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Abstract

In 2011, version 8.6 of the finite element-based structural analysis package
Oasys GSA was released. A new feature in this release was the estimation of
the 1-norm condition number κ1(K) = ‖K‖1‖K

−1‖1 of the stiffness matrix
K of structural models by using a 1-norm estimation algorithm of Higham
and Tisseur to estimate ‖K−1‖1. The condition estimate is reported as part
of the information provided to engineers when they carry out linear/static
analysis of models and a warning is raised if the condition number is found
to be large. The inclusion of this feature prompted queries from users asking
how the condition number impacted the analysis and, in cases where the
software displayed an ill conditioning warning, how the ill conditioning could
be “fixed”. We describe a method that we have developed and implemented
in the software that enables engineers to detect sources of ill conditioning
in their models and rectify them. We give the theoretical background and
illustrate our discussion with real-life examples of structural models to which
this tool has been applied and found useful. Typically, condition numbers of
stiffness matrices reduce from O(1016) for erroneous models to O(108) or less
for the corrected model.
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1. Introduction

Modelling structural response using the finite element (FE) method in-
volves idealizing structural behaviour and dividing the structure into ele-
ments. The solution obtained from such a procedure is therefore inherently
approximate. The errors are of a variety of types, such as error in the choice
of mathematical model (when the physical system being modelled does not
obey the assumptions of the mathematical model chosen), discretization er-
rors (arising from representing infinite dimensional operators in finite spaces),
and numerical errors (those caused by representing real numbers as finite
precision numbers on a computer). Techniques for understanding, analysing
and bounding these errors have developed in pace with the method itself
and their study is part of any standard text on finite element analysis—see
[1] or [2, chap. 18] for example. User errors (errors in the definition of the
model within the software from say, erroneous input), on the other hand,
have received significantly less attention in the literature. This is partly due
to the practitioner using FE analyses being disconnected with the process of
developing it or implementing it in software but mainly because such errors
can arise arbitrarily, which poses a barrier to understanding and analysing
them. Examples of such errors include

• Lack of connectivity: adjacent elements that are supposed to share a
common node but are connected to different nodes that are coincident,
resulting in one of the elements acquiring insufficient restraints.

• Failure to idealise member end connections correctly, which can occur
if a beam is free to rotate about its axis, although in the physical model
there is a nominal restraint against rotation.

• Modelling beam elements with large sections and/or very small lengths,
often the result of importing FE assemblies from CAD models.

Irrespective of whether the error arose from approximation or from erro-
neous input data, it can lead to an ill-conditioned problem during its analysis,
that is, one for which the stiffness matrix of the model has a large condition
number with respect to inversion. In this work, we show how errors that
lead to an ill-conditioned problem can be detected, i.e., we present a tech-
nique to identify the parts of the model that cause the ill conditioning. Our
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method has been implemented in the commercial structural FE analysis pack-
age Oasys GSA [3] and we demonstrate its efficacy with examples of how it
has been used to identify errors in user-generated ill-conditioned models.

2. Condition number estimation

Linear systems of equations arise in many problems in structural anal-
ysis. For a structural model with symmetric positive definite (or semidef-
inite) stiffness matrix K ∈ R

n×n, elastic static analysis for calculating the
displacement u ∈ R

n under the action of loads f ∈ R
n yields the system

Ku = f . Other types of analysis that involve solving linear equations with
the stiffness matrix include dynamic, buckling, P–Delta, and nonlinear static
analysis. Solving a linear system on a computer involves approximating the
entries of K as floating point numbers, which introduces an error ∆K (we
disregard, without loss of generality, the error introduced in f due to the
same process). Denoting the corresponding change to u by ∆u, the equation
we solve is

(K +∆K)(u+∆u) = f.

Rearranging, taking norms and dropping the second order term ∆K∆u gives
the inequality, correct to first order,

‖∆u‖

‖u‖
≤ κ(K)

‖∆K‖

‖K‖
, (1)

where κ(K) = ‖K‖‖K−1‖ is the condition number (with respect to inver-
sion). The norm ‖ · ‖ can be any subordinate matrix norm, defined in terms
of an underlying vector norm by ‖K‖ = max‖x‖=1 ‖Kx‖.

Condition numbers measure the maximum change of the solution to a
problem with respect to small changes in the problem. Inequality (1) tells
us that the relative error in u is bounded by the relative error in K times
its condition number. This bound is attainable to first order for a given K

and f [4, Thm. 7.2], so the change in the solution caused simply by storing
K on the computer can be large if K is ill conditioned. Rounding errors in
the solution process can be shown to correspond to an increased ‖∆K‖ in
(1) and so are also magnified by as much as κ(K).

