
What is your structural model not telling you?
Finding hidden modelling errors and inaccuracies in your analysis results.

Dr Ramaseshan Kannan PhD 1, Dr Stephen Hendry PhD 2, Prof Peter Debney 3
1 Oasys, Technical Software Group, Arup, 3 Piccadilly Place, Manchester, MN1 3BN, United
Kingdom; T +44 20 7755 3601; email: Ramaseshan.Kannan@arup.com
2 Oasys, Technical Software Group, Arup, 13 Fitzroy Street, London, W1T 4BQ, United
Kingdom; T +44 20 7755 3694; email: Stephen.Hendry@arup.com
3 Oasys, Technical Software Group, Arup, 78 East Street, Leeds, LS9 8EE, United Kingdom;
T +44 113 237 8116; email: Peter.Debney@arup.com

ABSTRACT
Finite element analysis involves inherent approximations and numerical errors. In addition to
these, the increasing size of structural models and the use of automated workflows for creating
them can lead to hidden user errors in the said models. For the engineer to have confidence in
analysis results, it is necessary to be aware of how these errors manifest themselves in models,
what impact they have on analysis results and, most importantly, how they can be detected. We
present novel numerical techniques that the analyst can use to ‘debug’ their models and verify
the accuracy their analysis results. These techniques have been implemented in software and
have been successfully used by practicing engineers working on live projects.

INTRODUCTION
Since the first use of computers for structural analysis (Felippa, 2001), the
computational power available to engineers has increased dramatically. In turn,
engineers have been quick to exploit these capabilities and finite element models have
grown significantly both in size and in complexity. Other developments, such as
generating analysis models from Building Information Models (BIM) and parametric
methods, have also contributed this growth. These improvements in the workflow also
mean that the engineer is more separated from the resulting model, and thus finds it
more difficult to establish the integrity of that model. To gain the benefit from the
automated workflow the engineer needs new techniques to understand the
complexities of the resulting models. In this paper, we discuss the implementation of
new tools based on innovative numerical methods that allow engineers to find hidden
errors in their structural analysis models and ensure the robustness of analysis results.
The use of the finite element method for structural analysis involves approximations
at various levels. These are:

• Idealization of the structure and its behavior
• Discretization of the governing equations of motion and of equilibrium
• Reducing real numbers down to floating point numbers with finite precision

and their subsequent use
Each layer of approximation introduces errors in the computed answer. Techniques for
understanding, analyzing, and bounding these errors have developed in parallel with
the Finite Element Analysis method. On the other hand, user errors, i.e. errors that are
caused by incorrect use of the software or mistakes in the model definition, though
common, have received much less attention in academic literature. Examples of such
errors include

• Lack of connectivity: adjacent elements that are supposed to share a common
node but are connected to different nodes that are coincident, resulting in one
of the elements having insufficient restraint.

• Failure to set member end connections correctly, which can occur if a beam is
free to rotate about its axis although in the real structure there is a nominal
restraint against rotation.

• Modelling beam elements with large sections and/or very small lengths, often
the result of importing FE assemblies from CAD models.

Irrespective of whether the error arises from approximation or from erroneous input
data, it can lead to inaccuracies in results such as displacements. Such errors can
propagate to results such as forces that are subsequently computed using the
displacements.
In this article, we first present a short discussion on how inaccuracies arise in structural
analysis results while solving problems on computers and demonstrate how modelling
errors can amplify these inaccuracies. We then present two novel techniques that
engineers can use to detect hidden errors in their FE models and detect potential errors

in force and moment calculations. These tools are being used by engineers to gain
confidence in the robustness of their analysis results.

SOLVING PROBLEMS NUMERICALLY ON COMPUTERS
A structural analysis model built and analyzed on an Intel- or AMD-processor based
computer (These are also referred to as x86 processor architectures) using a modern-
day software package both stores and performs arithmetic on real numbers with finite
precision. Such a representation is called a floating-point number and is governed by
the IEEE 754 standard. In simple terms, any real number is represented as a floating-
point number in the form

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
Where the significand is the first n digits of the real number (the precision increases
with the size of n), the base (10 if we are using decimal numbers), and the exponent is
the value required to return the significand to its original value. For example:

42030 = 4.203 × 104 = 4.203𝑏𝑏4

0.0078900 = 7.89 × 10−3 = 7.89𝑏𝑏 − 3

3.14159265 = 3.142 × 100 = 3.142𝑏𝑏0

The truncation of the real number reduces its accuracy. If the real number is 𝑥𝑥 then the
floating point number FL(𝑥𝑥) given by the relationship (Higham, 2002)

𝐹𝐹𝐹𝐹(𝑥𝑥) = 𝑥𝑥(1 + 𝛿𝛿)

where 𝛿𝛿 is the round-off error whose magnitude is bounded by a constant that depends
on whether the software uses single or double precision. For our discussion in
subsequent sections, we shall assume that our computations are done in double
precision, i.e. we have about 16 decimal digits of precision. Based on the
representation above, an arithmetic operation such as the addition of two floating point
numbers will introduce an error in the result as given by

𝐹𝐹𝐹𝐹(𝑠𝑠 + 𝑏𝑏) = (𝑠𝑠 + 𝑏𝑏)(1 + 𝛿𝛿).
The arithmetic model above can be easily extended to other operations such as
multiplication or exponentiation and, therefore, it is easy to see that a general function
𝑠𝑠 introduces an error of Δ𝑦𝑦 in the result 𝑦𝑦 when it acts on 𝑥𝑥:

𝑦𝑦 + Δ𝑦𝑦 = 𝑠𝑠(𝑥𝑥 + Δ𝑥𝑥).

The best we can hope for is for Δ𝑦𝑦 to be of the same or smaller order of magnitude as
Δ𝑥𝑥. The error Δ𝑦𝑦 can be affected by both the algorithm used to compute 𝑠𝑠 and the
sensitivity of 𝑠𝑠 to changes in 𝑥𝑥.

To illustrate how errors in 𝑥𝑥 propagate to large errors Δ𝑦𝑦 in 𝑦𝑦, we present two small
examples.

The first example is of a function whose computed solution is outside its analytical
range. Consider

𝑦𝑦 =
1 − cos 𝑥𝑥

𝑥𝑥2

With some analysis, it can be seen that 𝑦𝑦 is bounded by 0 and 0.5 for all values of 𝑥𝑥,
i.e., 0 < 𝑦𝑦 < 1 2⁄ .

We wish to compute 𝑦𝑦(𝑥𝑥 = 1.2×10−5) on a hypothetical computer with 10 digits of
precision, i.e., any number with more than 10 decimal digits gets rounded to one with
10 digits or fewer. This is purely for illustration as x86-based computers support up to
16 digits of precision. On such a hypothetical computer,

cos(1.2×10−5) = 0.999 999 999 9 ⟹ 1 − cos 𝑥𝑥 = 0.000 000 000 1
and

(1.2×10−5)2 = 0.000 000 000 1
which gives us

𝑦𝑦(𝑥𝑥 = 1.2×10−5) = 1
Clearly our computed value is outside the range of the function!
The error is caused because of how we chose to compute the function. To fix it, we
must change the algorithm used to compute 𝑦𝑦. Rewriting it as

𝑦𝑦 =
1
2

 �
sin(𝑥𝑥 2⁄)
𝑥𝑥/2

�
2

will yield correct result.

The second example comes from the use of Gaussian elimination, a common method
for solving a linear system of equations on a computer. We wish to find the solution
of the following simultaneous equations on a computer with 3 digits of precision:

0.913𝑥𝑥1 + 0.659𝑥𝑥2 = 0.254
and

0.780𝑥𝑥1 + 0.563𝑥𝑥2 = 0.217

Writing the system as a 2×2 matrix

�0.913 0.659
0.780 0.563� �

𝑥𝑥1
𝑥𝑥2� = �0.254

0.217�

we try to introduce a zero in the first column of the second equation. To do this we
multiply first column by the ratio 0.780 0.913⁄ and subtract the result from the second
column to give

�0.913 0.659
0 0.001� �

𝑥𝑥1
𝑥𝑥2� = �0.254

0.001�

Doing so leads us to the solution

𝑥𝑥1 = −0.443, 𝑥𝑥2 = 1

But it is easy to verify, by means of solving the equation by hand, that the actual
solution of the equations is

𝑥𝑥1 = 1, 𝑥𝑥2 = −1
Therefore, our computed solution not only had the wrong sign, it had a relative error
larger than 100%! The reason for the erroneous answer lies in the sensitivity of our
matrix to the inversion function. The fix in this case is to simply use more precision.
Repeating the same solution with 6 digits of precision gives us the same answer as the
exact solution.

