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A B S T R A C T

Finite element (FE) analysis produces results, which, in most cases, gain in accuracy, as the size of the FE mesh is
reduced. However, this is not necessarily the case when beam and shell element connections induce in-plane
torsional effects in the shell. In such situations, shell elements either do not allow for an in-plane torsional
stiffness, or, when present, the in-plane torsional stiffness is incorrectly affected by the sizes of the elements. To
overcome this problem, we propose a macro- panel element that has fewer degrees of freedom, includes a new
model for in-plane torsional stiffness, and produces results with sufficient accuracy to meet engineering re-
quirements. The panel element is based on the principle of sub-structuring, i.e., the panel is meshed internally by
smaller shell elements. As shown in the paper, the proposed panel element can be quite large, yet, it can give
accurate analysis results. This work helps to overcome a common dilemma in practical use of finite element
analysis, where finite element theory requires element sizes to be sufficiently small, but practical considerations
suggest the use of large-size elements that simplify the modelling process and reduce excesses in generated
results. A model built using macro-panel elements is equivalent to the model built using smaller shell elements,
with the normal and shear stresses in the former being the same as the stresses in the finely meshed shell element
model, We identify a number of performance benefits that become available as a consequence of modelling the
shell elements at a higher level of abstraction.

1. Introduction

A common conflict in practice of finite element analysis is the trade-
off between the practical benefits of using larger elements against the
numerical benefits of finer meshing. We have found one solution to this
problem by introducing an intermediate modelling abstraction, which
resulted in a ‘macro-panel’ element.

The proposed panel element is designed using the principle of sub-
structuring: the panel is divided internally into a set of smaller shell
elements. From the point of view of a user, the macro-panel element is a
four node “shell” element capable of modelling large physical objects,
such as a shear wall or a floor slab, with a single element. From the
point of view of the finite element analysis, the panel element is a
‘condensed’ mesh of smaller shell elements. The macro-panel element
handles the intermediate detail between the two interfaces. The pro-
posed transformation is based upon the work in reference [1], but we
have carried out further verification and validation of results to de-
monstrate the practical and time saving benefits.

Obtaining in-plane torsional stiffness of a shell element can become

problematic, as the stiffness is inevitably influenced by the size of the
elements. We commonly observe in practice that, when a moment
about the normal to a shell element is applied, the results are either not
available or have poor accuracy. One typical example of this is a mo-
ment applied to shell elements via the twist of a beam perpendicularly
connected to them. The larger size of the proposed macro-panel ele-
ment makes it possible to conveniently accommodate the in-plane
torsional moments over a wider area and predict the in-plane torsional
stiffness more accurately. In this paper, we recommend a new method
for calculating the in-plane torsional stiffness that makes use of the
larger area offered by the transformation into a macro-panel element.
We have found that this method produces greater accuracy than pre-
viously proposed methods (refs. [2–7]), in which the in-plane torsional
stiffness is more sensitive to individual element sizes. To account for the
situation where an in-plane torsional stiffness is not required, we make
the inclusion of in-plane torsional stiffness optional by means of a user-
defined parameter.

We demonstrate the effectiveness and applicability of the proposed
macro-panel element model using two key examples. In Example 1, we
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model a 40-storey structure with linked shear walls and compare the
results with three alternative finite element models that use shell ele-
ments to represent the walls and beam elements to represent the links.
The alternative models given in this example include Allman/Cook
formulation with in-plane torsional stiffness, as well as shell elements
without that stiffness. In Example 2, we model a shear wall core of a 30-
storey building subjected to horizontal uniform face loads. The core is
modelled using the proposed macro-panel element model and the re-
sults are compared with the shell element model.

The results show that our proposed macro-panel element offers a
number of benefits. Other than facilitating a more accurate method for
predicting the in-plane torsional stiffness, while retaining the quality of
a finely meshed model, it offers real practical advantages. The data
associated with each panel element is independent and so the proces-
sing of any panel can be executed independently in a parallel way. We
also find a reduction in the repetitive calculations of any individual
panel, since it is only necessary to process a single element. Finally, we
commonly observe a reduction possible at the structural level where we
have found it very likely that in a large structural model, many identical
panels exist, but where only one of them needs to be processed.