In IEEE 754 double precision binary floating point arithmetic [5], we
have a maximum of the equivalent of 16 significant decimal digits of precision
available and we therefore have as little as 16−log

10
κ(K) digits of accuracy in
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the computed solution. When a matrix has a condition number greater than
1016, the solution algorithm can return results with no accuracy at all—such
a matrix is numerically singular and linear systems with this matrix should
not be solved. Therefore it is essential to compute or estimate the condition
number of the stiffness matrix K to ensure it is well conditioned.

Since K is symmetric, its 2-norm condition number κ2(K) is the ratio of
its extremal eigenvalues λmax = maxi λi and λmin = mini λi [4, Chap. 6]:

κ2(K) =

∣

∣

∣

∣

λmax

λmin

∣

∣

∣

∣

.

Computing the maximum and minimum eigenvalues is an expensive opera-
tion, particularly since K is large. In practice we need just an estimate of
the condition number that is of the correct order of magnitude, and we can
choose any convenient norm to work with [4, chap. 15]. LAPACK [6] offers
the xLACON routine that computes a lower bound for the 1-norm of a ma-
trix, based on the algorithm of Higham [7]. Higham and Tisseur [8] develop
a block generalization of this algorithm and demonstrate that it produces
estimates accurate to one or more significant digits at a nominal cost of a
few matrix–vector multiplications. The algorithm does not need to access
the elements of the matrix explicitly, as long as it can access a routine that
returns the matrix–vector product. Thus it can be used to estimate the norm
of the inverse of a matrix K as long as one can form the product K−1v =: g,
which is equivalent to solving the linear system Kg = v.

We incorporated a procedure in GSA that uses this algorithm to cal-
culate an estimate of the 1-norm condition number of K. This method is
invoked and the condition number is reported for all analysis types that in-
volve assembling K. It first computes ‖K‖

1
and then computes the estimate

of ‖K−1‖
1
, making use of the Cholesky factors of K. Since the analysis al-

ready requires the Cholesky factorization of K to be computed, the condition
estimate comes at a nominal cost of a few triangular system solves.

Once the software had been released, users were informed when they had
a model with an ill-conditioned stiffness matrix. As a result, the developers
were subsequently faced with the question: “how do we detect where in the

FE model the ill conditioning lies?”. To answer this question we first need
to look at the possible causes of ill conditioning.
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3. Ill conditioning in structural stiffness matrices

Let the element stiffness matrix contributed by each element e in the
domain Ω be K(e). The matrix K(e)

∈ R
ne×ne is symmetric and it is defined

in a coordinate system (of displacements) and degrees of freedom (dofs) local
to the element. To map the displacements to the global coordinate system
we use the coordinate transformation matrix T (e); we also use a set me of ne

variables that map the locally numbered dofs to the global dof numbering.
The stiffness matrix K is the sum of contributions from all elements in the
domain Ω transformed to global:

K =
∑

e∈Ω

G(e), (2)

where
G(e)(me,me) = T (e)TK(e)T (e).

If an element connects dof i with dof j, then kii, kjj, and kij = kji are all
nonzero, assuming an element with nonzero stiffness in directions of i and j
connects the dofs. Because of its construction K is symmetric, with very few
nonzero entries per row.

The matrix K becomes ill conditioned when its columns are nearly lin-
early dependent. This can happen when

(a) the structure has one or more pairs or tuples of dofs that do not have
sufficient connectivity with the rest of the model or

(b) certain dofs have stiffnesses disproportionate with the rest of the model.

We say a pair (i, j) of dofs connected to each other has insufficient connectiv-
ity when the stiffness contributions of terms kis and krj for r, s ∈ (1, n) with
r, s /∈ (i, j) are either very small or at roundoff level compared with kii, kjj,
and kij. (The definition can be easily expanded for higher tuples of dofs.)

Possibility (a) occurs when elements do not have sufficient connectivity,
for example a beam element that is connected to nodes at which there is no
torsional restraint. Typically the resultant matrix would be singular since
the structure is a mechanism, but it is possible that due to rounding during
coordinate transformations, entries in columns ki or kj acquire small nonzero
values. If i and j are the dofs corresponding to axial rotation at the two ends
of the column member, such a model would result in a matrix with columns
i and j > i resembling (with ki denoting the ith column of K)

ki = [0, . . . , 0, a, 0, . . . , 0, −a, 0, . . . ]T

5
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and
kj = [0, . . . , ε, −a, ε, . . . , ε, a, 0, . . . ]T ,

where the entries kii = kjj = a > 0 and kij = kji = −a and all other entries ε
in kj arising from other dofs connected to dof j are such that |ε| � a. More
generally, a tuple S ⊆ {1, . . . , n} of dofs can arise such that for i ∈ S, kij is
nonzero only for j ∈ S.

