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Abstract—The problem of obtaining high computational
throughput from sparse matrix multiple–vector multiplication
routines is considered. Current sparse matrix formats and al-
gorithms have high bandwidth requirements and poor reuse of
cache and register loaded entries, which restrict their perfor-
mance. We propose the mapped blocked row format: a bitmapped
sparse matrix format that stores entries as blocks without a fill
overhead, thereby offering blocking without additional storage
and bandwidth overheads. An efficient algorithm decodes bitmaps
using de Bruijn sequences and minimizes the number of condi-
tionals evaluated. Performance is compared with that of popular
formats, including vendor implementations of sparse BLAS. Our
sparse matrix multiple-vector multiplication algorithm achieves
high throughput on all platforms and is implemented using
platform neutral optimizations.

I. INTRODUCTION

The sparse matrix × vector (SpMV) and sparse matrix
× multiple-vector (SMMV) multiplication routines are key
kernels in many sparse matrix computations used in numerical
linear algebra, including iterative linear solvers and sparse
eigenvalue solvers. For example, in the subspace iteration
method used for solving for a few eigenvalues of a large
sparse matrix A, one forms the Rayleigh quotient (projection)
matrix M = STAS, where A ∈ R

n×n and S ∈ R
n×p is

a dense matrix with p � n. The computational bottleneck
in such algorithms is the formation of the SMMV products.
SpMV/SMMV routines typically utilize only a fraction of
the processor’s peak performance. The reasons for the low
utilisation are a) indexing overheads associated with storing
and accessing elements of sparse matrices and b) irregular
memory accesses leading to low reuse of entries loaded in
caches and registers.

Obtaining higher performance from these kernels is an area
of active research owing to challenges posed by hardware
trends over the last two decades and significant attention has
been paid to techniques that address the challenges. This
hardware trend is outlined by McKee in the famous note ‘The
Memory Wall’ (1), (2) and can be summed as follows: the
amount of computational power available (both the CPU cycle
time and the total number of available cores) is increasing
with a rate that is much higher than the rate of increase
of memory bandwidth. It will therefore lead to a scenario
where performance bottlenecks arise not because of proces-
sors’ speeds but from the rate of transfer of data to them. The

implication of this trend is that there is an increasing need for
devising algorithms, methods and storage formats that obtain
higher processor utilization by reducing communication. Such
techniques and approaches will hold the key for achieving good
scalability in serial and parallel execution, both on existing and
emerging architectures.

In this paper we introduce a blocked sparse format with
an accompanying SMMV algorithm that is motivated by the
above discussion of reducing communication cost. The format
improves on an existing blocked sparse format by retaining
its advantages whilst avoiding the drawbacks. An algorithm
that computes SMMV products efficiently for a matrix in this
format is developed and its performance is compared with
the existing blocked and unblocked formats. The algorithm
achieves superior performance over these formats on both Intel
and AMD based x86-platforms and holds promise for use in a
variety of sparse matrix applications. The current discussion is
in the context of a desktop–based structural analysis software
package.

II. OVERVIEW AND COMPARISON OF COMPRESSED

SPARSE ROW AND BLOCK COMPRESSED SPARSE ROW

FORMATS

The Compressed Sparse Row (CSR) format (3) (or its vari-
ant, the Compressed Sparse Column format) can be regarded
as the de-facto standard format for storing and manipulating
sparse matrices. The CSR format stores the nonzero entries in
an array val of the relevant datatype (single precision, double
precision or integers). The column indices of the entries are
stored in col_idx and the row indices are inferred from the
markers into col_idx, stored as row_start. For example,
with array indices starting with 0:

A =







a00 a01 a02 a03
a10 a11 0 0
0 0 a22 a23
0 0 a32 0







val = (a00, a01, a02, a03, a10, a11, a22, a23, a32)

col_idx = (0, 1, 2, 3, 0, 1, 2, 3, 2)

row_start = (0, 4, 6, 8, 9)
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1 for i = 0 to n− 1
2 yi = y[i]
3 for j = row_start[i] to row_start[i+ 1]
4 yi += val[j] * x[col_idx[j]]
5 y[i] = yi

Fig. 1. Compute y = y + Ax for a matrix A stored in CSR format and
confirming vectors x and y stored as arrays.