2. The macro-panel element

2.1. Meshing of the panel element

The macro-panel element represents a substructure with internal
meshing of shell elements at an arbitrary degree of refinement. Example
refinements may represent a single panel by 4×4, 4×6 or 6× 6 etc.
shell elements. We restrict the discussion in this paper to a meshing
scheme of 4× 4 Quad8 shell elements, whose ‘internal’ assembly is
shown in Fig. 1(a). The rectangular shape of the panel element is used
here, but the method does not limit the shape to be rectangular and any
quadrilateral shape can be used. We refer to all nodes within the panel
element as ‘internal’ nodes, and reserve the name ‘external’ for all re-
maining nodes that are at the panel edges and corners. The node
numbering is from internal nodes to edge nodes, and then the four
corner nodes. Fig. 1(b) shows the ‘external’ nodes of the panel element
as given to the global assembly where only these nodes will be active
(the nodes have been re-numbered, for convenience). Fig. 1(c) shows
the macro-panel element as seen by the end user; it is a typical four-
node 2D element, and the four nodes are also re-numbered from one.
The numbers shown in brackets indicate the degrees of freedom
number.

All degrees of freedom (d.o.f.) associated with internal nodes are
‘condensed’ during the macro-panel element construction and do not
appear in the global analysis. As a consequence, the total number of
d.o.f. is significantly reduced (compared to the equivalent model that is
using smaller shell elements).

The derivation of an individual shell element stiffness matrix [Ke]
can be found from a variety of sources e.g. reference [8] and is not
discussed here. In this paper we concentrate on the idea of the panel
element as a larger entity: the assembly of the macro-panel element
stiffness matrix, the assembly of a corresponding load vector, and a
method of constructing the in-plane torsional stiffness from the internal
arrangement.

2.2. Stiffness matrix of the macro-panel element

Given a known stiffness matrix [Ke] of a shell element (refer to
Section 13.2 on pages 428 & 429 of reference [8]) for detailed deri-
vation) and the element numbering system shown in Fig. 1(a), the
stiffness matrix of the meshed panel in Fig. 1(a) can be assembled and
partitioned by internal and external d.o.f. and take the following form:

K
K K
K K[ ] ii ib

bi bb
= ⎡

⎣⎢
⎤
⎦⎥ (1)

For the meshing scheme shown in Fig. 1(a), i is from 1 to 165 for the 33
internal nodes and each has 5 d.o.f., b is from 166 to 357 for the 32
external nodes and each has 6 d.o.f.

Using Guyan condensation method [9] to eliminate the internal
d.o.f., the final stiffness matrix of the panel element with only external
nodes can be obtained from:

K K K K K[ ] [ ] [ ] [ ] [ ]e
bb bi ii ib

1= − − (2)

where the total number of d.o.f. of the panel element is 192- corre-
sponding to the 32 external nodes (the node and d.o.f. numbering
system for the panel element is shown in Fig. 1(b); Fig. 1(c) shows the
node and d.o.f. numbering for the panel element as seen by the end
user).

We can see from this example that the number of d.o.f. of the panel
element is 192, while the total number of d.o.f. of the meshed model is
390. This shows that the total number of d.o.f. has been reduced by a
half in this example. Consequently, for a structure modelled using panel
elements, the size of the global stiffness matrix can be significantly
reduced, producing time saving benefit in solving the matrix equation
problem. The code routines for assembling the stiffness matrix of the
meshed panel and then condensing the stiffness matrix to panel element
stiffness matrix with only external d.o.f. active is based on reference [1]
and can be found in the Appendix.

