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Introduction 

AdSec is a general section analysis program, giving section properties for irregular sections. 

While focussed on concrete sections, other materials can be specified. It will: 

• Calculate the ultimate resistance of irregular sections (reinforced & pre-stressed) 

• Provide N/M & Myy/Mzz charts 

• Serviceability calculations including crack widths / cracking moment 

• Provide moment–curvature and moment–stiffness charts 

The basic assumption in AdSec is that plane sections remain plane. 

Sign Convention 

In AdSec the section is considered to be in the y-z plane as illustrated below 

 

This means that moments are defined as follows: 
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The following table illustrate moment, compression and curvature conventions 

Myy Mzz 
Moment 

angle,  

Neutral Axis 

angle, NA 
yy zz  

+ M 0 0 0 + ve 0 

 

+ M + M -45° -45° + ve + ve 

 

0 + M -90° -90° 0 +ve 

 

- M +M -135° -135° - ve + ve 

 

- M 0 
-180° 

(180°) 

-180° 

(180°) 
- ve 0 

 

- M - M 135° 135° - ve - ve 

 

0 - M 90° 90° 0 - ve 

 

+ M - M 45° 45° + ve - ve 

 
 

Key: C Region of Compression M Any particular moment 

 NA Neutral Axis   

NA 

C 

C 

NA 

NA 

C 

NA 
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NA 
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NA C 
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NA 

C NA 
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Analysis options 

For the Ultimate Limit State, the options available include: 

• Ultimate moment capacity of the section. 

• Stresses and strains from the ultimate applied load and stresses at the ultimate limit 

state. 

• Ultimate resistance N/M interaction chart. 

• Ultimate resistance Myy/Mzz moment interaction chart. 

For the Serviceability Limit State, the program calculates: 

• Cracking moment. 

• Stresses, stiffness and crack widths for each analysis case. 

• Moment-stiffness and moment-curvature charts. 

The following load types can be simulated: 

• Pre-stress using unbonded tendons 

• Shrinkage and temperature effects 

AdSec will find the ultimate capacity of a simple or compound section. It will find the state of 

stress & strain in the section under a variety of loading conditions for serviceability and ultimate 

material properties. Serviceability analysis will generate a plot of neutral axis position and crack 

widths around the section as well as full numerical output 

The ultimate capacity charts have developed significantly. The user can specify a table of 

additional points (N/M or Myy/Mzz), with labels, which will be plotted onto the graph. Also, the 

user can specify a number of values of axial force and Myy/Mzz plots will be drawn for each 

value of axial force on the same graph. User input strain planes can applied to see the impact on 

the ultimate capacity charts. 

Serviceability charts will plot moment versus curvature, secant stiffness or tangent stiffness for a 

given value or range of axial force and moment angle. 

Loading 

The reference point for loading and strain planes is taken by default as the Geometric Centroid, 

but this can be overridden by specifying a user specified point. 

Solution 

The basic idea behind AdSec is that the state of strain across a section varies linearly and can be 

defined by a ‘strain plane’. As the variation is linear the strain plane can be define by a scalar 

axial strain (applied at a specified point) and a curvature vector. 
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   zyx  ,,  

Then the axial force and moments in the section are then defined as 
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 This can be characterized in the same way as the strain plane as 

  zyx MMNN ,,  

There are many different calculations in AdSec but they are all defined as solution to a set of 

equations which are functions of the strain plane. 

When checking the strength of a section given the axial force and a moment vector, the solution 

is to find the maximum moment possible before the section fails. There are several criteria to be 

checked but the primary criteria is 
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Where  xN  is the axial force, 
M   is the moment angle, max  is the maximum strain in the 

section, u   is the ultimate (failure) strain of the material and the subscript ‘app’ is for applied. 

The basic solution procedure is select an initial trial strain and calculate the target values.  
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The solution is then iterative until a converged solution for the criteria above is achieved. Once 

this strain plane is found the ultimate moment uM  is the moment from integrating the final 

strain plane. 

Solver Solution Space 

Any particular load condition can be considered as a point in the  
zzyy MMN ,,  space. It is them 

possible to construct a failure envelope – this can be for ULS strength or for a serviceability 

criteria, such as cracking. The failure envelope is then typically an ‘onion’ shape with axial force 

as the ‘vertical’ axis. Any point inside the space represent a valid force state, but a point outside 

the surface has failed.  
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The analysis is then concerned with determining the force position with respect to the failure 

surface. In a ULS analysis the solution holds the axial force constant and find the ratio of the 

applied moment to the moment corresponding to the projection on to the failure surface.  

 

Similarly, the chart options N/M corresponds to a vertical slice through the ‘onion’ and a 

horizontal slice corresponds to an Myy/Mzz chart. 

Solver Search Process 

The solution is iterative, and assumes plane sections remain plane. The iteration searches 

through possible strain planes. Strain  at point  zy, is zy yzx   . For each strain plane: 

locked in strains are added, stresses are calculated from the non-linear material curves, forces 

and moments are calculated by integration of stresses over the section, the three search 

conditions are then checked.  

Analysis Condition 1 Condition 2 Condition 3 

ULS : Strength Axial force Moment angle Ultimate strain 

ULS : N/M charts Moment angle Strain condition Ultimate strain 

SLS & ULS : Loads Axial force Moment angle Applied moment 

SLS : Cracking moment Axial force Moment angle Cracking strain 

 

The iteration continues until the three variables yzx  ,, are found with form a strain plane ̂

that satisfies the (up to) three conditions. 
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SLS and ULS loads analysis 

For a loads analysis AdSec searches for a strain plane which satisfies: 

• axial force = applied axial force 

• moment = applied moment 

• moment angle = applied moment angle 

When looking at serviceability it is useful to be able to differentiate between short and long term 

conditions. Long term analysis takes account of creep, while short term analysis assumes that no 

creep takes place. 

ULS strength analysis 

For a strength analysis there are several criteria that may govern the strength of the section. For 

a ‘concrete’ (compression) governed section 

• axial force = applied axial force 

• moment angle = applied moment angle 

• concrete strain : concrete failure strain = 1 

For a ‘reinforcement’ (tension) governed section 
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• axial force = applied axial force 

• moment angle = applied moment angle 

• rebar strain : rebar failure strain = 1 

Some codes implement a third condition which limits the compressive strain on the section 

when the whole section is in compression. 

Long, short and long & short term analysis 

When looking at serviceability it is useful to be able to differentiate between short and long term 

conditions. Long term analysis takes account of creep, while short term analysis assumes that no 

creep takes place. 