If the number of nonzeros in A is z and if A is stored in
double precision, the storage cost for A in the CSR format is
3z + n+ 1 words. (We assume a word size of 32 bits for the
entire discussion.) An unoptimized SpMV algorithm is shown
in snippet 1.

The SpMV implementation in Algorithm 1 suffers from
the problem of irregular memory use, which results in reduced
data locality and poor reuse of entries loaded in registers. It
performs a single floating point addition and multiplication for
every entry val and x loaded, thus has a low ‘computational
intensity’, i.e., it performs too few flops for every word of data
loaded. This aspect of CSR SpMV has been well studied in
the past, see (4) or (5) for example.

The Block Compressed Sparse Row (BCSR) format (5) is
intended to improve the register reuse of the CSR. The BCSR
format stores nonzero entries as dense blocks in a contiguous
array val. These blocks are of size r × c where r and c
are respectively the number of rows and columns in the dense
blocks. For indexing it stores the column position of the blocks
in an array (col_idx) and row-start positions in col_idx

in row_start.

A =







a00 a01 a02 a03
a10 a11 0 0
0 0 a22 a23
0 0 a32 0







r = 2,c = 2

val = (a00, a01, a10, a11, a02, a03, 0, 0,

a22, a23, a32, 0)

col_idx = (0, 1, 1)

row_start = (0, 2, 3)

A sparse matrix stored in the BCSR format takes up u

2brc+b+ n

r
words to store, where b is the number of nonzero

blocks (for a given r and c) stored when the matrix is held in
BCSR.

The SpMV routine for BCSR with r, c = 2 is presented
in Algorithm 2. Since the val array is stored as a sequence
of blocks, the algorithm loads all entries in a block into
registers and multiplies them with corresponding entries in
x. The increase in spatial locality results in the reuse of
register–loaded entries of x, reducing the total number of
cache accesses. The inner loop that forms the product of
the block with the corresponding part of the vector is fully
unrolled, reducing branch penalties and allowing the processor
to prefetch data. There is, however, a tradeoff involved in
selecting the right block size for BCSR. The reuse of loaded
registers increases in number with an increase in r and c

1 for i = 1 to bm
2 ir = i× r
3 y0 = y[ir]
4 y1 = y[ir + 1]
5 for j = row_start[i] to row_start[i+ 1]
6 jc = col_idx[j]× c
7 y0 += val[0] * x[jc]
8 y1 += val[2] * x[jc]
9 y0 += val[1] * x[jc+ 1]

10 y1 += val[3] * x[jc+ 1]
11 increment pointer val by 4
12 y[ir] = y0
13 y[ir + 1] = y1

Fig. 2. Compute y = y + Ax for a matrix A in BCSR with r, c = 2 and
bm block-rows and vectors x, y stored as arrays.

but having larger block sizes may increase the fill, leading
to higher bandwidth costs and extra computations involving
zeros, which decrease performance. The amount of fill for a
given block size depends on the distribution of the nonzeros
in the matrix. The efficiency gains from increasing the block
size will depend on the size of the registers and the cache
hierarchy of the machine the code is running on. There is,
therefore, an optimal block size for a given matrix (or set
of matrices with the same nonzero structure) and a given
architecture. This suggests using a tuning based approach to
picking the optimum block size and such approaches have
been studied extensively in (6), (7) and (8). The dependence of
the performance of the SpMV routine on the structure of the
matrix make it a complex and tedious process to extract enough
performance gains to offset the overheads of maintaining
and manipulating the matrix in a different format, such as
implementing kernels for other common matrix operations for
a given block size. Additionally, the prospect of storing zeros
increases the storage costs, making it dependent on the matrix
structure, which is information that is available only at runtime.
The arguments above motivate a blocked format that offers the
benefits of BCSR’s performance without the associated storage
and bandwidth penalties.

III. THE MAPPED BLOCKED ROW FORMAT

We now introduce the mapped blocked row sparse (MBR)
format for storing sparse matrices. For a matrix

A =







a00 a01 a02 a03
a10 a11 0 0
0 0 a22 a23
0 0 a32 0






,

a02 a03
0 0

we represent the 2 × 2 block on top right as a combination
of the nonzero elements and a boolean matrix representing the
nonzero structure:

a02 a03
0 0

⇒
a02 a03 +

1 1
0 0

.