2.3. Load vector of the panel element

If there are distributed loads on the panel elements, the loads have
to be represented by nodal loads in the analysis. The nodal loads act on
both internal and external nodes. As internal nodes are not active in
global analysis, the nodal loads also need to be condensed to external
nodes in the similar way as condensing the stiffness matrix. Given a
known nodal load vector {P} for the meshed model, we can partition
the load vector into an internal block {P}i followed by an external block
{P}b. The condensed nodal load vector P{ }b

′
at only external nodes for

global analysis can be obtained from:

P P K K P{ } { } [ ] [ ] { }b b bi ii i
1′ = − − (3)

where:

{P}b The external block of the nodal load vector, the length is 192
for the example.
{P}i The internal block of the nodal load vector, the length is 165 for
the example.
P{ }b′ The condensed load vector at external nodes for global analysis.
The length is 192 for the example discussed.
[K]bi Defined by Eq. (1)
[K]ii Defined by Eq. (1)

In practice P{ }b
′

is not derived directly from Eq. (3), but gained in
the same process of condensing stiffness matrix [K], and the code
routines can also be found from reference [1] and Appendix. When
multiple load cases exist, the load vectors become a load matrix and
each load vector is represented by a single column in the load matrix.

3. Analysis results of the panel element

3.1. Nodal displacements

Given the condensed stiffness matrix K[ ]bb
′
and condensed load

vector P{ }b
′
, a global stiffness matrix and global load vectors for the

whole structural model can be assembled and the matrix equilibrium
equation can be solved in the usual way [8]. The displacements from
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global analysis are the node displacements {u}b of the external nodes of
the panel elements. The internal node displacements u{ }i

′
of the panel

elements are not required if stress and force results within the panel
elements are of no interest, e.g. when only the total edge forces and
moments given below are needed to calculate the reinforcement. If

stresses and forces within the panel elements are required, internal
node displacements need to be known and they can be determined
from:

u K P K K u{ } [ ] [ ] [ ] [ ] { }i ii i ii ib b
1 1= +′ − − (4)

Fig. 1. Macro-panel element and the meshing scheme.
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where:

u{ }i
′
The nodal displacement vector of internal nodes.

{u}b The nodal displacement vector of external nodes.

All other parameters are the same as in the equations above.
The first term on the right hand side of Eq. (4) represents the con-

tribution to internal node displacement vector due to the loading of
internal nodes, in the absence of any external node displacement. The
second term represents the contribution to internal node displacement
vector due to the displacements at external nodes, in the absence of any
other loads.

3.2. Total forces/moments at edges

Once nodal displacements of external nodes are known, forces and
moments at those nodes can be calculated from

F K u{ } [ ] { }b bb b= ′
(5)

where:

{F}b The force vector representing the forces/moments at external
node.
{u}b The external node displacement vector.

{F}b can then be used to calculate the total forces and moments
about the centroid of the four edges of the panel element.

In engineering design, it may happen that the resultant value of
forces and moments about the centroid of a section is more useful than
a detailed stress distribution across the section. One example may be
the calculation of required reinforcements for a shear wall subjected to
mainly in-plane forces. In such situations, a macro-panel element is a
natural fit; should a single panel element represent a wall or slab, the
total forces and moments at a panel edge immediately represent the

total forces and moments for a section through the structural object.
Edge forces and moments can be calculated from the known forces

and moments at external nodes given by Eq. (5). Fig. 2 shows an option
for a sign convention for representing total panel element edge forces
and moments.

3.3. Forces, moments, stresses & strains within the element

When the panel element is used to model a shear wall, the total
forces and moments at the edges are typically sufficient for the purpose
of engineering design. When a panel element is used to model floors
and other structural objects subjected to out-of-plane bending, greater
detail as to the forces, moments, stresses and strains within a panel
element will typically be required. Given that the panel element is re-
presented internally by shell element mesh, the strains and stresses
within the panel can be calculated from each of shell elements in the
meshed model shown in Fig. 1(a).

4. In-plane torsional stiffness

4.1. Introduction

A node of a typical shell element has five degrees of freedom, three
translations and two rotations. Resistance to rotations about the normal
to the element plane, commonly referred to as in-plane torsional stiff-
ness is not usually included. If such shell elements are used in an
otherwise unrestrained global assembly with six degrees of freedom
(three translations and three rotations) of each node, some additional
method of constraint will be necessary. At the global analysis stage, if
connected shell elements are exactly co-planar, it is straightforward to
automatically suppress the unwanted in-plane torsional d.o.f. and have
only 5 d.o.f. for each node in the analysis. Alternatively, a small arti-
ficial in-plane torsional stiffness may be assumed, so as to keep all six
d.o.f. for each node in the global assembly. Should two connecting shell
elements be perpendicular, the connecting nodes, each with six degrees

Fig. 1. (continued)
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of freedom, will have an associated stiffness. A greater problem occurs
when all shell elements connected to a node are not co-planar, but
nearly co-planar. In this case, the small rotational stiffness about the
normal direction contributed by the connected elements is likely to lead
to poor conditioning in the resulting global stiffness matrix for the
structure. The alternative approach of suppressing the non-zero rota-
tional stiffness about the normal direction will, likewise, lead to un-
satisfactory results.

