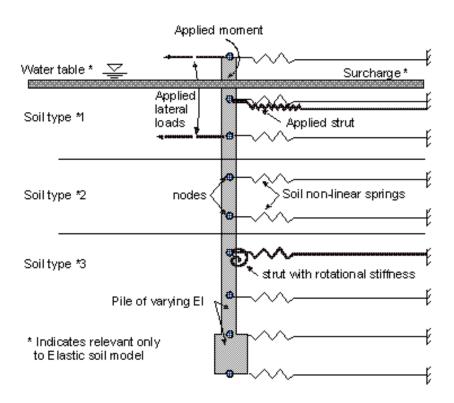
Alp


Alp calculates:

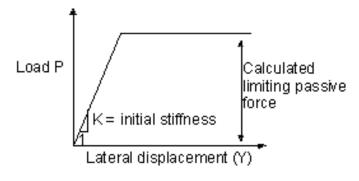
- Earth pressures
- Horizontal movements
- Bending moments
- Shear forces

Based on:

- Lateral loads, moments or displacements
- Lateral and rotational restraints
- Soil load deflection behaviour



Alp <u>Theory - Representation</u>


Alp

- Models the pile as a series of elastic beam elements
- Models the soil as a series of non-interactive non-linear springs
- Forces, moments and stiffnesses are applied at nodes
- Soil response modelled as Elastic Plastic or P-Y

Alp <u>Theory – Elastic-Plastic</u>

ELASTIC PLASTIC

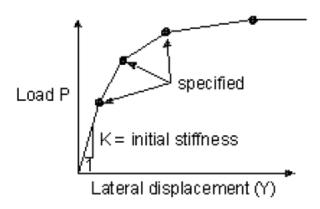
- Assumes elastic behaviour until a passive limit is reached –simplistic!
- At limit, a constant limiting passive force is used

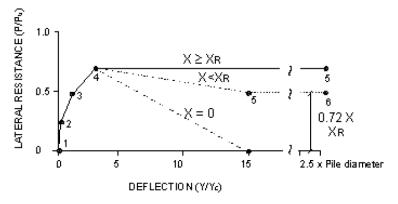
$$\begin{aligned} \textbf{K} = \textbf{E} \ \textbf{h} \ \textbf{E}_{\text{fact}} & \textbf{E} = \textbf{Young's modulus of soil} \\ \textbf{h} = \textbf{distance between mid-point of adjacent nodes} \\ \textbf{Fp} = (\textbf{K}_{q}\sigma_{v}' + \textbf{cK}_{c}) \ \textbf{h} \ \textbf{D} & \textbf{K}_{q} = \textbf{Passive resistance coefficient for the frictional component of the soil}} \\ \textbf{K}_{c} = \textbf{Passive resistance coefficient for the cohesive component of the soil}} \end{aligned}$$

Alp <u>Theory – P-Y Soil Model</u>

BUT Soils are not Elastic-Plastic

Predefined models for:


- Soft Clay (Matlock 1970)
- Stiff Clay (API 21)
- Sand (API 18 or 21)
- Weak Rock (Reese 1997)
- Strong Rock (Turner 2006)

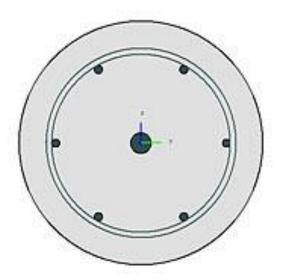

User can define P-Y curves for different strata

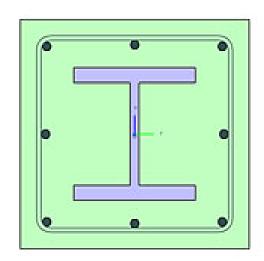
Cyclic loading can be considered

P-Y Curve:

Alp Set-up

Horizontal Loading and Displacements on Pile


AdSec


Non-linear Concrete and Composite Section Analysis

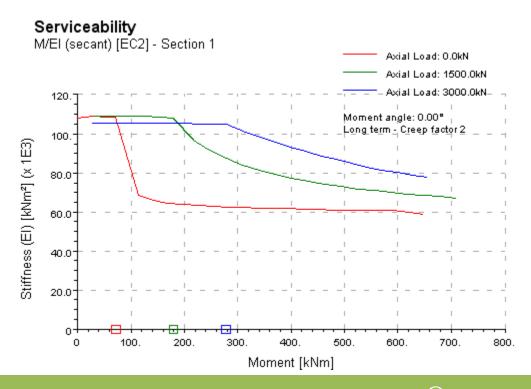

AdSec

Non-linear concrete and composite section analysis

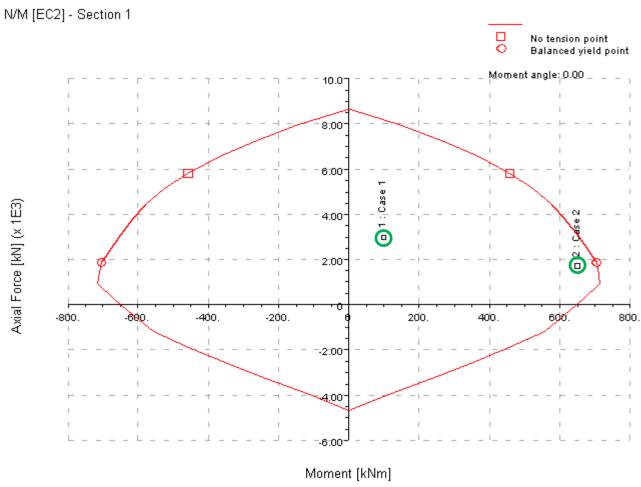
AdSec Theory

 Program carries out a strain plane analysis for any given section to solve the following equation:

$$\varepsilon = \varepsilon_{ax} + \kappa_{yy} \cdot Z' + \kappa_{zz} \cdot Y'$$


- ULS Analysis
 - Ultimate strength of section
 - Uses material factors or strength reduction factors
- SLS Analysis
 - looking at the section in its normal working state
 - allow for both long term (creep) and short term loading

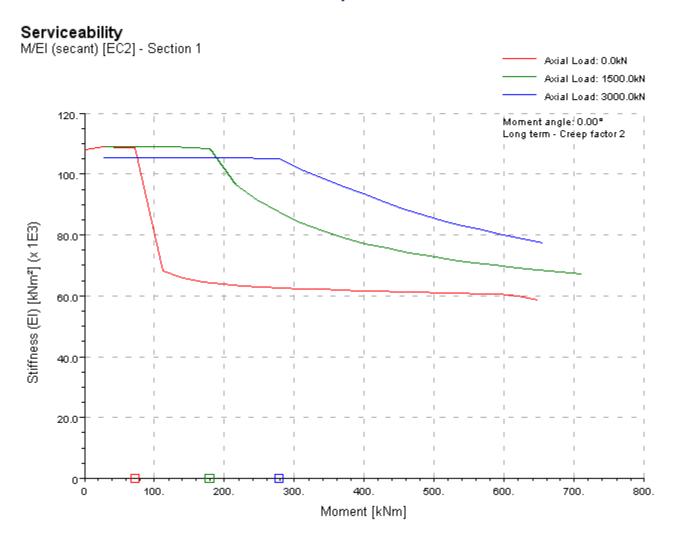
AdSec



Non-linear concrete and composite section analysis

- Output
 - Section capacities
 - Section stiffnesses
 - Cracking
- Input
 - Section
 - Reinforcement
 - Loads

AdSec - Section capacities - N/M


AdSec – Section capacities – M/M

Moment Interaction

AdSec – Section capacities – Stiffness

AdSec

- Ultimate and Serviceability condition checks
- Regular and irregular concrete and composite sections
- Non-linear cracked section stiffness and capacities
- Crack widths