The situation that would result in (b) is when certain elements that are
disproportionately stiff in particular directions connect with more flexible
elements in the neighbourhood. This results in a badly scaled matrix, and can
be seen, for example, when beam or column members are split in numerous
line elements—usually the result of importing a CAD drawing as an FE
assembly.

It is impossible to obtain a full list of modelling scenarios that will re-
sult in an ill-conditioned stiffness matrix, but in section 5 we present a few
examples of real life models we have encountered. For now, we focus on
how the properties of the matrix can be exploited to identify the location
of the anomalies that cause ill conditioning. By location of anomalies, we
mean the identification of the errant dofs S, and subsequently problematic
elements, such that an examination of the model defined in the vicinity of
these elements can help the user identify the issue.

Past work has focused on identifying mechanisms in finite element mod-
els. Mechanisms render the stiffness matrix singular, so the problem is the
same as finding the null space of the matrix, though in the case of floating
structures the matrix can also have a nontrivial null space corresponding to
its rigid body modes. Farhat and Géradin [9] and Papadrakakis and Fragakis
[10] deal with the computation of the null space of stiffness matrices using a
combination of algebraic and geometric information specific to the discretiza-
tion, whereas Shklarski and Toledo [11] use a graph theoretic approach for
computing the null space.

Whilst the identification of mechanisms is useful, rectifying the error is a
case of fixing the unconstrained dof. Moreover, since a mechanism results in a
singular stiffness matrix, an attempt to find its Cholesky factors (during, say,
linear static analysis) is likely to break down and hence signal the problem
[4, Chap. 10]. An ill-conditioned matrix, however, poses more challenges. Ill
conditioning can result from subtler errors that might be hard to detect, but
their presence can lead to numerical inaccuracies in results.

Our technique for diagnosing user errors works for both ill conditioning
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errors as well as mechanisms. It provides the user with qualitative informa-
tion about the location of these errors in the structure being modelled. The
method uses eigenvectors of the stiffness matrix, so it does not need new
algorithms to be deployed in software packages but rather can make use of
existing well-known techniques for solving eigenvalue problems.

4. Using eigenvectors to identify cause of ill conditioning

We now describe our method to identify elements and dofs that cause ill
conditioning in the stiffness matrix. The key insight is that the eigenvectors
corresponding to extremal eigenvalues of K (which, with a slight abuse of
notation, we will refer to as the smallest/largest eigenvectors) contain rich
information about the dofs that cause ill conditioning. We assume the model
does not have rigid body modes, i.e., K does not have a nontrivial null space
corresponding to rigid body motion. If the ill conditioning of K is due to
the reasons outlined in section 3, the smallest and/or the largest eigenvectors
are numerically sparse. We call a normalized vector numerically sparse when
it has only a small number of components significantly above the roundoff
level. In the remainder of this section, we show that when ill conditioning
is caused by insufficient connectivity the eigenvectors corresponding to the
one or more smallest eigenvalues are numerically sparse, whereas when the ill
conditioning is from the presence of elements with disproportionately large
stiffnesses the largest eigenvectors exhibit numerical sparsity. If we define
the inner product terms

v(e) =
1

2
ui(me)

T
ui(me), e ∈ Ω (3)

and

s(e) =
1

2
ui(me)

T
T (e)TK(e)T (e)ui(me), e ∈ Ω (4)

for a normalized eigenvector ui and element e, then the elements that cause
ill conditioning are those that have large relative values of either v(e) for the
smallest eigenvectors or s(e) for the largest eigenvectors. The element-wise
scalars v(e) and s(e), respectively, can be thought of as virtual kinetic and
virtual strain energies associated with the modes of displacements defined by
the eigenvectors; therefore we refer to them as virtual energies later on in the
text.
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Our method for identifying ill conditioning in a finite element assembly is
outlined in Algorithm 1. We call it model stability analysis, since it analyses
the numerical stability of the underlying model.

Algorithm 1 Algorithm for model stability analysis.

This algorithm has the following user-defined parameters:

• ns ≥ 0: the number of smallest eigenpairs;

• n` ≥ 0: the number of largest eigenpairs;

• τ > 1: the condition number threshold for triggering analysis;

• gf ≥ 1: the order of the gap between a cluster of smallest eigenvalues
and the next largest eigenvalue.

1. Compute a condition number estimate est ≈ κ1(K).

2. If est < τ , exit.

3. Issue ill conditioning warning.

4. Compute the ns smallest eigenvalues λ1, λ2, . . . , λns
and n` largest

eigenvalues λn−n`+1, . . . , λn of K and normalize the associated eigen-
vectors.