Solutions introduced by Allman and Cook include the in-plane tor-
sional d.o.f. as a part of the element formulation [2–7]. The technique is
to include four mid-side nodes with transverse mid-side displacements
that are instead expressed as four rotational d.o.f. at element corner
nodes. The method is effective, but under certain conditions: when

elements are reasonably co-planar [10], spurious modes are handled
effectively [7], and the element size is sufficiently large with respect to
the area over which the in-plane torsional moment is applied.

In practice, however, we observe conflict between the requirement
to refine element mesh sufficiently and at the same time keep element
sizes large enough to accommodate the possibility of applying in-plane
torsional moments over single connections. We have found that overly
small elements can be a poor compromise in practical situations. For an
Allman/Cook element [7], Fig. 3 demonstrates the effect of element size
on the rotation at a node when a constant in-plane torsional moment is
applied. We can see the rotation at centre node varies significantly with
the variation of shell element size. This implies that, in order to have
correct in-plane torsional stiffness, a certain shell element size has to be

Fig. 2. Sign convention for representing total forces and moments at the panel element edges.
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used and this is not practically possible within rather fine meshing. The
macro-panel element, working at a higher level of model abstraction,
has a greater opportunity to consider the section size of a connecting
beam in the process of deriving the in-plane torsional stiffness of the

panel. In this paper a beam section size is taken as an additional
parameter of the panel element to enable the correct in-plane torsional
stiffness to be derived.

Fig. 3. Effect of element size on in-plane torsional stiffness using Allman/Cook method.
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4.2. Derivation of in-plane torsional stiffness

Fig. 4 demonstrates the effect that an area over which an in-plane
torsional moment is applied has on the in-plane torsional stiffness of the

panel. In this example, a square 6× 6 m panel is modelled by a finer
mesh of Quad8 shell elements. A set of in-plane torsional moments is
applied to the top right corner with varying application areas. The re-
lationship between the in-plane torsional stiffness and the application

Fig. 4. Effect of moment application area on the in-plane torsional stiffness.
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area of the in-plane torsional moment is drawn in Fig. 4(b). It shows
that the moment application area does have significant effect on the in-
plane torsional stiffness. This means that, in practice, the moment ap-
plication area has to be considered in order to obtain the correct in-

plane torsional stiffness.
The derivation of the in-plane torsional stiffness for a panel element

is illustrated in Fig. 5. A ‘dummy’ node lying within the panel element
plane and containing the two in-plane translational d.o.f. is placed near

Fig. 5. The internal arrangement to facilitate the generation of in-plane torsional stiffness.
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each corner. In this way, an area over which an in-plane torsional
moment is to be applied can be flexibly specified by defining the dis-
tance between the dummy node and the element edges; for example: c
& d in Fig. 5(b). This area may be set as the equivalent section area of a
connecting beam element. The displacement of each dummy node is
constrained to be equal to the corresponding edge point displacements
as shown in Fig. 5(b). If the edge point does not coincide with an edge
node, linear interpolation can be used to get the edge point displace-
ments. For example, the displacements of the dummy node at the top
right corner in Fig. 5 are constrained according to the following
equations:

d b

c a

u u ( )

u u ( )

x 1.x
(u u )

b

y 3.x
(u u )

a

2.x 1.x

4.x 3.x

= + −

= + −

−

−
(6)

where:

ux, uy Horizontal and vertical displacements of the dummy node.
u1.x, u2.x Horizontal displacements at edge nodes 1 & 2, as shown in
Fig. 5(b).
u3.y, u4.y Vertical displacements at edge nodes 3 & 4 as shown in
Fig. 5(b).
a, b The nodal spacing at horizontal and vertical edges respectively.
c, d The width and height of the rectangular moment application
area.