The creep is defined by a creep coefficient  for concrete. It is assumed that the other materials 

are unaffected by creep. This coefficient is used to modify the material stress-strain curves. 

In a long term analysis, the total strain is assumed to include the strain due to load plus an 

additional strain due to creep. In the linear case this can be written as 

 
EE





  creepload  

Rearranging this gives 
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E
 

AdSec takes these creep effects into account by modifying the effective elastic modulus 

 
 


1

creep

E
E  

Resulting in stress-strain curves stretched along the strain axis. 

'Long and short' term analysis is an option in AdSec to give a more detailed understand the 

serviceability behaviour of sections. Note: this is not available for all design codes. 

Loading is defined in two stages. Firstly, long term loading, combined with a creep factor and 

then an additional short term loading.  

In some circumstances, the long term loading is a permanent or quasi permanent loading, and 

the short term loading is an extreme event that happens after an extended period of time. 

However, in many cases short term loading will occur intermittently throughout the life of the 

section. The long and short term analysis option in AdSec will model the second case.  

• Firstly, the cracking moment is calculated assuming the total long & short term axial load 

and moment direction, and short-term material properties.    

• Secondly the strains and stresses are found for the long term loads, and long term 

material properties. These strains are used to calculate the creep effects of long term 
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loads where creep strain is: 
 







1
longcreep . In this analysis the BS8110 Pt.2 

tension curve will use 0.55N/mm2 as the maximum stress, if the section was deemed 

cracked under the total load.  This will model the conservative assumption that, if 

cracked, this happened at an early stage of the sections life.  

• The cracking moment is then recalculated, for the total load including the creep strain in 

the concrete calculated above. This will have the effect of slightly reducing the cracking 

moment if a compressive force has been acting on the section for a long time. This is the 

case, because the stress in the concrete will have reduced as the concrete creeps and 

more stress is transferred to the reinforcement. 

• Finally a short term analysis is performed for the total loads, using short term material 

properties and the calculated creep strain to include for the long term effects.  

 

Note that if the same process is followed manually using sequential AdSec analyses the initial 

cracking moment will be calculated from the long term load only. This will give different results 

than the automated AdSec 'long and short' term analysis in a small number of cases. The cases 

affected are where the BS8110 Pt.2 tension curve is selected, and the section is cracked under 

total load, but uncracked under the long term load, and the stress under long term load is 

between 0.55 and 1.0 N/mm2 at the centroid of tension steel. 

Some codes allow an intermediate term analysis, depending on the ratio  

 
g

q

M

M
 

In this case  

 

 
   

  21

1

1

1
inter

EE
E

EE

MM
E

MM

MM
EE

long

short

gq

long

gq

gq

short
















 

Strength reduction or material partial factors for ULS 

There are two main approaches applicable to section analysis: strength reduction and material 

partial factors. The strength reduction approach is use in the ACI (American) and AS (Australian) 

codes. In this case the material strengths are used unfactored, the strength of the section is 

calculated and then reduced using a strength reduction factor ϕ. The particular value of ϕ 

depends on the strain place at failure. 
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In most other codes factors are applied to the material in the ULS. Giving a reduced strength for 

the material in design 

 
m

d

f
f


  

The CSA (Canadian) codes use a similar approach but use a factor m . 

 ff md   

The values of m and m  are specified in the code but typical values are 

 
m  m  

Concrete 1.5 0.65 

Reinforcement 1.15 0.85 

Pre-stress tendons 1.15 0.9 

Structural steel  0.9 

 

Tension in Concrete 

Concrete exhibits a 4 phase behaviour in response to tension stresses. 

• Low tension stress – concrete tension stiffness similar to compression 

• Cracking starts – stiffness drops off as cracks form 

• Cracks formed, cracks open up – stiffness drops off more rapidly as cracks open up 

• Fully cracked – no residual stiffness left 

This behaviour is complex as it is controlled by the reinforcement. The simplified means 

prescribed to deal with these phenomena vary from code to code. 
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All codes state that ultimate analysis and design should ignore the tension stiffening from the 

concrete. All codes will accept fully cracked section properties as a lower bound on stiffness. 

Serviceability analysis is usually performed for stiffness, stress/strain checks, or crack width 

checks. Some codes imply a different tension stiffening method for crack width as opposed to 

the other checks. This may lead to a disparity in AdSec results between the 'cracking moment' 

and the moment at which the crack width becomes > zero. 

The code rules are developed for a rectangular section with uniaxial bending and one row of 

tension steel. However, the rules are not extended to sections made up of various zones of 

concrete, some with locked in strain planes. Because the tension stiffening is a function of the 

amount of 'damage' / cracking in the section, adjoining tensile zones need to be considered in 

evaluating the tension strength of a zone, as these may contain steel which will control the 

cracking. 

BS8110 Pt 2 presents a stress/strain 'envelope' which provide means of calculating an effective 

tensile Young's modulus for a linear tension stress/strain curve. 

ICE Technical note 372 presents a more sophisticated envelope approach than BS8110 and is 

offered as an option in ADSEC. 

BS5400 presents the same approach as BS8110 in Appendix A for stiffness calcs. But this is rarely 

used. Instead the main body of the code gives a crack width formula based on strains from an 

analysis with no tension stiffening. The crack width formula itself includes some terms to add 

back in an estimate of the contribution from tension stiffening. Ref BS5400 5.8.8.2 equation 25. 

EC2 proposes 2 analyses, one with full tension stiffness and one with none. The final results are 

an interpolation between these results. 

Recent research about the cracked stiffness of concrete has shown that the tension stiffness 

measured in the laboratory can only be retained for a very short time. This means that both the 

tension stiffening given in BS8110 and TN 372 is un-conservative for most building and bridge 

loadings. AdSec includes these findings for BS8110 and will give a smaller tension stiffness than 

previous versions. 

EC2 tension stiffening 

EC2 tension stiffening is described in Eurocode 2 section 7.4.3 equation 7.18. EC2 does not have 

a specific tension stiffening relationship used in analysis. Instead, two analyses are carried out 

assuming cracked and uncracked stiffness values, and the actual curvature & stiffness is an 

interpolation between the 2 results based on the amount of cracking predicted. 

The cracking moment, crM , is defined as the moment when the stress in the outer most tensile 

element of an uncracked concrete section has reached ctmf . 