The bit sequence 0011 can be represented in decimal as 3 and
this representation is stored in a separate array. Thus, for our
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example, the MBR representation can be written as follows:

r = 2,c = 2

val = (a00, a01, a10, a11, a02, a03, a22, a23, a32)

col_idx = (0, 1, 1)

b_map = (15, 3, 7)

row_start = (0, 2, 3)

The bit structures of the blocks are stored in b_map,
the array of their corresponding decimal representations. The
bitmaps are encoded in left-to-right and top-to-bottom order,
with first position in the block (i.e. the bit on top left) being
stored as the lowest bit and the bottom right position being the
highest.

The datatype maptype of the b_map array can chosen
to fit the size of the blocks; hence if the block size is 8 × 5,
40 bits are required and a __int64 (9) will be used but if
the block size is 4× 4, a maptype of short will suffice for
the 16 bits needed. For block sizes where the number of bits
are less than the corresponding variable that stores the bitmap,
the excess bits are left unused. With built-in C++ datatypes,
up to 8 × 8 blocks can be supported. Larger blocks can be
constructed by combining two or more adjacent instances in
an array of built-in types or by using a dynamic bitset class
like boost::dynamic_bitset 1.

The storage cost of an n×n matrix in the MBR format is
bounded by

2z
︸︷︷︸

val

+ b
︸︷︷︸

col_idx

+

b_map
︷︸︸︷

b

δ
+

n

r
︸︷︷︸

row_start

words

where z is the number of nonzeros, b the number of blocks
and r the size of the blocks. δ is the ratio sizeof(int)

sizeof(maptype)
to

convert the size of maptype into words. b lies in a range that
is given by the following lemma.

Lemma III.1. For an n×n sparse matrix with z nonzeros and
at least one nonzero per row and per column, the minimum
number bmin of r × r blocks required to pack the entries is

ceil(z/r2) and the maximum bmax is min(z, ceil(n/r)
2
).

Proof: Since z > n, z entries can be arranged such that
there is at least one nonzero per row and column. This can be
done in z/r2 blocks but no less, hence bmin = ceil(z/r2) is
the minimum number of blocks. The n × n matrix contains
ceil(n

r
)
2

blocks. If z > n
2

r
2 , then bmax = ceil(n

r
)
2
, otherwise

each nonzero can occupy a block of its own, so we have
bmax = z blocks.

Although these bounds would be seldom attained in prac-
tice, they can provide an intuitive feel for when a particular
format can become advantageous or disadvantageous. The
storage costs of CSR, BCSR and MBR are compared in Table
I. For the lower bound of b, the MBR format takes up storage
comparable with the CSR format but more than BCSR. For
b close to the upper bound, MBR requires significantly less
storage than BCSR term but more than CSR. However, for

1http://www.boost.org/doc/libs/1 36 0/libs/dynamic bitset/dynamic bitset.
html

TABLE I. COMPARISON OF STORAGE BOUNDS FOR CSR, BCSR AND

MBR.

CSR BCSR MBR

3z + n 2br2 + b+
n

r
2z + b

(

1 +
1

δ

)

+
n

r

Lower bound 3z + n 2z +
z

r2
+

n

r
2z +

z

r2

(

1 +
1

δ

)

+
n

r

Upper bound 3z + n 2n2 +
n
2

r2
+

n

r
2z +

n
2

r2

(

1 +
1

δ

)

+
n

r

all our test matrices, the number of blocks arising from the
conversion to blocked formats resulted in MBR requiring less
storage than both BCSR and CSR. Table II lists the storage
costs (in words) and their ratios arising for 8× 8 blocking of
the test matrices (the matrices are introduced in Table III).

TABLE II. RATIO OF STORAGE FOR MBR TO BCSR AND MBR TO

CSR FORMATS FOR 8× 8 BLOCKS.