Each dummy node is linked to its respective corner node by a stiff
beam element in order that each corner node has an in-plane torsional
stiffness allowing it to resist the moment applied through the area de-
termined by c and d. The stiff beam element has a large in-plane
bending and shear stiffness, but no axial or out-of-plane bending stiff-
ness. We have found this simpler approach to be sufficient in practice to
produce in-plane torsional stiffness for the corner nodes. Dummy node
displacements are restrained and they do not have independent d.o.f.,

so their introduction does not change the total number of d.o.f. in the
panel element.

5. Worked examples

The proposed macro-panel element has been implemented in the
structural finite element software Oasys GSA [11]. In this section, we
present two worked examples. Example 1 is a linked shear wall mod-
elled by the proposed panel elements as well as by usual, smaller size,
shell and beam elements. Example 2 is a 30- storey shear wall core
modelled by the proposed panel elements and smaller size shell ele-
ments.

Example 1
Four finite element models of the same linked shear wall are created

in Oasys GSA and they are:

(I) Full shell element model – shell elements are used to model both
the shear walls and the links, this model is used as the benchmark
to calibrate other model's analysis results

(II) Panel element model – panel elements are used to model the shear
walls and beam elements are used to model the links

(III) Allman/Cook model – shell elements are used to model the shear
walls, and beam elements are used to model the links. Allman/
Cook formulation is used for shell elements to include in-plane
torsional stiffness

(IV) Non-Allman/Cook model – the same as Allman/Cook model except
that bilinear formulation is used for shell elements and the shell
elements have no in-plane torsional stiffness

The geometries, loading and the deformed shapes of the four models
are shown in Fig. 6. The displacements at each floor level from the four
models are summarised in Table 1. They show that the panel element
model (model II) gives very similar displacements to the full shell ele-
ment model (model I). This demonstrates that the panel elements can

Fig. 6. The linked shear wall models with deformed shapes.
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accurately model the linked shear wall and also predict the in-plane
torsional stiffness accurately. Only 20 panel elements and 10 beam
elements are used in the panel element model, which makes the mod-
elling much simpler than using shell elements where 350 shell elements
are needed; this shows the efficiency of using panel elements in mod-
elling this linked shear wall and similar types of structures.

The non-Allman/Cook model (model IV) gives excessively large
displacement; this is obviously due to the fact that the shell elements
have no in-plane torsional stiffness. Because of this, the two branches of
the shear walls are working alone without effectively linked as an in-
tegral wall. The Allman/Cook model (model III) does exhibit some
degree of in-plane torsional stiffness, but the in-plane torsional stiffness
is under estimated as the displacements are much larger than full shell
element model. If the shell element sizes become smaller, the error of
in-plane torsional stiffness will be even larger, as the in-plane torsional
stiffness from Allman/Cook method reduces along with the reduction of

element size. This shows the limitation of using Allman/Cook method
to predict the in-plane torsional stiffness in practical uses.

Example 2
A shear wall core subjected to horizontal uniform face loads is

shown in the Fig. 7. The plan view, the dimensions and material
properties of the shear wall core are shown in the same figure. The
storey height is 3 m and the total number of stories is 30. The core is
modelled using the proposed panel element model as well as small shell
elements. In the panel element model, each wall measured from one
floor to the next is modelled by a single panel element; in the shell
element model, the same wall is modelled by 4 by 4 small shell ele-
ments, equal to the meshed elements within the panel element.

The horizontal displacements of the two models (at the floor level)
are summarised in Table 2. They show that the panel element model
gives almost the same displacements as the shell element model, even
though the number of elements used in the panel element model is only

Table 1
Horizontal displacements predicted by the four models.