The tension stiffening options offered for EC2 in AdSec are zero tension, linear tension, and 

interpolated. 'Zero-tension stiffness' will give a conservative, fully cracked lower bound. The 

'linear tension stiffening' uses the Elastic modulus of the concrete to produce a linear stress–

strain relationship. This is for checking of the other results only and it is not appropriate to use 

this beyond the cracking moment. Note that the values in EC2 for serviceability are based on 
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mean concrete properties rather than the characteristic values used for ultimate analysis and 

design. The interpolation depends on the amount of damage sustained by the section. This is 

calculated by AdSec based on the proximity of the applied loading to the cracking moment. But 

for sections which have been cracked in a previous load event the minimum value of   for use 

in equation 7.18 can be input. The default value of 
min is 0. To take account of the fast drop in 

tension stiffening following cracking, the value of   in equation 7.19 defaults to 0.5. 

AdSec does not use equation 7.19 to calculate the damage parameter  . Instead   is 

calculated from the cracking strain 

 
Ecm

f ctm

cc   

and the most tensile strain uncr  in the section under an uncracked analysis under full applied 

load. 

The E  used for to determine uncr  is short term (not modified for creep). For composite sections 

i  is calculated for each component i  using the component material properties for cc , and the 

most tensile strain on the component for uncr . The highest value of 
i will be used for   in 

stiffness & cracking calculations. 

Note engineering judgement should be used to assess if this approach fits the particular 

situation. 
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If the EC2 interpolation is selected for the tension stiffness at serviceability, the properties which 

depend on the average behaviour along the element (e.g. stiffness, curvature and crack widths) 

are based on the interpolated strain plane. However, for moments greater than crM , the 

stresses output by AdSec for the interpolated tension stiffness are from the fully cracked 

analysis, because these represent the maximum stresses which occur at crack positions. 

Stiffness 

AdSec operates on strain, using non-linear materials. AdSec will show how the stiffness of the 

section changes with load and the effect of non-linear material behaviour. There are a number of 

ways in which the stiffness of a reinforced concrete section can be approximated. These are 

show in the diagram below. This diagram plots AdSec results along with the approximate 

stiffness values for comparison 
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For a symmetric section, symmetrically loaded, stiffness can be expressed as 

 


M
EI   

If there is an axial force, locked in strain plane, or pre-stress, there will be a residual curvature at 

zero moment.  

 

This curvature can be called 0 so AdSec uses 

 
 0 


M

EI  

The curvature at zero moment may not be in the same direction as the applied moment angle. 

To allow for this, the formula is further modified to give 

 
  NAappl0  


M

EI  

Where appl  is the angle of applied moment and NA is the neutral axis angle from the 0

calculation. 
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Cracking 

Cracking Moment 

The programme calculates the total axial force and moment from the loads in the analysis case 

definition. It uses the axial force and the angle of the applied moment to define the cracking 

moment analysis task. The programme then searches for a strain plane that gives the cracking 

strain as shown below. 

 

Integrating the stresses from this strain plane over the section will give an axial force equal to 

the applied force, and a moment which is parallel to the applied moment. The value of this 

moment is the cracking moment. Short-term material properties are always used for the 

cracking moment calculation. 

Crack-width 

Crack width formulae to BS8110 and BS5400 are based on a weighted interpolation between two 

effects. Close to a bar, crack width is a function of the bar cover, 
minc . Between bars, it is a 

function of the depth of tension zone, xh  . 
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BS8110 & Hong King Code of Practice 

Crack widths can be calculated to BS8110 using any of the three available tension stiffening 

options. 

After calculating the cracking moment, AdSec will search for a strain plane which gives forces and 

moments within tolerance of the applied forces and moments. The resulting strain distribution is 

used to calculate the crack width. 

The maximum crack width output is related to the given resultant moment orientation. This is 

particularly important for circular sections, as the maximum strain may not occur between two 

bars. 

This would give a lower crack width value than may occur in reality. 

The sides of the section are divided into small segments and the crack width calculated for each 

segment. The crack width formula 


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
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
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ca

a
w

cr

mcr
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is given in BS8110, section 3.8, equation 12.  

Crack width calculations involve a large amount of engineering interpretation for faceted 

sections, sections with voids, sections with re-entrant corners, and multi-zone sections. 

Depending on the situation, a different definition of 'cover' is required. The programme stores 

the minimum cover to each bar and uses this in the calculation of crack width. This means that 

the cover used in the calculation may not relate to the side being checked (it will always give a 

conservative result). The reason for this approach is that curved sections are analysed as a 

multifaceted polygon, and there may be no bars present parallel to a small facet. This is because 

the number of facets may be greater than the number of bars. 

The crack width calculation is done on a zone by zone basis using the zonal strain plane 

(resulting strain plane + component strain plane + concrete only component strain plane). This 

component strain plane applied to the whole section is used to calculate neutral axis depth and 

section height ( x  and h ) relative to the whole section – using all the section coordinates. 

The crack width includes the term  mincacr  . If 
minc  is smaller than cra  the crack width is 

increased. 

For each division on the concrete outline the closest bar is found (minimum cra ). For a re-

entrant corner, and a bar which is on the 'outside' of the section with ref to the side being 

checked a warning flag is generated, A conservative crack width can still be calculated using the 

minimum cover to the bar. 

If the cover is greater than half the depth of the tension zone, the crack width in both codes in 

invalid. 
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The term for concrete only cracking should be used instead. This is   mxh 5.1 . This is included 

in AdSec. 

These are warning in the crack width calculation. They do not necessarily mean that the answer 

is wrong. But do mean that the graphical results should be checked for engineering 

interpretation 

• cmin < controlling bar diameter – crack width not valid 

• Controlling bar is remote from crack location 

• Controlling bar and crack are located on either side of re-entrant corner 

• Cover to controlling bar measured to different side from crack location 

BS5400, Hong Kong Structures Design Manual & IRS Bridge Code 

The BS8110 specification above is valid for BS5400 plus some additional points. 

The BS5400 includes a fudge for effective tension stiffening. So for crack widths to be correct 

using the BS5400 formula, SLS analysis must use no tension stiffening in calculation of the 

strains around the section. 

This fudge requires calculation of 'the level of tension steel'. This is re-calculated on a component 

by component basis using a similar method to BS8110-2 tension stiffening. The tension steel is 

identified as the steel which is in the tension zone when the zonal strain plane is extended 

across the whole section (the zonal strain plane is the resulting strain plane + zonal locked in 

plane + zonal concrete only plane). From the steel bars identified, the centroid of steel force is 

calculated using the actual stress in the bars ignoring prestress and ignoring any bars in 

compression. 