Matrix n b
MBR MBR

BCSR CSR

sp hub 143,460 249,267 0.171 0.759
rajat29 643,994 991,244 0.1 0.839

nlpkkt80 1,062,400 2,451,872 0.205 0.744
hamrle3 1,447,360 906,839 0.119 0.774
ecology1 1,000,000 622,750 0.149 0.75

dielFilterV3 1,102,824 11,352,283 0.145 0.791
dielFilterV2 1,157,456 8,106,718 0.116 0.828
asic 680k 682,862 728,334 0.106 0.814

A. Similarity with other formats

Buluç et al. independently propose a format called the ‘bit-
masked CSB’ (10), based around the idea of storing blocks that
are compressed using a bit structure representation. The format
partitions the matrix into “compressed sparse” blocks of bit-
mapped register blocks, resulting in two levels of blocking. The
nonzero entries in each register block are stored contiguously
and their positions within the block are marked using a bitwise
representation. There is no storage of zeros (i.e. the fill), which
improves on BCSR in the same way that MBR does, but the
CSB SpMV algorithm does perform multiply-add operations
on zeros so as to avoid conditionals. The storage cost for MBR
is slightly less than that of bitmasked CSB because of higher
bookkeeping arising from two levels of blocking and there
are subtle differences in the encoding of bit structure of the
blocks. In order to perform the multiplication of a block with
the relevant chunk of a vector, bitmasked CSB uses SIMD
instructions to load matrix entries, which we avoid. Instead,
in MBR SpMV, we minimize the conditionals evaluated using
de Bruijn sequences. Overall, whilst bitmasked CSB is geared
towards optimizing parallel execution, the aim of this work
is to obtain a high throughput for multiple vectors in the
sequential case.

IV. SPMV AND SMMV WITH MBR

As noted in the first section, the SMMV kernels are
employed in sparse eigensolvers, and our interest is in their
eventual use in the commercial desktop software for structural
analysis Oasys GSA (11). This software is required to run
on a variety of x86 architectures both old and new. The aim
with implementing SpMV and SMMV for the MBR format,
therefore, was to obtain a clean but efficient routine subject to
the following considerations.

• Not employing optimizations that are specific to a
platform or hardware, for example prefetching.

3
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1 for each block row bi
2 for each block column bj in block row bi
3 map = b mapbj
4 for each bit mapp in map

5 if mapp = 1

6 i: = p%r + bi× r, j: = p%c+ bj × c
7 y(i)+ = *val× x(j)
8 increment val
9 end

10 end
11 end
12 end

Fig. 3. SpMV for a matrix stored in MBR with block dimensions (r, c) and
confirming vectors x, y stored as arrays.

• Obtaining kernels with parameters such as the type of
scalar (single, double, higher precision), block sizes,
number of dense vectors and maptype datatypes
bound at compile time. C++ templates offer metapro-
gramming techniques that allow such kernels to be
generated at the time of compilation from a single
source base. This approach is advantageous compared
with the use of external code generators for generating
kernels in a parameter space since the programmer
can write code for generating kernels in the same
environment as generated code, thus making it easier
to maintain and update.

• Focussing on sequential execution; this will inform the
approach for a parallel version, which will be tackled
as future work.

The programming language used was C++, using templates
for kernel generation and to provide abstractions for optimiza-
tions like loop unrolling. The compilers used were Microsoft
Visual C++ and Intel C++.

A naı̈ve algorithm for SpMV for MBR is shown in Al-
gorithm 3. The notation *val indicates dereferencing the C
pointer val to obtain the value of the nonzero entry it currently
points to. Let zb be the number of nonzeros in a given block,
represented as set bits in map. It is easy to show that the
minimum number of register loads required to multiply a block
by a corresponding chunk of vector x and add the result to y
will be O(3zb) in the worst case. Algorithm 3 attains this
minimum and also minimizes flops since it enters the block–
vector product loop (steps 6–8) exactly zb times.

However, the algorithm is inefficient when implemented,
because steps 4–11 contain conditionals that are evaluated
r2 times, which the compiler cannot optimize. The presence
of conditionals also implies a high number of branch mis-
predictions at runtime since the blocks can have varying
sparsity patterns. Mispredicted branches necessitate removal
of partially-completed instructions from the CPU’s pipeline,
resulting in wasted cycles. Furthermore, step 6 is an expensive
operation because of modulo (remainder) calculation (denoted
using the binary operator %) and the loop does not do enough
work to amortize it.

We introduce a set of optimizations to overcome these
inefficiencies.

1
...

2 for each set bit p in map
3 i: = p%r + bi× r, j: = p%c+ bj × c
4 y(i)+ = *val× x(j)
5 increment val

Fig. 4. A modification to steps 4–8 Algorithm 3.

A. Optimal iteration over blocks

The for loop in step 4 and the if statement in line 5
contain conditionals (in case of the for loop, the conditional
is the end-of-loop check) that present challenges to branch
predictors. The true/false pattern of the second conditional is
the same as bit-pattern of the block, the repeatability of which
decreases with increasing size of the block.