5. With the smallest eigenpairs: determine if a gap exists, i.e., if there is
a k < ns such that

λk−1

λk

> gf ×
λk

λk+1

If no such k is found go to step 7.

6. For each eigenvector ui, i = 1 to k, calculate v(e) for all elements.

7. With the largest eigenpairs: for each eigenvector ui, i = n − nl to n,
compute s(e).

Once the algorithm finishes executing, the user must find elements with
large virtual energies for each eigenpair. Isolating elements with large rela-
tive values of v(e) or s(e) is based on visual inspection of the values. This is
done by graphically colour-contouring the scalars on elements as discs whose
radii and colour depend on the relative values of the scalars. Once the ele-
ments with large relative energies are identified the user must examine their
definition (e.g., support conditions, nodal connectivity or section properties)
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for anomalies and fix discrepancies. This should result in κ(K) decreasing,
hence the proposed workflow is iterative: execute Algorithm 1, fix anomalies,
check if est < τ , and repeat the steps if necessary.

We now explain the reasoning behind our method by relating the ill con-
ditioning to properties of the largest and smallest eigenvectors.

4.1. Smallest eigenpairs

In the case of a few insufficiently connected dofs, the sparsity of eigen-
vectors stems from their continuity over perturbations. An ill conditioned
matrix K is a small relative distance from a singular matrix K̂, as shown by
the following result of Gastinel and Kahan [4, Thm. 6.5].

Theorem 4.1. For any n× n matrix A the distance

dist(A) = min

{
‖∆A‖

‖A‖
: A+∆A singular

}

is given by

dist(A) = κ(A)−1,

where the norm is any subordinate matrix norm.

For an ill conditioned K, the eigenvectors of K corresponding to the
smallest eigenvalues are the perturbed null vectors of a nearby singular ma-
trix K̂, and since the null vectors of K̂ can reveal unconstrained dofs, as
shown by Lemma 4.2 below, the smallest eigenvectors of K contain the same
information as long as the perturbation is small.

We first show that the null vector of a singular matrix with a specific
property has a predefined structure. We then demonstrate how a small per-
turbation to this singular matrix does not change the structure of the null
vector. The proof is then generalized for an invariant subspace of a matrix
and we show that under mild assumptions the eigenvectors of an ill condi-
tioned matrix reveal dofs that are insufficiently restrained.

We start with the following lemma. All norms used throughout are 2-
norms.

Lemma 4.2. Let A = [a1, . . . , an] ∈ R
n×n have columns a1, . . . , an−1 linearly

independent and a
n−1 and an dependent. Then

Null(A) = {x ∈ R
n : Ax = 0} = span{u},

9



Arup Oasys Software82 

where u has the form
u = [0, . . . 0, α, β]T (5)

for α, β ∈ R with β 6= 0.

Proof. By assumption, rank(A) = n− 1 and hence dimnull(A) = 1.
Write an = γan−1 (this is always possible since an−1 6= 0). Then

Au = 0⇐⇒ u1a1 + u2a2 + · · ·+ un−2an−2 + (un−1 + γun)an−1 = 0,

and since a1, . . . , an−1 are linearly independent, u1 = · · · = un−2 = 0 and
un−1 = −γun. So u 6= 0 if un 6= 0 and in that case u has the required
form.

The matrix A in Lemma 4.2 has a simple eigenvalue 0 and the null vector
u is a corresponding eigenvector. Now suppose A is, additionally, symmetric
and consider a perturbed matrix Ã = A + E for a symmetric perturbation
E. The next result shows that if ũ is the smallest eigenvector of Ã then for
small perturbations the structure of ũ is similar to that of the null vector u.

Theorem 4.3. [12, Thm. 8.1.12] Suppose A and A+E are n×n symmetric
matrices and that

U = [u1 U2]

is an orthogonal matrix such that u1 ∈ R
n is an eigenvector for A. Partition

the matrices UTAU and UTEU as

UTAU =

[

λ 0
0 D2

]

, UTEU =

[

ε eT

e E22

]

,

where D2 and E22 are (n − 1) × (n − 1). If d = min
µ∈λ(D2)

|λ − µ| > 0 and

‖E‖2 ≤ d/5, then there exists p ∈ R
n−1 satisfying

‖p‖2 ≤
4

d
‖e‖2

such that ũ1 = (u1+U2p)/
√

1 + pTp is a unit 2-norm eigenvector for A+E.
Moreover,

dist(span{u1}, span{ũ1}) =

√

1− (uT
1 ũ1)