Once the level of centroid of tension steel is found, the width term tb  needs to be calculated. 

This includes interrogation of all the section coordinates (as for x  and h ). If more than 2 sides 

cross the level of centroid of tension steel, the width is taken as the distance between the two 

extreme dimensions. This needs to be checked for sections with large voids, or channels with 

thin legs, as the term hbt  is used to make an approximation for the force in the tension zone 

and assess the area of tension steel versus the area of tension concrete. It may be appropriate 

to substitute a smaller value of tb . 

BS5400 includes a notional surface a distance ' nomc ' from the bars. AdSec will look at all bars to 

define this surface excluding any with 'negative cover'. This should be reviewed, particular for 

sections with sharp acute angles and re-entrant corners. In the example below the adjustment to 

sides A and side C may not be the adjustment that would be chosen by engineering judgement. 

In this situation, the cracking parameters output for the relevant sides can be extracted from the 

output, and the results recalculated, substituting the corrected values. 
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The crack width equations in BS5400-4, which are offered by AdSec, are either equation 24 
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where the strain m  is given by equation 25 
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or the alternative equation 26 

mcraw 3  
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Concrete material models 

Symbols 

f  
concrete stress 

cf  concrete strength 

  Concrete strain 

c
 

Strain at which concrete stress is 

maximum 

cu
 

Strain at which concrete fails 

Units 

The default units are: 

Stress, strength MPa (psi) 

Elastic modulus GPa (psi) 

Concrete material models for different codes 

Different material models are available for different design codes. These are summarised below: 

 

A
C

I 
3

1
8

 

A
S

 3
6

0
0

 

B
S

 5
4

0
0

 

B
S

 8
1

1
0

 

C
S

A
 A

2
3

.3
 

C
S

A
 S

6
 

E
N

 1
9

9
2

 

H
K

 C
P

 

H
K

 S
D

M
 

IR
C

:1
1

2
 

IR
S

 B
ri

d
g

e
 

IS
 4

5
6

 

Compression 

Parabola-

rectangle 
● ● ● ● ● ● ● ● ● ● ● ● 

Rectangle ● ●  ● ● ● ● ●  ●  ● 

Bilinear       ●   ●   

Linear ● ● ● ● ● ● ● ● ● ● ● ● 

FIB     ●   ● ●  ●  ● 

Popovics ● ●   ● ●       
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EC2 

Confined 
      ●   ●   

AISC 360 

filled tube 
●            

Explicit ● ● ● ● ● ● ● ● ● ● ● ● 

Tension 

No-tension ● ● ● ● ● ● ● ● ● ● ● ● 

Linear ● ●  ● ● ● ● ●  ●  ● 

Interpolated ● ●   ● ● ●   ●   

BS8110 - 2    ●    ●    ● 

TR 59    ●    ●    ● 

PD 6687       ●      

Explicit ● ● ● ● ● ● ● ● ● ● ● ● 

Explicit 

envelope 
● ● ● ● ● ● ● ● ● ● ● ● 

 

• inferred from rectangular block 

• PD 6687 variant of EN 1992 only 
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Parabola-rectangle 

Parabola-rectangles are commonly uses for concrete stress-strain curves.  

 

The parabolic curve can be characterised as 
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At strains above c  the stress remains constant. For most design codes the parabola is taken as 

having zero slope where it meets the horizontal portion of the stress-strain curve.  
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The Hong Kong Code of Practice (supported by the Hong Kong Institution of Engineers) interpret 

the curve so that the initial slope is the elastic modulus (meaning that the parabola is not 

tangent to the horizontal portion of the curve). 
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where the secant modulus is 

 c

cd

s

f
E




 

 In Eurocode the parabola is modified  

 


























n

ccdf

f




11

 



 Oasys AdSec 
 

 

© Oasys Ltd 2019 25 

 

 

and 

 2n      cf ≤ 50MPa 

 
  4

100904.234.1 cfn 
  cf > 50MPa 

EC2 Confined 

The EC2 confined model is a variant on the parabola-rectangle. In this case the confining stress 

 increases the compressive strength and the plateau and failure strains. 

 
 

 








ccc

ccc

cc
fff

fff
f

05.05.2125.1

05.051
,




 

 
 

ccuccu

cccccc

f

ff





2.0,

2

,,




 

Rectangle 

The rectangular stress block has zero stress up to a strain of c (controlled by  ) and then a 

constant stress of cdf .  

 

  α β 

ACI 318  1 0.85 - 0.05(fc - 30)/7   [0.65:0.85] 

AS3600 2001 1 0.85 - 0.07(fc - 28)  [0.65:0.85] 
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AS3600 2009 1 1.05 - 0.007fc    [0.67:0.85] 

BS5400  0.6/0.67 1 

BS8110  1 0.9 

CSA A23.3  max(0.67, 0.85 – 0.0015 fc) max(0.67, 0.97 - 0.0025 fc) 

CSA S6  max(0.67, 0.85 – 0.0015 fc) max(0.67, 0.97 - 0.0025 fc) 

EN 1992  1     fc ≤ 50MPa 

1 - (fc - 50)/200  fc> 50MPa 

0.8      fc ≤ 50MPa 

0.8 - (fc - 50)/400 fc > 50MPa 

HK CP > 2004 1 0.9 

HK CP 2007 > 1 

0.9       fc ≤ 45MPa 

0.8       fc ≤ 70MPa 

0.72       fc ≤ 100MPa 

HK SDM  0.6/0.67 1 

IRC:112  1      fc≤ 60MPa 

1 - (fc - 60)/250 fc> 60MPa 

0.8       fc≤ 60MPa 

0.8 - (fc - 60)/500  fc> 60MPa 

IRS Bridge  0.6/0.67 1 

IS 456  0.8 0.84 

 

Bilinear 

The bilinear curve is linear to the point  cdc f,  and then constant to failure. 
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FIB 

The FIB model code defines a schematic stress-strain curve. This is used in BS 8110-2, EN1992-1 

and IRC:112.  

 

This has a peak stress cFIBf  

This is defined as 

 
 



21

2






k

k

f

f

cFIB

 

with 

 cc

c

f

E
k




 

Where the factor  is code dependent.  

Code 
cFIBf    

BS 8110-2 
cf8.0  1.4 

EN 1992-1 MPaf c 8  1.05 

IRC:112 MPafc 10  1.05 
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Popovics 

There are a series of curves based on the work of Popovics. 

 

These have been adjusted and are based on the Thorenfeldt base curve. 