One workaround is to use code replication for each bit
pattern for a given block size, such that all possible bit
structures are covered exhaustively. It would then be possible
to write unrolled code for each configuration, thus completely
avoiding conditionals. However this quickly becomes imprac-
tical since there are 2r arrangements for a block of size
r× r and generating explicit code can become unmanageable.
Additionally, since it is desirable to not restrict the kernel
to square blocks, the number of configurations to be covered
increases even further. The solution therefore is to minimize
the number of conditionals evaluated and fuse the end-of-
loop check with the check for the set bit. In other words,
instead of looping r2 times over each block (and evaluating
r2 conditionals), we loop over them zb times, thus evaluating
only zb conditionals. Algorithm 4 shows the modification to
the relevant section from Algorithm 3.

The key detail is iterating over set bits in ‘for each’. This is
achieved by determining the positions of trailing set bits using
constant time operations. Once the position is determined, the
bit is unset and the process is repeated till all bits are zero.
To determine the positions of trailing bits, we first isolate the
trailing bit and then use de Bruijn sequences to find its position
in the word, based on a technique proposed by Leiserson et al
in (12).

A de Bruijn sequence of n bits, where n is a power of
2, is a constant where all contiguous substrings of length
log

2
n are unique. For n = 8, such a constant could be C :=

00011101, which has all substrings of length 3 (000, 001,
011,. . ., 101, 010, 100) unique. A lone bit in an 8-bit word,
say x, can occupy any position from 0 to 7, which can be
expressed in 3 bits. Therefore, by operating x on C, a 3-bit
distinct word can be generated. This word is hashed to the
corresponding position of 1 in x and such a hash table is stored
for all positions, at compile time. At run time, the procedure
is repeated for an x with a bit at an unknown position to yield
a 3-bit word, which can then be looked up in the hash table.

Algorithm 5 lists the realization of ‘for each’ and the
decoding of map. Step 3 isolates the trailing bit into y using
the two’s complement of map, steps 4− 6 calculate the index
of the bit and step 9 clears the trailing bit. The operators
used in the algorithm are standard C/C++ bitwise operation
symbols: & for bitwise AND, << and >> for left shift and
right shift by the number denoted by the second operand, ∼

4
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1 Pick an 8 bit de Bruijn sequence C and generate its hashtable h
2 while map 6= 0
3 y = map & (−map)
4 z = C × y
5 z = z >> (8− log

2
8)

6 p = h(z)
7 compute i and j from p and multiply (Alg. 3 steps 6–8)

8
...

9 map = map & (∼y)
10 end

Fig. 5. Looping over set bits for a bitmap x of length 8 bits.

1 Given . . . and x1 · · ·x` , y1 · · · y` ∈ R
n

2 for each block row bi
3 for each block column bj in row bi
4 map = b mapbj
5 for each set bit p in map
6 i: = p%r + bi× r, j: = p%c+ bj × c
7 y1(i)+ = *val× x1(j)

8
...

9 y`(i)+ = *val× x`(j)
10 increment val

Fig. 6. Multiplying multiple vectors in inner loops.

for bit complement. Steps 3–6 can be carried out in constant
time and bitwise operations execute in a constant number of
clock cycles (13). The constant time decoding, combined with
a reduction in the number of conditionals evaluated gives huge
performance gains.

B. Unrolled loops for multiple vectors

At every iteration of the inner loop, Algorithm 4 calculates
the position of the nonzero entry in the block and multiply-
adds with the source and destination vector. The cost of index-
calculation and looping can be amortized by increasing the
amount of work done per nonzero decoded. This can be
achieved by multiplying multiple vectors per iteration of the
loop.

For the kernel to work with any value of `, either the
mutiply-add operations would need to be in a loop, which
would be inefficient at runtime or we would need to write `
versions of the kernel, which can be tedious and expensive to
maintain. This is overcome by using templates that generate
code for many kernels at compile time, each varying in the
number of vectors and each unrolling the innermost loop `
times. There is a close relationship between the performance of
the kernel, the size of blocks (r, c) and the number of vectors
multiplied `. For a given block size, performance increases
with increase in the number of vectors in the inner loop, since it
increases the reuse of the nonzero values loaded in the registers
and on lower levels of cache, till such a point where loading
more vector entries displaces the vectors previously loaded,
thereby destroying the benefit blocking brings in the first place.
This suggests a need for tuning based either on comparative
performance of the kernels or on heuristics gathered from the
architecture (or indeed, on both). We use the former approach,
leaving the investigation of the latter to future work.