2
≤

4

d
‖e‖2.
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We apply the result above to a symmetric positive semidefinite K with a
simple eigenvalue 0 that is perturbed by a symmetric E such that K̃ = K+E
is positive definite. If (0, u) is the smallest eigenpair of K, with λ2 being the
next largest eigenvalue, then the perturbed eigenvector ũ differs from the
original null vector by a distance proportional to the product of the norm
of the perturbation and the reciprocal of d = λ2. In other words, if the null
vector u has the structure defined in (5), its perturbation ũ has the form

ũT = [δ1, . . . , δn−1, α + δn−1, β + δn],

with δi of order ‖e‖2/λ2. Therefore, the smallest eigenvector of an ill con-
ditioned stiffness matrix will have large components corresponding to the
nearly dependent columns. It is easy to show that elements that share these
dofs have large values of the inner product/virtual energy v(e) as defined in
(3). Let D be the set of dependent dofs and let element e have a mapping
me that has a larger intersection with D than the mapping set of any other
element in the assembly, i.e.,

|D ∩me| > |D ∩mi| ∀i ∈ Ω, i 6= e,

where | · | is the cardinality of the set. Then, ũ(me)
T ũ(me) > ũ(mi)

T ũ(mi)
for i ∈ Ω, i 6= e.

We applied the bound in Theorem 4.3 to the special case of K with two
columns dependent, resulting in a simple eigenvalue 0. More generally, there
could be p ≥ 2 columns that are dependent, corresponding to p dofs that
are badly restrained. If K is scaled such that the largest eigenvalue is 1,
then it has a cluster of eigenvalues close to 0 and these eigenvalues have
eigenvectors with few large components. For eigenvalues that are clustered,
the eigenvectors are sensitive to perturbations but the invariant subspace
corresponding to the cluster is less sensitive. Our result is therefore easily
generalized for a cluster of eigenvalues and the invariant subspace of the asso-
ciated eigenvectors: the clustered eigenvalues of an ill conditioned symmetric
matrix are a perturbation of repeated zero eigenvalues of a nearby singular
matrix and the eigenvectors form a basis for the subspace that is in the neigh-
bourhood of the null space. The following theorem, which is a special case
of [12, Thm. 8.1.10], states this result. Here, we need the Frobenius norm,

‖A‖F =
(
∑n

i,j=1 |aij|
2)1/2.

11
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Theorem 4.4. Let a symmetric positive semidefinite matrix A ∈ R
n×n have

the eigendecomposition

A = UTΛU,

where Λ = diag(λi) with λ1 ≤ λ2 ≤ · · · ≤ λn and U is a matrix of eigenvec-

tors. Assume the spectrum of A is such that the first r eigenvalues in Λ are

0 and λr+1 > 0, and partition U = [U1 U2], so that the columns of U1 ∈ R
n×r

span the null space of A. Let E ∈ R
n×n be a symmetric matrix and partition

UTEU conformably with U as

UTEU =

[

E11 E12

E21 E22

]

.

If

‖E‖F ≤
λr+1

5
,

then there exists a matrix P ∈ R
(n−r)×r with

‖P‖F ≤ 4
‖E21‖F
λr+1

such that the columns of Ũ1 = (U1+U2P )(I + P TP )
−

1

2 form an orthonormal

basis for a subspace invariant for A+ E.

Theorem 4.4 suggests that where the ill conditioning is associated with a
cluster of small eigenvalues we need to examine all the eigenvectors associated
with the cluster to gain an understanding of the causes of ill conditioning.
The identification of the gap is important and so is its size—a large gap
ensures that the perturbed eigenvectors are “close” to the null vectors, and
hence contain useful information about the errors.

4.2. Largest eigenpairs

When K is ill conditioned because a few elements possess large stiffnesses
in comparison with other elements in the model, the largest eigenvectors are
numerically sparse and we can use the element-wise virtual strain energy s(e)

from (4) to identify such elements. The relationship between λmax(K) and
maxe{λmax(K

(e))} is already well known from the results of Wathen [13] and
Fried [14]. Here, we show the connection between the largest eigenvector of
K and the largest eigenvector ofK(e) and use the relationship to demonstrate

12
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d1 d2 d3 d4 d5 d6

1 2
3

4 5

Figure 1: A sub-assembly. Element 3 is the stiffest, with a large difference
in stiffness.

that the stiffest element has the largest virtual strain energy. We start with
a localized sub-assembly of elements and then extend the argument for the
entire model.