In the Canadian offshore code (CAN/CSA S474-04) this is characterised by 
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
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11


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cfk

 

The peak strain is referred to elsewhere as pop . 

 cpop  
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All the concrete models require a strength value and a pair of strains: the strain at peak stress or 

transition strain and the failure strain. 

Mander & Mander confined curve 

The Mander1 curve is available for both strength and serviceability analysis and the Mander 

confined curve for strength analysis. 

 

For unconfined concrete, the peak of the stress-strain curve occurs at a stress equal to the 

unconfined cylinder strength cf  and strain c  generally taken to be 0.002. Curve constants are 

calculated from 

 ccfE sec  

and 

 
secEE

E
r


   

Then for strains c 20   the stress   can be calculated from: 

 
rc

r

r
f









1
 

where 

                                                        

 

1 Mander J, Priestly M, and Park R. Theoretical stress-strain model for confined concrete. Journal 

of Structural Engineering, 114(8), pp1804-1826, 1988. 
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c


   

The curve falls linearly from c2 2eco to the ‘spalling’ strain cu . The spalling strain can be taken 

as 0.005-0.006. 

To generate the confined curve the confined strength ccf ,  must first be calculated. This will 

depend on the level of confinement that can be achieved by the reinforcement. The maximum 

strain ccu, also needs to be estimated. This is an iterative calculation, limited by hoop rupture, 

with possible values ranging from 0.01 to 0.06. An estimate of the strain could be made from EC2 

formula (3.27) above with an upper limit of 0.01. 

The peak strain for the confined curve cc, is given by: 

 







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
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


 151

,

,

c

cc

ccc
f

f
  

Curve constants are calculated from 

 ccccfE ,,sec   

and 

 
secEE

E
r


   

as before. 

E  is the tangent modulus of the unconfined curve, given above. 

Then for strains ccu,0   the stress   can be calculated from: 
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r
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
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1
,  

where 
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
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BS8110-2 tension curve 

BS8110-2 define a tension curve for serviceability 

 

 

TR59 

Technical report 59 defines an envelope for use with concrete in tension for serviceability. The 

material is assumed to behave in a linearly elastic manner, with the elastic modulus reduced 

beyond the peak stress/strain point based on the envelope in the figures below 
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Interpolated 

Interpolated strain plains to ACI318 and similar codes 

ACI318 and several other codes give a method to compute a value of the second moment of area 

intermediate between that of the uncracked, gI , and fully cracked, crI , values, using the 

following expression: 

 cr
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33

1  

where crM  is the cracking moment and aM  is the applied moment. 

AdSec SLS analyses determine a strain plane intermediate to the uncracked and fully cracked 

strain planes. The program determines a value for  , the proportion of the fully cracked strain 

plane to add to the proportion  1 of the uncracked plane so that the resulting plane is 

compatible with ACI318’s approach. Unfortunately, since ACI318’s expression is an interpolation 

of the inverse of the curvatures, rather than the curvatures themselves, there is no direct 

conversion. It should also be noted that although gI  is defined as the value of second moment 

of area ignoring the reinforcement, it is assumed that this definition was made for simplicity, and 

AdSec includes the reinforcement. 

Let  3

acr MM , the uncracked curvature be I  and the fully cracked curvature be II . 

To ACI318, the interpolated curvature  

 
  III 





1

1
, 
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and the aim is to make this equivalent to 

   III   1 , 

Equating these two expressions gives 

        11111  IIIIII   

which can be re-arranged to give 

 
    1/11

1







III

 

The ratio 
III  is appropriate for uniaxial bending. For applied loads  

zy MMN ,, , and 

uncracked and fully cracked strain planes  
zIyII  ,,  and  

zIIyIIII  ,,  respectively, 
III   

is replaced by the ratio    
zIzyIyIzIIzyIIyII MMNMMN   , which is 

independent of the location chosen for the reference point. In the absence of axial loads, this 

ratio ensures that the curvature about the same axis as the applied moment will comply with 

ACI318; in the absence of moments, the axial strain will follow a relationship equivalent to that in 

ACI318 but using axial stiffness as imposed to flexural stiffness.  

The ratio  acr MM  is also inappropriate for general loading. For the general case, it is replaced 

by the ratio  tIctf  , where ctf  is the tensile strength of the concrete and tI  is the maximum 

concrete tensile stress on the uncracked section under applied loads. 

Summary: 

   
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f
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
  

Since   is larger for short-term loading, all curvatures and strains are calculated based on short-

term properties regardless of whether   is subsequently used in a long-term serviceability 

calculation. 
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Concrete properties 

Notation 

cf  concrete strength 

cdf  concrete design strength 

ctf  concrete tensile strength 

E  elastic modulus 

  Poisson’s ratio (0.2) 

  coefficient of thermal expansion (varies but 1×10-6/°C assumed) 

cu  strain at failure (ULS) 

ax  compressive strain at failure (ULS) 

plas  strain at which maximum stress is reached (ULS) 

max  assumed maximum strain (SLS) 

peak  strain corresponding to (first) peak stress (SLS) 

pop  strain corresponding to peak stress in Popovics curve (SLS)   


 

  u   1
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ACI  

The density of normal weight concrete is assumed to be 2200kg/m3.  

The design strength is given in 22.2.2.4.1 by 

 ccd ff 85.0  

The tensile strength is given in Equation 9-10 by 

 cct ff 62.0  

 cct ff 5.7   (US units)  

The elastic modulus is given in 8.5.1 as 

 cfE 7.4
    

 cfE 57000    (US units) 

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-rectangle 0.003 εcu (1 - 3β) εcu   

Rectangle 0.003 εcu εβ   

Bilinear 0.003 εcu (1 - 2β) εcu   

Linear    0.003 εmax 

FIB      

Popovics    0.003 εpop 

EC2 Confined      

AISC filled tube      

Explicit 0.003 εcu  0.003  
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AS  

The density of normal weight concrete is taken as 2400kg/m3 (3.1.3).  

The design strength is given in 10.6.2.5(b) by 

 ccd ff 2  

with  

 cf003.012   

and limits of [0.67:0.85] 

The tensile strength is given in 3.1.1.3 by 

 cct ff 6.0  

The elastic modulus is given (in MPa) in 3.1.2 as 

 
MPaffE cmicmi 40043.05.1  

    

 
MPaffE cmicmi 401.0024.05.1  

    

This tabulated in Table 3.1.2. 

cf (MPa) E (GPa) 

20 24.0 

25 26.7 

32 30.1 

40 32.8 

50 34.8 

65 37.4 

80 39.6 

100 42.2 

 

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-rectangle      

Rectangle 0.003 0.0025 εβ 0.003 εβ 
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Bilinear      

Linear    0.003 εmax 

FIB      

Popovics    εmax εpop 

EC2 Confined      

AISC filled tube      

Explicit 0.003 0.0025  0.003  
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BS 5400 

The density of normal weight concrete is given in Appendix B as 2300kg/m3.  