V. NUMERICAL EXPERIMENTS

The experimental setup consists of x86-based machines
based on Intel and AMD platforms intended to be representa-
tive of the target architectures the kernel will eventually run
on. The code is compiled using the Intel C++ compiler v12.1
Update 1 on Windows with full optimization turned on. We
note however, that this does not apply to the pre-compiled
Intel MKL code (used for benchmarking) that takes advantage
of vectorization using SIMD instructions available on all our
test platforms. The test platforms consist of machines based
on AMD Opteron, Intel Xeon and Intel Sandy Bridge pro-
cessors. The AMD Opteron 6220, belonging to the Bulldozer
architecture, is an 8-core processor with a clock speed of 3.0
GHz and 16 MB of shared L3. Each core also has access
to 48 KB of L1 cache and 1000 KB of L2 cache. The Intel
Harpertown-based Xeon E5450 on the other hand has access
to 12 MB of L2 cache, shared between 4 cores on a single
processor, each operating at 3 GHz. Each core has 256 KB
of L1 cache. Both the Opteron and Xeon support the 128-bit
SSE4 instruction set that allows operating on 2 double floating
point number in a single instruction. The third test platform is
the Intel Core i7 2600 processor, based on the recent Sandy
Bridge architecture, which is the second generation in the Intel
Core line of CPUs. This processor has 4 cores sharing 8 MB
of shared L3 cache with two levels private caches of 32 KB
and 256 KB for each core. The cores operate at a peak clock
speed of 3.8 GHz, with Turbo Boost turned off. The Core
i7 processor uses the AVX instruction set, supporting 256-
bit wide registers that enable operating on 4 double precision
variables in a single instruction.

The test matrices consist of a set of matrices from the
University of Florida Sparse Matrix collection (14) as well as
from problems solved in Oasys GSA. These are listed in Table
III.

The final algorithm for MBR SMMV was a combination of
all optimizations described in the previous section. The C++
implementation of this was run on the matrices via a test
harness for different values of block sizes upto a maximum
of 8 × 8 and multiple vectors. Where matrix sizes are not
multiples of the block size, the matrix is padded with zeros on
the right and on the bottom, such that the increased dimensions
are a multiple. This merely involves modifying the arrays
storing the indices and does not affect the storage or the
performance, since the blocks are sparse. The performance of
the implementation was compared with that of CSR SMMV
and BCSR SMMV. For all our tests, a near-exclusive access
is simulated by ensuring that the test harness is the only data-
intensive, user-driven program running on the system during
the course of benchmarking.

We do not study the effect of reordering on the performance
of the kernels, since in applications, the specific choice of the
reordering algorithm may not always be governed by SMMV,
instead it could be governed by other operations that the
application performs. We do however note that any reordering
approach that decreases the bandwidth of a matrix2 will, in
general, increase performance of a blocked format. Further-
more, we do not consider the costs of conversion between

2In this context, the term bandwidth refers to the maximum distance of a
matrix nonzero element from the diagonal.

5
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TABLE III. TEST MATRICES USED FOR BENCHMARKING SMMV ALGORITHMS.

Matrix Source Dimension Nonzeros Application

1 ASIC 680k U.Florida 682,862 3,871,773 Circuit simulation
2 atmosmodm U.Florida 1,489,752 10,319,760 Atmospheric modeling
3 circuit5M U.Florida 5,558,326 59,524,291 Circuit simulation
4 dielfilterV2real U.Florida 1,157,456 48,538,952 Electromagnetics
5 dielfilterV3real U.Florida 1,102,824 89,306,020 Electromagnetics
6 ecology1 U.Florida 1,000,000 4,996,000 Landscape ecology
7 G3 circuit U.Florida 1,585,478 7,660,826 Circuit simulation
8 hamrle3 U.Florida 1,447,360 5,514,242 Circuit simulation
9 nlpkkt80 U.Florida 1,062,400 28,704,672 Optimization
10 rajat29 U.Florida 643,994 4,866,270 Circuit simulation
11 sp hub Arup 143,460 2,365,036 Structural engineering
12 watercube Arup 68,598 1,439,940 Structural engineering

various formats since applications can generate a sparse matrix
in the MBR format and use the format for an entire application,
thereby negating expensive data transformations. This does,
however, necessitate the availability of software for matrix
manipulations and factorizations that the application uses.