Floor Level Full shell element model Panel element model Allman/Cook model Non-Allman/Cook model
(Model I) (Model II) (Model III) (Model IV)
(mm) (mm) % diff (mm) % diff (mm) % diff

1 0.20 0.19 −1.78% 0.21 5.63% 0.33 65.23%
2 0.55 0.55 −0.31% 0.60 9.32% 1.05 90.35%
3 1.02 1.02 0.10% 1.13 11.19% 2.10 106.48%
4 1.56 1.56 0.32% 1.75 12.52% 3.43 119.83%
5 2.13 2.14 0.38% 2.42 13.51% 4.94 131.80%
6 2.71 2.73 0.44% 3.10 14.37% 6.60 143.18%
7 3.29 3.30 0.49% 3.79 15.18% 8.35 153.95%
8 3.84 3.86 0.52% 4.45 15.90% 10.16 164.38%
9 4.38 4.40 0.53% 5.10 16.61% 11.99 173.93%
10 4.92 4.95 0.57% 5.77 17.17% 13.85 181.45%

Note: see Fig. 6 for the dimensions and material properties of the models.

Fig. 7. The plan view of the shear wall core.
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1/16 of the shell element model. This demonstrates the efficiency of
using the proposed panel elements to model this type of structure.

The average times used to solve the four models in Example 1 and
the two models in Example 2 using Dell Latitude E7250 lap top are
given in Tables 3 and 4 respectively. They show that analysing the
panel element model needs shorter time compared with shell element
models. This is due to the fact that panel element model has a smaller
number of global d.o.f. and also has fewer repetitive calculations, as all

panel elements are the same and only one panel element needs to be
processed.

6. Conclusions

To an engineer, being able to work at a higher level of abstraction,
offered by the proposed macro-panel element presents the immediate
benefit of the model being easier to construct, manipulate and main-
tain. The proposed method can predict in-plane torsional stiffness ac-
curately by taking advantage of large size of the panel elements. Panel
element results can be presented at a level that matches physicality of
structural objects, such as walls & slabs, with total forces and moments
at the panel edges that may reflect a cut section of a wall. The size of the
digital model and the volume of s results that require analysis are also
significantly reduced.

For the finite element solver, the use of larger and repeated struc-
tural objects (the panel elements) provides a natural opportunity for
performance improvements, especially when using multiple cores of
modern computers. The proposed model handles the calculations
within the panel elements and passes a reduced number of d.o.f. to the
global assembly; this reduces the total number of d.o.f. in global ana-
lysis and saves time in solving the global stiffness matrix. In our simple
example, the overall time reduction of solving the problem using panel
elements is about 40%. For larger, regular models, and using multiple
processors, the saving of analysis time would be much higher.

Appendix

From the known stiffness matrix Ke of shell elements and the numbering system of nodes and elements shown in Fig. 1(a), the stiffness matrix K of
the meshed model of Fig. 1(a) can be assembled using the routine shown below in C++. Five d.o.f. are used at each node, except for the corner
nodes that have six d.o.f.

void AssembleK(std::vector<std::vector<double>>& K)
{
for(int iE= 0; iE < 16; ++iE)
{

for(int iR=0; iR < 40; ++iR)
{

for(int iC= 0; iC < 40; ++iC)
{
const int iTR= vTopo[iE][iR/5];
const int iTC= vTopo[iE][iC/5];
int iRG=5*(iTR-1)+ iR%5;
int iCG=5*(iTC-1)+ iC%5;

Table 2
Horizontal displacements predicted by the shell element and panel element
models.

Floor Level Shell element model Panel element model difference
(mm) (mm) (%)

1 0.330 0.333 0.88%
2 1.029 1.034 0.49%
3 2.096 2.103 0.33%
4 3.509 3.517 0.23%
5 5.243 5.253 0.19%
6 7.277 7.288 0.15%
7 9.586 9.599 0.14%
8 12.150 12.160 0.08%
9 14.940 14.960 0.13%
10 17.950 17.960 0.06%
11 21.140 21.160 0.09%
12 24.510 24.530 0.08%
13 28.030 28.050 0.07%
14 31.690 31.700 0.03%
15 35.470 35.480 0.03%
16 39.350 39.370 0.05%
17 43.330 43.350 0.05%
18 47.380 47.400 0.04%
19 51.500 51.520 0.04%
20 55.680 55.700 0.04%
21 59.900 59.930 0.05%
22 64.160 64.180 0.03%
23 68.450 68.470 0.03%
24 72.760 72.780 0.03%
25 77.080 77.100 0.03%
26 81.410 81.440 0.04%
27 85.750 85.770 0.02%
28 90.090 90.110 0.02%
29 94.420 94.450 0.03%
30 98.760 98.790 0.03%

Note: see Fig. 7 for the dimensions and material properties of the models.