Consider an FE sub-assembly as in Figure 1, with a stiffness matrix S.
We assume, without loss of generality, that each element in the sub-assembly
has stiffness only in one direction at each end, so there is only one dof at
nodes d1, . . . , d6, and that no other coupling exists between these nodes and
the rest of the model. Let the transformed stiffness matrix of element r in
the direction of the dofs at the nodes be kr

[

1 −1
−1 1

]

. Since the ill conditioning
scenario we are interested in is one where a few elements have much larger
stiffnesses than most other neighbouring elements (that in turn have stiff-
nesses comparable with each other), let k = k1 = k2 = k4 = k5 and let
element 3 be the stiffest, with k3 = µk for µ� 1. Then the stiffness matrix
S of the sub-assembly is

S = k









2 −1 0 0
−1 µ+ 1 −µ 0
0 −µ µ+ 1 −1
0 0 −1 2









. (6)

We note here that the simplification of using elements with only one dof
at each node is only to keep the dimension of S low and it does not affect
the discussion: we can use any element as long as it has at least one dof
about which it has a large relative stiffness. We are interested in the largest
eigenvector and the corresponding energies of elements when the assembly
deforms in that mode.

Using the MATLAB Symbolic Math Toolbox the largest eigenvector of S
is found to be (unnormalized)

u = [−1, γ,−γ, 1]T , where γ = µ+ (
√

4µ2 − 4µ+ 5− 1)/2.

Table 1 provides expressions for s(e) when the sub-assembly is in a displace-
ment mode given by u. Clearly, s(3) > s(e) for e = 1, 2, 4, 5 for all µ > 1.

13
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Table 1: s(e) for elements e in the sub-assembly.

Element e 1 2 3 4 5

s(e) 1 1 + γ2 4γ2 1 + γ2 1

Figure 2: An arbitrary FE model.

Hence the stiffest element has the largest virtual energy. We also observe that
the components of the eigenvector vary as polynomials of the ratio of stiff-
nesses, therefore the larger the variation in stiffness magnitudes, the larger
the difference in the order of the components of the vector, making it more
numerically sparse.

To generalize this observation, we show that when such an assembly is
part of a larger structure, the largest eigenvector of the larger model has a
form similar to that of the largest eigenvector of the sub-assembly.

Assume the structure in (1) is embedded in an arbitrary FE model as in
Figure 2, with stiffnesses at nodes d3 and d4 larger than those at any other
dof. The fixities at the ends of elements 1 and 5 in Figure 1 become shared
nodes between the sub-assembly and the rest of the model. We represent the
stiffness matrix of the entire structure as K ∈ R

n×n. Let b be the maximum
number of nonzeros in any row of K. The quantity b represents the element
connectivity in the structure.

We can order K as

K =

[

M F

F T S

]

, (7)

where S is the same as in (6) and represents the sub-assembly and M ∈

R
(n−4)×(n−4) contains dofs from the rest of the model. The stiffness terms

14
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for shared dofs are in F ∈ R
(n−4)×4, which is of low rank and small norm

compared with S (and can be written out explicitly). Then, under mild
assumptions, the largest eigenvector of the block-diagonal matrix

K̂ =

[
M 0
0 S

]
(8)

is of the form v̂T := [0, . . . , 0, u] ∈ R
n, where u is the largest eigenvector of

S. To show this we need to show that ‖M‖2 < ‖S‖2. If K is scaled using its
construction in (2) such that

max
e∈Ω
e 6=2

‖K(e)‖ = 1,

we have
‖K(3)‖ � 1,

since element 3 is the stiffest. Then informally, maxi,j |mij| = O(1) and
maxi,j |sij| = O(µ). Using [4, Prob. 6.14] and the definition of b and the
symmetry of M , we have

‖M‖2 ≤ b1/2 max
j

‖M(:, j)‖2 ≤ b1/2 · b1/2 max
i,j

|mij|

= bmax
i,j

|mij| = O(b) < O(µ) = max
i,j

|sij| ≤ ‖S‖2,

assuming b � µ. This assumption is reasonable since the number of nonzeros
is typically of a smaller order compared with the stiffness of the element
causing the ill conditioning and conforms with our observations. We also note
that b is akin to the factor pmax in [14, Lemma 2] or dmax in [13, Equation
3.7]. The matrix

K = K̂ +

[
0 F

F T 0

]
,

is a small perturbation of K̂ (of norm ε, say). Therefore, using Theorem 4.3,
the largest eigenvector v of K has a small distance (proportional to ε) from
v̂ and so retains the structure. This implies v is numerically sparse, leading
to large relative values of virtual strain energies for elements that cause ill
conditioning of the stiffness matrix.
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Figure 3: 3D view of the arena roof-truss model. The lines in blue represent
truss elements.