NUMERICAL ERRORS AND STRUCTURAL ANALYSIS PROBLEMS
So what is the connection between the above discussion and structural analysis
problems?
As mentioned in section 1, there are several sources of approximations leading to
errors in structural analysis results. Central to the computation of these results is the
solution of a linear system of equations given by 𝐾𝐾𝐾𝐾 = 𝑠𝑠 for a stiffness matrix 𝐾𝐾,
loading 𝑠𝑠 and displacement 𝐾𝐾. Note that our notation is to use capital letters for
matrices and small for vectors and scalars. These linear systems arise in several types
of analysis, which include
Static:

• solve 𝐾𝐾𝐾𝐾 = 𝑠𝑠 for displacements 𝐾𝐾.

Static P-Δ :

• solve 𝐾𝐾𝐾𝐾1 = 𝑠𝑠1 for an initial set of loads 𝑠𝑠1, and
• solve �𝐾𝐾 + 𝐾𝐾𝑔𝑔�𝐾𝐾2 = 𝑠𝑠1 for 𝐾𝐾2, where the geometric stiffness matrix 𝐾𝐾𝑔𝑔 is

formulated using element forces computed from 𝐾𝐾1.
Modal dynamic:

• solve 𝐾𝐾𝐾𝐾 = 𝜆𝜆𝜆𝜆𝐾𝐾 for natural frequencies √𝜆𝜆 and vibration mode shapes 𝐾𝐾,
where 𝜆𝜆 is the mass matrix of the finite element assemblage.

Buckling:

• solve 𝐾𝐾𝐾𝐾1 = 𝑠𝑠1 and 𝐾𝐾𝐾𝐾 = 𝜆𝜆𝐾𝐾𝑔𝑔𝐾𝐾 for buckling modes 𝐾𝐾 and buckling load
factors 𝜆𝜆, where 𝐾𝐾𝑔𝑔 is the same as in P-Δ analysis.

When solving a linear system of equations involving 𝐾𝐾, there is an error in the
computed displacements 𝐾𝐾. The error depends not only on errors in 𝐾𝐾 but also on the
sensitivity of the solution to small changes. The latter is referred to as the conditioning
of the problem. The conditioning of a problem determines the maximum (i.e. worst-
case) change in the solution in response to a small change in the input.

ESTIMATING THE CONDITIONING OF THE STIFFNESS MATRIX
To ensure the robustness of results, it is necessary to ensure the stiffness matrix is well
conditioned. This conditioning is measured by a numerical property called the
condition number of a matrix, which is often denoted by 𝜅𝜅. Most textbooks on finite
element analysis prescribe computing 𝜅𝜅 using its definition as the ratio of the largest
and the smallest eigenvalues of 𝐾𝐾. The challenge in doing so is that the extremal
eigenvalues are computationally expensive to compute, in fact, it is more expensive to
compute 𝜅𝜅 than to solve 𝐾𝐾𝐾𝐾 = 𝑠𝑠! However, advances in numerical analysis (Tisseur
& Higham, 2000) (Kannan, Numerical Linear Algebra Problems in Structural Analysis
(Doctoral thesis), 2014) allow 𝜅𝜅 to be estimated to good accuracy for a fraction of the
cost required to compute it. We implemented this algorithm in the structural analysis
software package Oasys GSA.

The smallest value of 𝜅𝜅 is 1. Such a matrix is said to be well-conditioned. The largest
theoretical value of 𝜅𝜅 is infinity and a matrix with this condition number is singular,
i.e., it has no unique solution.

The condition number also gives us a rule of thumb for the worst-case accuracy of 𝐾𝐾.
There can be as few as 16 − log 𝜅𝜅 digits of accuracy in the computed solution. A
matrix with 𝜅𝜅 equal to 1016 can therefore result in solution with not a single digit
accurate (it is singular) and the results from a matrix with 𝜅𝜅 > 1011 must be treated
with caution.
The presence of user errors in finite element models can lead to a large condition
number. Such errors, examples of which we provide in Section 2, can result in zones
of excessive high or low stiffness in structural models. In large and complex models,
they are not just difficult to spot, it is hard to know if they exist at all. Our approach in
GSA was to estimate the condition number of the matrix each time a linear elastic
analysis was executed and report it as part of the analysis log. The reporting gives
engineers feedback on when their model has potential issues that could affect the
accuracy of their results. In some cases, it is simple to identify the cause of the ill-
conditioning warning, for instance, a missing global restraint that can set up a rigid
body motion for the whole model. In most cases, however, it is tedious and time
consuming to find the cause. What the engineer wants is a way to quickly pinpoint
where there are potential problems, to simplify the fixing of modelling errors.