The design strength is given in Figure 6.1 by 

 ccd ff 6.0  

The tensile strength is given in 6.3.4.2 as 

 cct ff 36.0
 

but A.2.2 implies a value of 1MPa should be used at the position of tensile reinforcement. 

The elastic modulus tabulated in 4.3.2.1 Table 3 

cf  (MPa) 
E  (GPa) 

20 25.0 

25 26.0 

32 28.0 

40 31.0 

50 34.0 

60 36.0 

 

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-rectangle 0.0035 εcu εRP   

Rectangle      

Bilinear      

Linear    0.0035 εmax 

FIB      

Popovics      

EC2 Confined      



 Oasys AdSec 
 

 

© Oasys Ltd 2019 39 

 

 

AISC filled tube      

Explicit 0.0035 εcu  0.0035  

 

 


 c

RP

f4104.2 
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BS 8110 

The density of normal weight concrete is given in section 7.2 of BS 8110-2 as 2400kg/m3.  

The design strength is given in Figure 3.3 by 

 ccd ff 67.0  

The tensile strength is given in 4.3.8.4 as 

 cct ff 36.0
 

but Figure 3.1 in BS 8110-2 implies a value of 1MPa should be used at the position of tensile 

reinforcement. 

The elastic modulus is given in Equation 17 

 cfE 2.020 
 

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-rectangle εu εcu εRP 0.0035* εRP 

Rectangle εu εcu εβ   

Bilinear      

Linear    εu εmax 

FIB    εu 0.0022 

Popovics      

EC2 Confined      

AISC filled tube      

Explicit εu εcu  εu  

 

 

 
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

 c

RP

f4104.2 
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CSA A23.3 / CSA S6 

The density of normal weight concrete is assumed to be 2300 kg/m3; see 8.6.2.2 (A23.3) and 

8.4.1.7 (S6). 

The design strength is given in 10.1.7 by 

   cccd fff 0015.085.0,67.0max   

The tensile strength is given in Equation 8.3 (A23.3) and 8.4.1.8.1 in (S6) 

 cct ff 6.0  (for CSA A23.3) 

 cct ff 4.0  (for CSA S6) 

For normal weight concrete the modulus is given in A23.3 Equation 8.2. 

 cfE 5.4
  

and in CSA S6 8.4.1.7 

 
9.60.3  cfE

  

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-rectangle 0.0035 εcu (1 - 3β) εu   

Rectangle 0.0035 εcu εβ   

Bilinear 0.0035 εcu (1 - 2β) εu   

Linear    0.0035 εmax 

FIB      

Popovics    0.0035 εpop 

EC2 Confined      

AISC filled tube      

Explicit 0.0035 εcu  0.0035  
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EN 1992 

The density of normal weight concrete is specified in 11.3.2 as 2200 kg/m3.  

The design strength is given in 3.1.6 by 

  ccccd ff   

For the rectangular stress block this is modified to 

  ccccd ff     MPaf c 50  

    cccccd fff 250125.1   MPaf c 50  

The tensile strength is given in Table 3.1 as 

 3
2

3.0 cct ff      MPaf c 50  

   1081ln12.2  cct ff   MPaf c 50  

The modulus is defined in Table 3.1 

 

3.0

10

8
22 







 
 cfE

 

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-rectangle εcu2 εc2 εc2   

Rectangle εcu3 εc3 εβ   

Bilinear εcu3 εc3 εc3 εcu3 εc3 

Linear    εcu2 εc2 

FIB    εcu1 εc1 

Popovics      

EC2 Confined εcu2,c εc2,c εc2,c   

AISC filled tube      
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Explicit εcu2 εcu2 ?  εcu2  

 

 
0028.0007.0

31.0
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HK CP  

The density of normal weight concrete is assumed to be 2400kg/m3. 

The design strength is given in Figure 6.1 by 

 ccd ff 67.0  

The tensile strength is given in 12.3.8.4 as 

 cct ff 36.0
 

but 7.3.6 implies a value of 1MPa should be used at the position of tensile reinforcement. 

The elastic modulus is defined in 3.1.5 

 
21.346.3  fcE

 

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-rectangle εu εcu εRP   

Rectangle εu εcu εβ   

Bilinear      

Linear    εu εu 

FIB    εu 0.0022 

Popovics      

EC2 Confined      

AISC filled tube      

Explicit εu εcu  εu  

 

 
MPaff ccu 606000006.00035.0 
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 d

c

RP

c

d

E

f

GPa
f

E






34.1

21.346.3




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HK SDM  

The density of normal weight concrete is assumed to be 2400kg/m3. 

The design strength is given in 5.3.2.1(b) of BS 5400-4 by 

 ccd ff 6.0  

The tensile strength is given in 6.3.4.2 as 

 cct ff 36.0
 

but from BS5400 a value of 1MPa should be used at the position of tensile reinforcement. 

The elastic modulus is tabulated in Table 21 

cf (MPa) 
E (GPa) 

20 18.9 

25 20.2 

32 21.7 

40 24.0 

45 26.0 

50 27.4 

55 28.8 

60 30.2 

 

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-rectangle 0.0035 εcu εRP   

Rectangle      

Bilinear      

Linear    0.0035 εmax 

FIB      

Popovics      
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EC2 Confined      

AISC filled tube      

Explicit 0.0035 εcu  0.0035  

 

 


 c

RP

f4104.2 
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IRC 112 

The density of normal eight concrete is assumed to be 2200kg/m3. 