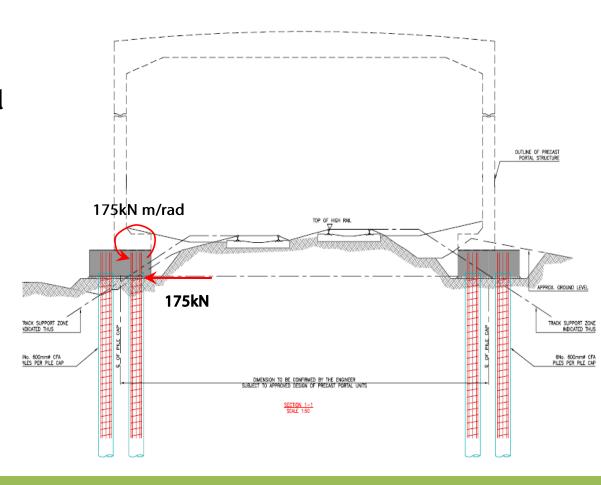
AdSec Set-up

Non-linear Concrete and Composite Section Analysis

Case Studies

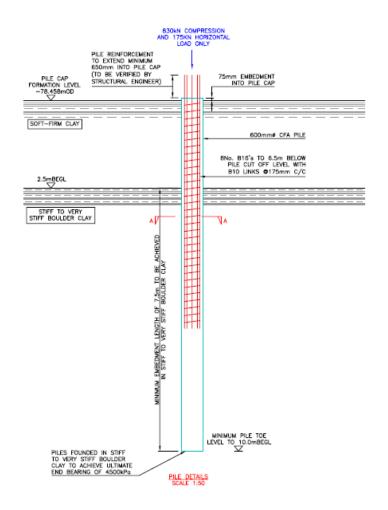
Designing Piles for Transverse Loads

McCarthy's level crossing near Kilmallock

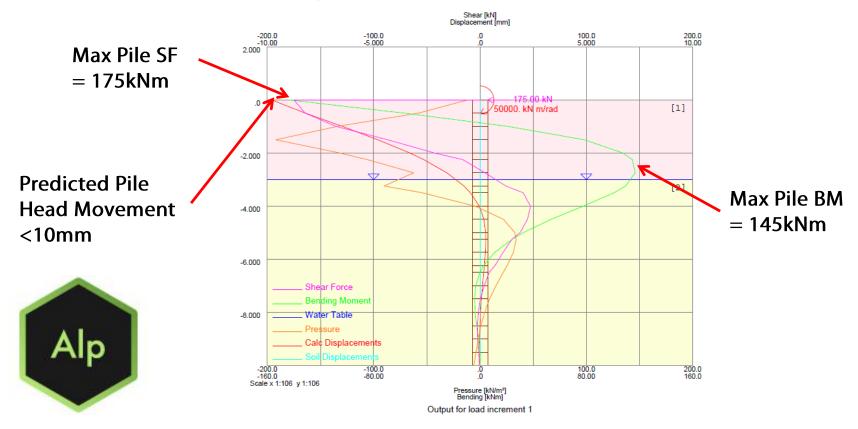


Project Brief

 BLP were asked to design the piled foundations for the proposed replacement of McCarthy's level crossing near Kilmallock, Co. Limerick.


- The piles had to resist
 830kN maximum uniaxial
 compressive loads
- No tension or moment loads were to be transferred to the piles
- The piles were subjected to 175kN horizontal load per pile from the superstructure

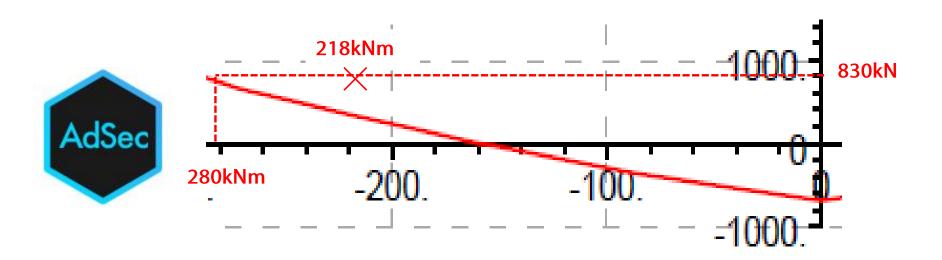
Proposed Solution


- All piles are designed to be bearing in the stiff to very stiff boulder clay, conservatively ignoring the upper 2.5m of overburden.
- The Consulting Engineers specified the piles to be minimum 600mm diameter