In the case of CSR, a standard SpMV implementation
based on Algorithm 1 and the functions available from the Intel
MKL library (15) are used for comparison. The sparse BLAS
Level 2 and Level 3 routines available within the MKL library
are regarded as highly optimized implementations and achieve
performance higher than corresponding reference implementa-
tions, especially on Intel platforms. The library offers the func-
tions mkl_cspblas_dcsrgemv and mkl_dcsrmm that
perform SpMV and SMMV operations. Since our objective
is to obtain benchmarks for SMMV, mkl_dcsrmm would
appear to be the right candidate. However, in almost all
our experiments, mkl_cspblas_dcsrgemv outperformed
mkl_dcsrmm, hence
mkl_cspblas_dcsrgemv was used as the benchmark.
Since the MKL library is closed-source software, it is not
possible to determine why mkl_dcsrmm is not optimized to
take advantage of multiple vectors.

For BCSR SMMV, an implementation of Algorithm 2 that
is optimized for multiple vectors is used. This uses unrolled
loops and multiplies each block with multiple vectors. The
right number of vectors to be multiplied within each loop
depends on the architecture and has been studied in (8). Similar
to the MBR algorithm, the optimal number of vectors depends
on the architecture and needs to be selected via tuning. For
the purpose of this comparison, we run BCSR SMMV kernels
with fixed blocks of sizes 4 × 4 and 8 × 8, with increasing
number of multiple vectors, going from 1 to 20, and select the
best performance as being the representative performance of
the format.

A. Performance against number of vectors

The performance of the MBR format depends on amortiz-
ing the cost from decoding the blocks, and this is achieved
by multiplying multiple vectors. Therefore it is important to
know the behaviour of the algorithm with respect to varying
`, the number of vectors. Figures 7 and 8 present how the
performance varies on the Core i7 and Opteron respectively.
In both cases, there is a sharp increase in performance initially,
followed by a plateau and then a drop as the implementations
go from single-vector kernels to ones handling 20 vectors. The
reason for this behaviour is that when the number of vectors

is increased, more vector entries stay loaded in the cache,
reducing misses when the algorithm tries to load them again.
The performance peaks and starts decreasing when the number
of vectors reaches a point where loading more entries into the
cache displaces previously loaded entries, leading to increased
misses. The performance peaks for a different number of
vectors, depending on the size of the cache hierarchy and to a
lesser extent, matrix sizes and sparsity patterns.

Fig. 7. Performance variation of MBR SMMV across multiple vectors for
test matrices on Intel Core i7 2600

Fig. 8. Performance variation of MBR SMMV across multiple vectors for
test matrices on AMD Opteron 6220

On the Opteron, most matrices exhibit peak performance
around the range of 12 to 16 vectors whilst on i7, the range is
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around 5 to 6. Both processors have a comparable L1 cache
size but the Opteron has almost four times L2 cache as Core
i7. This allows for more reuse of loaded entries and hence the
performance tops at a higher value of `.

A small number of matrices in graph 7 show an increase in
performance after hitting a trough in the post-peak part of their
curves. These matrices are watercube, sp hub, dielfilterV2real
and dielfilterV3real, from structural engineering and circuit
simulation applications. They have the highest nonzero density
amongst all matrices but are within the lower half when
arranged by increasing order of matrix sizes. This combina-
tion of smaller sizes and low sparsity could result in higher
performance—the size ensures that a larger number of vector
chunks or entire vectors are resident in L3 caches, whereas
the higher density results in higher flops per loaded vector
entry. Indeed, the best performance is attained for watercube
on both processors, which is the smallest matrix but has the
highest nonzero density.

B. Performance comparison with other kernels

The performance of the kernels is compared with that of
other SMMV routines and the results for different platforms
are presented in Figures 9, 10 and 11 for Xeon, Core i7 and
Opteron respectively. In the case of MBR and BSR, the kernels
used are the ones that yield the maximum performance for the
given matrix and for the given block size, i.e. the peaks of
graphs for each matrix in figures 7 or 8.