The design strength is given in 6.4.2.8  

 ccd ff 67.0  

In A2.9(2) the strength is modified for the rectangular stress block to 

 ccd ff 67.0    MPaf c 60  

   cccd fff 25024.167.0   MPaf c 60  

The tensile strength is given in by A2.2(2) by 

 3
2

259.0 cct ff     MPaf c 60  

   5.12101ln27.2  cct ff  MPaf c 60  

The elastic modulus is given in A2.3, equation A2-5 

3.0

5.12

10
22 







 
 cfE

 

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-rectangle εcu2 εc2 εc2 εcu2 εc2 

Rectangle εcu3 εc3 εβ   

Bilinear εcu3 εc3 εc3 εcu3 εc3 

Linear    εcu2 εc2 

FIB    εcu1 εc1 

Popovics      

EC2 Confined εcu2,c εc2,c εc2,c   

AISC filled tube      
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Explicit εcu2 εcu2 ?  εcu2  

 

 
  0028.01000653.0

31.0

1  cc f
 













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

 





4

1

100

8.090
027.00028.0

600035.0

c

c

cu f

MPaf



 

 






 53.02

508.0000085.0002.0

60002.0

ck

c

c
f

MPaf

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


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





 





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2
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035.00026.0

600035.0

c

c

cu f

MPaf



 
















 






40

508.0
00055.000175.0

6000175.0

3 ck

c

c
f

MPaf



 
















 





4

3

100

8.090
035.00026.0

500035.0

c

c

cu f

MPaf


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IRS Bridge  

The density is assumed to be 2300kg/m3.  

The design strength is given in 15.4.2.1(b) by 

 ccd ff 6.0  

The tensile strength is given in 16.4.4.3 as 

 cct ff 37.0  

The elastic modulus is tabulated in 5.2.2.1 

cf (MPa) 
E (GPa) 

20 25.0 

25 26.0 

32 28.0 

40 31.0 

50 34.0 

60 36.0 

 

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-rectangle 0.0035 εcu εRP   

Rectangle      

Bilinear      

Linear    0.0035 εmax 

FIB      

Popovics      

EC2 Confined      

AISC filled tube      
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Explicit 0.0035 εcu  0.0035  

 

 


 c

RP

f4104.2 
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IRC 456  

The density is assumed to be 2200 kg/m3. 

The design strength is given in Figure 21by 

 ccd ff 67.0  

The tensile strength is inferred from 6.2.2 as 

 cct ff 7.0  

The elastic modulus is defined in 6.2.3.1 

 cfE 5
 

The strains are defined as 

 εcu εax εplas εmax εpeak 

Parabola-

rectangle 
0.0035 0.002 0.002   

Rectangle 0.0035 0.002 εβ   

Bilinear      

Linear    0.0035 εmax 

FIB    0.0035 0.0022 

Popovics      

EC2 Confined      

AISC filled tube      

Explicit 0.0035 0.002  0.0035  
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Rebar material models 

Symbols 

f  rebar stress 

yf  rebar strength 

uf  rebar ultimate strength 

  rebar strain 

p  strain at which rebar stress is maximum 

u  strain at which rebar fails 

Rebar material models for different codes 

Different material models are available for different design codes. These are summarised below: 

 

A
C

I 
3

1
8

 

A
S

 3
6

0
0

 

B
S

 5
4

0
0

 

B
S

 8
1

1
0

 

C
S

A
 A

2
3

.3
 

C
S

A
 S

6
 

E
N

 1
9

9
2

 

H
K

 C
P

 

H
K

 S
D

M
 

IR
C

:1
1

2
 

IR
S

 B
ri

d
g

e
 

IS
 4

5
6

 

Elastic-

plastic 
● ●  ● ● ● ● ●  ● ● ● 

Elastic-

hardening 
      ●   ●   

BS 5400   ●      ●    

Pre-stress   ● ●     ●  ●  

Progressive 

yield 
          ● ● 

Park ●            

Linear ● ● ● ● ● ● ● ● ● ● ● ● 

No-

compression 
● ● ● ● ● ● ● ● ● ● ● ● 
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ASTM strand     ● ●       

Explicit ● ● ● ● ● ● ● ● ● ● ● ● 

 

Elastic-plastic 

The initial slope is defined by the elastic modulus, E . Post-yield the stress remains constant until 

the failure strain, u , is reached.  

 

For some codes (CAN/CSA) the initial slope is reduced to E . 

Elastic-hardening 

The initial slope is defined by the elastic modulus, E , after yield the hardening modulus hE

governs as stress rises from  
ydy f, to  uu f, . For EN 1992 the hardening modulus is defined 

in terms of a hardening coefficient k and the final point is  yduk kf, where the failure strain is 

reduced to ud  (typically uk9.0 ). 

The relationship between hardening modulus and hardening coefficient is: 

 

 

Ef

fk
E

yuk

y

h







1

 

 

 
1




y

yukh

f

EfE
k


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The material fails at ud where ukud   . This is defined in Eurocode and related codes. 

BS 5400 

 

In tension the initial slope is defined by the elastic modulus, E , until the stress reaches yde fk  . 

The slope then reduces until the material is fully plastic, ydf , at Ef ydoff   . Post-yield the 

stress remains constant until the failure strain, u , is reached. For BS5400 8.0ek and 

002.0off . 
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In compression the initial slope is defined by the elastic modulus, E , until the stress reaches 

yde fk or a strain of 
off . It then follows the slope of the tension curve post-yield and when the 

strain reaches 
off  the stress remains constant until failure 

Pre-stress 

The initial slope is defined by the elastic modulus, E , until the stress reaches 
yde fk  . The slope 

then reduces until the material is fully plastic, 
ydf , at Ef ydoff   . Post-yield the stress 

remains constant until the failure strain, u , is reached. For BS8110 and related codes 8.0ek

and 005.0off . 

 

Progressive yield 

The initial slope is defined by the elastic modulus, E , until the stress reaches yde fk  . The slope 

then reduces in a series of steps until the material is fully plastic, after which the stress remain 

constant. The points defining the progressive yield are code dependent. 
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Park 

The initial slope is defined by the elastic modulus, E , until the stress reaches 
ydf  . The slope is 

then zero for a short strain range, then rising to a peak stress before failure. 

 

 

 
p

pu

u

ydudud fff
























 

 



















ydud

pu

ff
Ep



 

 

Linear 

The initial slope is defined by the elastic modulus, E , until the failure strain is reached. 

 

No-compression 

This is a linear model when in tension which has no compressive strength. 

 

ASTM strand 

The ASTM A 416 defines a stress-strain curve doe seven-wire strands. This has an initial linear 

relationship up to a strain of 0.008 with progressive yield till failure.  
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The stress strain curves are defined for specific strengths.  

For Grade 2502 (1725 MPa) the stress-strain curve is defined as 

 
008.0

006.0

4.0
1710

008.0197000















 

For Grade 270 (1860 MPa) the stress-strain curve is defined as 

 
008.0

003.0

517.0
1848

008.0197000















 

In the Commentary to the Canadian Bridge 3 code a similar stress-strain relationship is defined.  