5. Examples

The method described in section 4 has been implemented as an analysis
option in the software package Oasys GSA [3]. Eigenvalues and eigenvectors
are computed using subspace iteration with deflation of converged vectors.
The following examples illustrate how the feature has been used on struc-
tural models created by engineers on real-life projects. Since the illustrations
make use of models created in GSA, we use software-specific definitions of
common entities and concepts encountered in FE modelling and define new
terms when we introduce them. In all but the last example, examining ele-
ment virtual energies for the small eigenvalues revealed the causes of the ill
conditioning.

5.1. Roof truss for performing arts arena

Figure 3 shows the roof truss model of a performing arts arena that was
analysed in GSA. The roof is modelled as ‘beam’ and ‘bar’ elements, which
are both one dimensional. Beam elements have 6 dofs at each end, 3 each for
translation and rotation, whereas bars have two dofs corresponding to axial
extensions only. The main trusses run along the shorter diameter of the oval,
with longitudinal bracing connecting each truss at the top and bottom chord
to provide lateral stability. The model is supported on pins and rollers at
joints close to the circumference.

On an initial version of the model, the condition number was estimated
to be O(1017), meaning that the stiffness matrix was numerically singular.
Model stability analysis was executed and the smallest eigenvalues of the
matrix are λ1 = 0.0, λ2 = 1.142× 10−13, and λ3 = 1.396× 105.

16
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(a) Element virtual energies (b) Exploded view

Figure 4: Roof truss model: virtual energies for first eigenvector.

Figure 4a shows the contour plot for element-wise virtual kinetic energies
associated with the first eigenvector. The contour shows the largest values
for exactly 6 amongst 850 elements in the model.

Figure 4b shows a closer view of three of those nodes along with the ele-
ments connected to them. Elements 589 and 590 are beams, whereas all other
elements connecting at node 221 are bars, which is a modelling oversight. As
a result, the dof corresponding to rotation about the X-axis at node 200 is
unrestrained, which leads to a mechanism at the node. Restraining rotation
about the X-axis at nodes 220 and 222 fixes the beams 589 and 590 from
spinning about their axis. After the restraints are applied, the condition
number estimate reported drops to O(105).

5.2. Steel connection detail

The model in Figure 5 is a steel connection detail. The flange and the web
of the connection are modelled using parabolic (eight noded, quadrilateral)
plate elements [15, sec. 12.11.7]. Adjacent webs are connected with bolts,
modelled as beams.

Initially, the stiffness matrix for the static analysis had a condition num-
ber estimate of O(1020). Model stability analysis returned a distribution of
eigenvalues tabulated in Table 2. We notice a cluster of eigenvalues of order
10−11 and a large gap between the 40th and 41st eigenvalues. When element
virtual kinetic energies (v(e) in (3)) associated with the first 40 eigenvectors
are contoured on the model, a handful of elements are seen to have large
relative values in each mode. Figures 6 and 7 illustrate four of these plots.

The matrix is numerically singular and it arises from the choice of the
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(a) 3d view (b) Plan

Figure 5: Connection detail. Blue quadrilaterals are plate elements.

Table 2: Eigenvalues of the stiffness matrix from the steel connection model.

λ1 λ2
· · ·

λ6 λ7 λ8
· · ·

2.80E-12 2.30E-12 1.70E-11 5.40E-11 5.50E-11

· · ·

λ23
· · ·

λ40 λ41

7.28E-11 7.70E-11 1.99E+3

element type for modelling the web and their connection to the beams. Eight
noded plate elements have only five dofs per node, three for displacements
and two for bending: rotation about the normal axis (drilling dof) is not
supported. When such an element is connected to a beam, which has six dofs,
oriented perpendicular to it, the connecting node acquires an active dof in the
rotational direction about its axis. Since the plate does not have stiffness in
this direction, the dof is unconstrained and this renders the matrix singular.
The 41st eigenvalue is not small compared with the first 40, so the element
virtual energies for a corresponding eigenvector are more evenly distributed
(mode 41, Figure 7).

Restraining the beams against rotation about their X-axis brings the
condition number estimate of the stiffness matrix down to O(108).

5.3. Façade panels for a building

Whereas the previous examples involved singular stiffness matrices, this
example deals with an ill conditioned matrix arising from erroneous nodal
connectivity. Figure 8 shows a portion of a larger model of façade cladding
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Figure 6: Contour plots for virtual energies for the connection model. Clock-

wise from top: energies associated with eigenvector 1, eigenvector 14, eigen-

vector 30, eigenvector 16 and eigenvector 6. Figures for eigenpairs 6, 14, 16

and 30 are magnified views of the encircled part in eigenvector 1.
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Figure 7: Contour plots for virtual energies for eigenvector corresponding to
the 41st smallest eigenvalue for the connection model.