Fig. 9. Performance comparison of MBR SMMV on Intel Xeon E5450

On the Xeon, MBR is faster than MKL by factors of 1.3
to 1.9. It is also more efficient than BCSR for all matrices
except watercube. The Xeon has the largest L2 cache of all
test platforms. The large L2 cache and the small size of the
matrix ensures that BCSR is faster, since it has fully unrolled
loops with no conditionals, thus ensuring very regular data
access patterns that aid prefetching. Furthermore, watercube
also has the highest nonzero density and highest number of
entries-per-block (z/b from Table II) so the ratio of redundant
flops (i.e. operations involving 0 entries) to useful flops is low,
which helps the BCSR routine.

The performance trends for Core i7 are somewhat similar
to those of Xeon, but a key difference is that it is the
only architecture where MKL outperforms MBR for some
matrices. The MKL to MBR performance ratios vary from

Fig. 10. Performance comparison of MBR SMMV on Intel Core i7 2600

Fig. 11. Performance comparison of MBR SMMV on AMD Opteron 6220

0.72 to 1.71. MKL is faster than MBR on four matrices:
dielfilterV2real, dielfilterV3real, ASIC 680k and nlpkkt80,
which come from different applications. There are no specific
properties of these matrices or their sparsity patterns that
gives us a suitable explanation for why MBR is slower. For
two of the four matrices–dielfilterV2real and dielfilterV3real–
the MBR SMMV performance vs. number of vectors graph
(Figure 7) indicates that higher performance could be gained
by using more than 20 vectors, although such a kernel may
not always be relevant, especially in applications with small
number of right hand sides. Evidently, MKL’s use of AVX
instructions on Sandy Bridge allows for good efficiency gains
that lead to a higher throughput. It will need a closer evaluation
using experimental data from hardware counters combined
with performance modelling to explain the reasons for this
discrepancy, which will be looked at in future work.

Finally, on the AMD processor, MBR outperforms MKL by
factors of 1.5 to 3.2 and BCSR by factors of 1.3 to 3.9. This
demonstrates that while the MKL routines use architecture–
specific and platform–specific optimization to gain efficiency,
MBR SMMV is capable of attaining high efficiency through
platform–neutral optimizations that deliver a good performance
on all platforms.
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VI. CONCLUSIONS AND FUTURE WORK

This work introduces mapped blocked row as a practical
blocked sparse format that can be used with sparse matrix
programs. The storage requirements of the format have been
studied and they are significantly less than the two popular
formats we have compared with. The MBR format offers
the distinct advantage of being a blocked format that does
not incur the computational and storage overheads of other
formats. This holds promise for applications that involve very
large problem sizes where holding the matrix in memory is
an issue, for example iterative solvers for linear systems. A
C++ implementation of the algorithm offers compile–time
parameters like the block size, number of vectors and the
datatypes of the scalars and of the bitmap, making it generic
in scope for a wide range of applications.

A fast algorithm has been developed for multiplying sparse
matrices in the MBR format, with several optimizations for
minimizing loop traversals and evaluations of conditionals, for
increasing cache reuse and to amortize the decoding costs.
By virtue of operating on a blocked format, the algorithm
obtains high computational intensity. A C++ implementation
of the algorithm offers compile–time parameters like the block
size, number of vectors and the datatypes of the scalars
and of the bitmap, making it generic in scope for a wide
range of applications. The templates also makes it possible
to produce code that has fully unrolled loops and kernels
that bind to parameters at compile-time, unifying the code
generator with the generated code for greater transparency and
maintainability.

The performance results presented in the previous section
prove that these performance optimizations can achieve good
efficiency gains on all platforms by increasing register and
cache reuse. The reference implementation attains performance
over 3× that of the Intel MKL libraries and better performance
on most test platforms over existing optimized BCSR and CSR
implementations. There is ample scope to tune performance by
modifying parameters such as the block size and effects of such
tuning will be the topic of future work. A key motivation for
communication reducing algorithms is the desire for improved
parallel scalability. This article has focussed on establishing
the performance of the MBR format and the algorithm for
sequential execution, paving the way for its parallelization,
which will be explored in future work. Also of interest is
the question “to what extent is a blocked sparse format of
relevance for sparse direct solutions?” and whether it can offer
advantages for storing and manipulating the factors from a
Cholesky or symmetric indefinite factorization. These will be
examined in due course.
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