Table 3
Solver time of the 4 models in Example 1.

Full shell
element model

Panel element
model

Allman/Cook
model

Non-Allman/
Cook model

Model I Model II Model III Model IV

Analysis time
(s)

0.71 0.39 0.49 0.47

Table 4
Solver time of the 2 models in Example 2.

Shell element model Panel element model

Analysis time (s) 6.16 3.52
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if(iTR >= 62)
iRG=6*(iTR-1)+ iR%5 - 61;

if(iTC >= 62)
iCG=6*(iTC-1)+ iC%5 - 61;
K[iRG][iCG] += Ke[iR][iC];

}
}

}
}

where:

vTopo: A vector holding the topologies (node numbers) of each of the small shell elements as shown in Fig. 1(a), e.g. vTopo [1,2], gives the
second node number of element 1.
Ke: The small shell element stiffness matrix of size 40× 40.
K: The stiffness matrix of the meshed model (uncondensed)

Using the numbering system shown in Fig. 1(a), the internal and external degrees of freedom are separated automatically in the meshed model
stiffness matrix K, with internal d.o.f. followed by external d.o.f. The total number of d.o.f. for the meshed model is Nt= 329 and the number of
internal d.o.f. Ni= 165. The uncondensed stiffness matrix K and the corresponding load vectors can be condensed using the following routine.

void CondenseMatrix(std::vector<std::vector<double>>& K, std::vector<std::vector<double>>& P, int Nt, int Np, int Ni)
{

for(int k= 0; k < Ni; ++k)
{

for(int i= k+1; i < Nt; ++i)
{
const double dFactor=K[i][k]/K[k][k];
for(int j= k; j < Nt; ++j)

K[i][j]=K[i][j] - dFactor*K[k][j];
for(int j= 0; j < Np; ++j)

P[i][j]= P[i][j] - dFactor*P[k][j];
}

}
for(int k=Ni-1; k > 0; –k)
{

for(int i= k-1; i >= 0; –i)
{
double dFactor=K[i][k]/K[k][k];
for(int j= 0; j < Nt; ++j)

K[i][j]=K[i][j] - dFactor*K[k][j];
for(int j= 0; j < Np; j++)

P[i][j]= P[i][j] - dFactor*P[k][j];
}

}
for(int i= 0; i < Ni; ++i)
{

const double dFactor=K[i][i];
for(int j= 0; j < Nt; j++)
K[i][j]= K[i][j]/dFactor;

for(int j= 0; j < Np; j++)
P[i][j]= P[i][j]/dFactor;

}
}
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where:

Nt: The number of d.o.f. in the meshed model (329 in this example).
Ni: The number of internal d.o.f. (165 in this example).
Np: The number of load cases considered.
K: The stiffness matrix. At the start, K contains the stiffness matrix of the meshed model, assembled using the routine above. At the end, K
contains:

K
K

K

K K
K K K K

[ ]
[1] [ ]

[0] [ ]

[1] [ ] [ ]
[0] [ ] [ ] [ ] [ ]

ib

bb

ii
1

ib

bb bi ii
1

ib
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ⎡

⎣
⎢ −

⎤

⎦
⎥

′

′

−

−
(A1)

P The load matrix. Each column represents a load case. At start, P holds the load matrix for the meshed model, at the end P contains:

P
u

P

K P
P K K P

[ ]
[ ]

[ ]

[ ] [ ]
[ ] [ ] [ ] [ ]

i
i

b

ii
1

i

b bi ii
1

i
= ⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢ −

⎤

⎦
⎥′

−

−
(A2)

K[ ]ib
′
An external node displacement to internal node displacement conversion matrix.

K[ ]bb
′

A condensed stiffness matrix of the panel element containing external d.o.f. only, it is the panel element stiffness matrix
u[ ]i

i An internal node displacement generated by internal node loads with external nodes being fixed.
P[ ]b

′
A condensed load matrix corresponding to the condensed stiffness matrix K[ ]bb

′
for the panel element in global analysis, the number of rows is

equal to the external d.o.f.
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