For Grade 1749 strand 

 
008.0

00614.0

433.0
1749

008.0













 pE

 

                                                        

 

2 Bridge Engineering Handbook, Ed. Wah-Fah Chen, Lian Duan, CRC Press 1999 
3 Commentary on CSA S6-14, Canadian Highway Bridge Design Code, CSA Group, 2014 
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For Grade 1860 strand 

 
008.0

0065.0

517.0
1848

008.0













 pE

 

A more detailed discussion of modelling strands can be found in the paper4 by Devalapura and 

Tadros 

  

                                                        

 

4 Stress-Strain Modelling of 270 ksi Low-Relaxation Prestressing Strands, Devalapura R K & 

Tadros M K, PCI Journal, March April 1992 
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Structural steel material models 

Symbols 

f  steel stress 

yf  steel strength 

uf  steel ultimate strength 

  steel strain 

p  strain at which steel stress is maximum 

u  strain at which steel fails 

 

Elastic-plastic 

The initial slope is defined by the elastic modulus, E . Post-yield the stress remains constant until 

the failure strain, u , is reached.  

 

For some codes (CAN/CSA) the initial slope is reduced to E . 
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Elastic-hardening 

The initial slope is defined by the elastic modulus, E , after yield the hardening modulus hE

governs as stress rises from  
ydy f, to  uu f, . For EN 1992 the hardening modulus is defined 

in terms of a hardening coefficient k and the final point is  yduk kf, where the failure strain is 

reduced to ud  (typically uk9.0 ). 

The relationship between hardening modulus and hardening coefficient is: 
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Ef

fk
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EfE
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The material fails at ud where ukud   . This is defined in Eurocode and related codes. 
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Park 

The steel stress-strain curve is characterised a liner response to yield, followed by a fully plastic 

zone, before hardening until failure. The initial slope is defined by the elastic modulus, E , until 

the stress reaches 
ydf  . The slope is then zero for a short strain range, then rising to a peak 

stress before failure. 

 

 

 
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The hardening zone can be approximated by a parabola 

 

cba
f yd

 
 2

  

Defining the perfectly plastic strain limit as 
p and assuming zero slope at u then 

 
cba pp  

2
1

  

 

cba
f

f
uu

yd

ud  
2

  

 uab 2
  

The difference between the first two gives 
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   pupu

yd

ud ba
f

f
 

22
1

  

And substituting the third into this gives 

 

    puupu

yd

ud a
f

f
  21

22
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Linear 

The initial slope is defined by the elastic modulus, E , until the failure strain is reached. 
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Crack calculation 

CSA S6 

Code Approach 

The equation for the crack width is given in section 8.12.3.2 as 

smrmcb skw   

The parameters bk and c depend on the section and the cause of cracking. The code defines 

rms in mm as 

 
c

b
crm

d
ks


25.050   

Where 

 
ct

c
A

As
  

and ctA is the concrete area excluding the reinforcement. The code gives values for ck as 0.5 for 

bending and 1.0 for pure tension. In AdSec we interpolate between these values using 

 
  

 minmax

minmax

,max2

0,max








ck  

But limited to the range [0.5:1]. 

The bd term is taken as the average bar diameter in the tension zone, and the area of steel in c

is taken as the weighted area of the bar in the tension zone 

 
4

2

i
is

d
A


  

And the weighing is based on the stress in the bar compared with the stress in the extreme bar. 

 
extreme

i




   

The area of concrete in c is  

    3/,5.2min bctcc hAhAA   
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where c is the centroid of reinforcement in tension. The strain term is given in the code as 
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E

f
  

Where sf is the stress in the reinforcement at the serviceability limit state and wf is the stress in 

the reinforcement at initial cracking. In AdSec this is implemented as 

 


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
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





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2
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1
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rupc

s

s
sm

f

E 


  

Where s is the stress in the most tensile reinforcement at the serviceability for a fully cracked 

calculation, rupcf , is the rupture strength of the concrete and ct is the maximum tensile stress in 

the concrete at the extreme fibre assuming an uncracked material. 

Local Approach 

The above approach becomes difficult to justify when the section is not in uniaxial bending. In 

these cases the alternative ‘local’ approach can be used. This assumes there is a local 

relationship between a bar and the surrounding concrete.  
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The first stage is to identify the most tensile bar and determine the cover c to this bar. We then 

define th as the cover plus half the bar diameter.  

 
2

b
t

d
ch   

The depth from the neutral axis the most tensile bar b is calculated, and bh is then defined as 

 
2

b
b

d
cbh   

Then the concrete area is based on a dimension 

  2,3/,5.2min vtbtc shhhh   

The width associated with this is 

  21,5min wwhw tc   

So that  

 ccc whA   
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EN1992-1 

The equation for the crack width is equation 7.8 

  cmsmrk sw   max,  

In this max,rs  is given by 

 effpr kkkcks ,4213max,   

The code gives values for 
1k  as 0.8 for high bond bars and 1.6 for plain bars or pre-stressing 

tendon. The code gives values for 
2k as 0.5 for bending and 1.0 for pure tension. In AdSec we 

interpolate between these values using 

 
  

 minmax

minmax

,max2

0,max








ck  

But limited to the range [0.5:1]. 3k  and 
4k are nationally determined parameters which default 

to 3.4 and 0.425 respectively. 

Where the spacing of bar is large,  25  c , then 

  xhsr  3.1max,  

effp, is the ratio of reinforcement to concrete in the cracking zone where the area of concrete is 

defined as 

         2,3,5.2min, hAcxhAdhAA cceffc   
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Appendix 

Alternative stress blocks 

General stress blocks 

Parabola-rectangles are commonly uses for concrete stress-strain curves. The parabolic curve 

can be characterised as 
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If the curve is taken to be tangent to the plateau then at 1 ,  1f and 0


d

fd
 

Solving for the coefficients gives 1a and 2b so 

 
22  f
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The area under the curve is given by 
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3

1

0

3
2

1

0









 


dfAp

 

For bi-linear curve with the strain transition at b the area under the curve to 
p is 

 

 

 
2

11
2

b

b

b

bA






 

Equating the areas 

 3

2

2
1  b

 

or 

 3

2
b

 

so 

 
pcbc ,,

3

2
 

 

For a rectangular stress block with the strain transition at r the area under the curve to p is 
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 rbA  1
 

Equating the areas 

 3

2
1  r

 

or 

 3

1
r

 

so 

 
pcrc ,,

3

1
 
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