A NEW TECHNIQUE TO DETECT THE CAUSES OF ILL-CONDITIONING
Our investigation of ill-conditioning issues led to a new numerical analysis technique
for detecting their cause. Our method, which is presented in (Kannan, Hendry,
Higham, & Tisseur, 2014), and implemented in Oasys GSA, has been used
successfully by engineers to correct their models. We present a summary description
of the method in this section and refer the reader to the original paper for further detail.
Errors that cause ill-conditioning belong to one of the following two categories

• Lack of stiffness. This can arise, for instance, when parts of the model are
insufficiently restrained or nodes are incorrectly connected.

• Disproportionately large stiffness. These can typically occur when certain
elements have large second moments of area but small lengths.

Whilst both categories can generally result from any user error, they are particularly
common when models have been imported using automated processes from BIM or
CAD packages.
Our method is called Model Stability Analysis and it uses the eigenvectors of the
stiffness matrix to formulate ‘virtual energies’ for elements in the model. It can be
shown mathematically that elements with large virtual energies pinpoint parts of the
model that either lack stiffness or are disproportionately stiff.
When a model generates an ill-conditioning warning, the engineer can run a Model
Stability Analysis and graphically display elements that have large relative virtual
energies. An examination of the model (e.g. support conditions, nodal connectivity or
cross-section properties) near the said elements would reveal the anomaly that causes
ill-conditioning. Once the anomaly is fixed, the engineer re-runs the analysis to ensure
the condition number reduces and, if not, runs a Model Stability Analysis again.
We now present an example of the use of Model Stability Analysis on a model that
returned ill-conditioning warnings during its analysis. Our example is set in the context
of GSA but the underlying numerical analysis is not specific to a software package.

Figure 1 A small portion of the facade model

Figure 1 shows a portion of a larger model of a façade cladding of a structure that
consists of 32,000 elements and 21,000 nodes resting on pinned supports. The glass
façade panels are modelled using four-noded plane-stress elements. Each panel rests
on the grid of beams through springs at each of its four corners, as shown in the
zoomed-in view in Figure 2. The element connectivity is illustrated in Figure 4(a).

Figure 2 Close-up view of element connectivity. Blue quadrilaterals model

facade panels, green lines represent beams and springs are drawn as coils. Gaps
between the elements are a graphic view setting and are only for visual clarity.

An early version of the model triggered a ‘large condition number’ warning with a
condition estimate of 1012. Model Stability analysis was run and it identified 2
elements in the model with large virtual energies (Figure 3). On investigation, we
found the following error in the nodal connectivity. The corner node of the said plane
elements did not share a node with the spring; instead it was connected to a different
node that was in the geometric vicinity of the spring element (Figure 4). Thus, the
plane elements were unsupported and free to flap about – an error that could lead to
potentially incorrect results. Fixing the nodal connectivity error brought the condition
number down to 108 and the model analyzed without the ill-conditioning warning.

Figure 3 Element virtual energy visualization.

Figure 4 Nodal connectivity errors for element with large virtual energy

The above is one of the many situations where Model Stability analysis allows the
detection of modelling errors that would otherwise be hidden from the modeler – for
more examples, we refer the reader to (Kannan, Hendry, Higham, & Tisseur, 2014).

ACCURACY OF ELEMENT FORCE CALCULATION
A second quality analysis included in GSA is that calculating the loss of accuracy due
to element size related to the distance of the element from the origin and size of rigid
body motion.
In a finite element analysis, element results are based on strains which are a function
of relative displacements. Hence, even if the displacement results are accurate enough,
there can be inaccuracies in computing strains in elements. By comparing the element
displacement with the element distortion, the number of significant figure lost in the
calculation of element results can be assessed. Displaying this graphically allows the
engineer to identify parts of the model where the results are relatively less accurate.