Analysis – Transverse Load

• For the ALP analysis a rotational stiffness has been taken for the pile cap. All piles are to be fully tied into this pile cap.

The pile reinforcement should be installed to a minimum depth of
6.5m below pile cut off level, as per the ALP output.


Analysis – Structural Capacity of Pile

- The pile reinforcement capacity has been checked using Oasys AdSec software package
- From Adsec BMallowable > 280kNm for a compressive load of 830kN
- $BM_{design} = BM_{generated} \times F.o.S$

Take F.o.S = 1.5

• $BM_{design} = 145 \times 1.5$

=> 218kNm < BM_{allowable} = OK

COM Interface Iterative Pile Design for a Large Site

ARUP

Automated Design

Inputs

Loads

Ground model

Base models

Pile properties

Displacement limit

Automated calculations

Calculation spreadsheet runs iterative design calculations:

1) Lateral calculations

Four alp models per load case. Length iterated to iteration limits.

Axial (compression and tension) capacity calculations completed, for ULS1, ULS2 and SLS. Pile length iterated until FoS = 1 in each case.

ULS

SLS

SLS

2

3) Determination of design length

... is the longest of any case (lateral or axial).

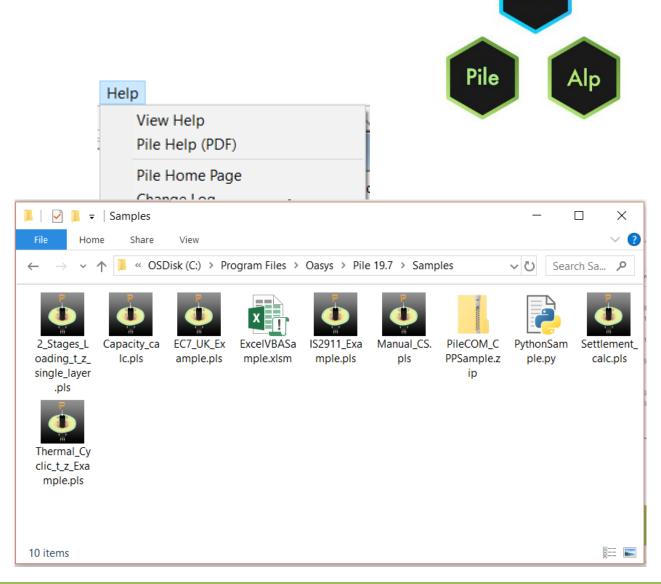
Outputs

Pile length

Critical case

Iterated models and log file

Extracted BM and displacement



Displacement interpretation

Case study from Mark Skinner, Arup

Where do I go for help?

- Program
- Sample Files
- Manual
- Website:
 - Tutorials
 - Webinars
 - FAQ
 - User Voice
- Email

Webinar Objectives

AdSec Alp

- 1. Introduce theory for Pile, Alp and AdSec
- 2. Set up analysis files and examine results
- 3. Apply partial factors to results
- 4. Case Study Examples

Program	Analysis	Design Outputs
Pile	Pile vertical capacity and settlement analyses	Required length Pile settlement
Alp	Pile lateral loads and displacements	Moment Cage length
AdSec	Non-linear concrete and composite section analysis	Stiffness Cracking

Find out more?

Request a trial or look at our tutorial manual.

Website: www.oasys-software.com

Email: oasys@arup.com

Call: +44 (0) 191 238 7559

www.oasys-software.com