Table 3: Eigenvalues of the stiffness matrix from the façade model.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ81.001 1.001 1.001 1.001 1.001 1.001 171.788 271.649

of a structure that consists of about 32000 elements and 21000 nodes resting
on pinned supports. Our screenshot reproduces only a small part. The glass
façade panels are modelled using four noded plane-stress elements, supported
on a grid of beam elements. Each panel rests on the grid of beams through
springs at each of its four corners, as shown in the zoomed in view in Figure 9.

An early version of the model triggered a condition number warning upon
linear static analysis. The estimated condition number was O(1012). Model
stability analysis reported eigenvalues tabulated in Table 3. We notice a
cluster at 1.001 with six eigenvalues and a gap of O(100) between the sixth
and seventh eigenvalues. Correspondingly, the contours of element virtual
energies show isolated large values at very few elements for the first six eigen-
pairs, whereas for seventh eigenpair the energies are more evenly spread, as
is evident from Figure 10.

On close examination of the elements, we discover an error in the nodal
connectivity. Figure 11 shows the part of the model where nodes have large
rotations. A zoomed-in view of nodal connectivity in Figure 11b reveals
that the element is connected to a nearby node rather than to the node that

20

Figure 8: A small portion of the façade model.

Figure 9: Close-up view of the element connectivity for façade model. Blue

quadrilaterals are elements modelling the façade panels, green lines represent

beams and springs are drawn as coils. Gaps between the elements are a

graphic view setting and are only for visual clarity.

21



Arup Oasys Software 93 

(a) Eigenpair 1

(b) Eigenpair 7

Figure 10: Element virtual energies for the first and seventh eigenpairs from

the façade model.
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(a) A closer view of element 13828 (b) Corner node connec-
tivity

Figure 11: Close-up view of the element with large energy in Figure 10a.

Table 4: Eigenvalues of stiffness matrix (of size n) from the Tall Building
model.

λ1 λ2
· · ·

λ25
· · ·

λ49 λ50
· · ·

λn−1 λn

1.22E3 1.70E3 9.73E3 1.24E4 1.25E4 2.02E17 2.02E17

connects the spring. The same error is repeated on the other node along
the same edge of the element. As a result, the element is supported on only
two corners on springs, which makes this part of the model highly flexible
compared to surrounding parts, but not a mechanism.

Connecting the plane element to the two springs at the corners reduces
the estimated condition number of the model to O(108).

5.4. Tall Building with concrete core

In this example, the ill conditioning was from the presence of elements
that were very stiff in comparison with other elements. The GSA model
in Figure 12 is of a tall building with a concrete core and has about 46000
elements using over a 1000 beam and slab sections with different properties.
The model reported an initial condition number of order 1015.

Model stability analysis for up to the 50 smallest eigenvalues did not show
a gap in the spectrum; a few of these are listed in Table 4. We therefore
examine element virtual strain energies for the largest modes.

These highlight a handful of elements, as shown in Figure 13. An exami-
nation of the section properties of the elements reveals that certain members
are modelled as strings of short beam elements (Figure 14), resulting in these
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Figure 12: Tall building with stiff core.

elements acquiring large stiffness values. Rectifying the model in this case in-

volves replacing the string of elements by single beam elements wherever they

occur, which results in the condition number decreasing by several orders of

magnitude.

Unlike in the case of smallest eigenvectors, the number of largest eigen-

vectors to be examined is arbitrary. This is because identification of elements

with “large” stiffness is relative to the stiffness of the other elements in the

model. Developing a criterion for selecting the number of largest eigenpairs is

left to future work. At present we recommend iterating by correcting anoma-

lies, re-analysing the model to find the new condition number and repeating

the process until the condition number falls below the threshold τ used in

the method in section 4.

6. Conclusion

We have demonstrated a method for detecting a class of ill conditioned

problems in structural analysis. These problems arise when there are dofs

that contribute stiffnesses that are disproportional in magnitude and when

there are tuples of dofs that have insufficient connectivity with the rest of

the FE assembly, both of which are scenarios that commonly arise as user

errors during model generation. We exploit the sparsity structure of the
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Figure 13: Contour of element virtual energies for the largest eigenvector of

the stiffness matrix of tall building model.

Figure 14: Magnified view of the element with high energy. The encircled

beam has large stiffness.
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smallest and largest eigenpairs and use element virtual energies to highlight
elements that cause the ill conditioning. This method has been implemented
in a commercial FE analysis package and we have shown through examples
of real-life models that it works in practice. Further work will focus on
developing a criteria for determining the number of largest eigenpairs used
for investigating ill conditioning from large element stiffnesses.
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