If we consider a simple bar element (with axial effects only) the force in the bar can
be calculated provided we know the strain, from

𝑠𝑠(𝑒𝑒) = 𝐴𝐴𝐴𝐴𝐴𝐴.
And assuming constant strain in the element

𝑠𝑠(𝑒𝑒) = 𝐴𝐴𝐴𝐴
(𝐾𝐾(2) − 𝐾𝐾(1))

𝑙𝑙

where 𝑙𝑙 is the length of the bar and the strain depends on the relative displacement
𝐾𝐾(2) − 𝐾𝐾(1).
To illustrate this, consider a 1 m steel bar under stress so that corresponding strain is
1x10-3. This means that there is an elongation of 1 mm. If this is part of a large
structure, there may well be a rigid body displacement of the bar of say 100 mm
meaning that in calculating the force (stress) in this element we are losing two
significant figures.

u(1) u(2)

The rigid body displacement 𝐾𝐾𝑅𝑅 is the average displacement of the element

𝐾𝐾(𝑅𝑅) =
(𝐾𝐾(2) + 𝐾𝐾(1))

2
.

Therefore, the displacement causing straining at the nodes is

𝐾𝐾(𝐷𝐷,𝑖𝑖) = 𝐾𝐾(𝑖𝑖) − 𝐾𝐾(𝑅𝑅), 𝑠𝑠 = 1,2.
If the rigid body displacement is large compared with the distortional displacement,
there can be a loss of significance in computing 𝐾𝐾(𝐷𝐷,𝑖𝑖). In the worst case the relative
error can be as large as �𝐾𝐾(𝑅𝑅)� �𝐾𝐾(𝐷𝐷)�� and therefore we could lose up to 𝑠𝑠 significant
figures given by

𝑠𝑠 = log10
�𝐾𝐾(𝑅𝑅)�
‖𝐾𝐾(𝐷𝐷)‖.

This loss of accuracy can therefore propagate to the force and moment results for the
element. Obviously the shorter the element and greater the rigid body displacement
the greater the loss of accuracy in the force or stress calculation.

The above can be generalized for an element with more than two nodes each with six
(or fewer) degrees of freedom in a straightforward manner (Oasys GSA 8.7 Software
Manual, 2015). We shall omit the derivation to favor brevity, but note that in the case
of more general case, we have multiple values of ‘loss of accuracy’ for each element.
However as this is essentially a qualitative analysis, rather than assigning the values to
nodes it is sufficient to simply record the maximum loss of accuracy value for the
element.
This algorithm has been implemented in Oasys GSA. For the simple model shown in
Figure 5 below the diameter of the contour blobs indicates the ‘loss of accuracy’. It is
noticeable that the short (and therefore stiffer) elements have, as expected, a greater
loss of accuracy. The closer 𝑠𝑠 (the digits of lost accuracy) gets to 16, the greater the
likelihood of inaccuracy in the forces.

CONCLUSIONS
As the analysis power available to engineers continues to increase the size and
complexity of models will continue to grow. While an engineer should carry out simple
checks to verify the suitability of his model, there is a danger that the complexity
means that analysis becomes a black box – especially with automated workflows
driven from BIM and CAD. Numerical conditioning and accuracy issues are under-
discussed in standard FE material in both academic and industry. This can lead to
problems when the engineer is unable to properly assess how well his model represents
reality. To have confidence in the modelling it is important that the engineer can detect
problems and have confidence in his results.
While mathematical techniques can be used to make some of these assessments it is
important that the results of these assessments can be presented in a way that is
meaningful to the engineer. Ultimately the best engineering solution depends on the
engineer understanding the limitations of his model and knowing what confidence to

place in the analysis. It is the authors’ hope that what is presented here is a step in that
direction.

Figure 5 Loss of accuracy in element force/moment results.

BIBLIOGRAPHY
Felippa, C. A. (2001). A historical outline of matrix structural analysis: a play in three

acts. Computers and Structures, 1313-1324.
GSA Suite. (n.d.). Retrieved from Oasys Software: http://www.oasys-

software.com/gsa
Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms. Philadelphia:

Society for Industrial and Applied Mathematics.
Kannan, R. (2014). Numerical Linear Algebra Problems in Structural Analysis

(Doctoral thesis). Manchester, United Kingdom: School of Mathematics, The
University of Manchester. Retrieved from http://eprints.ma.man.ac.uk/2195/

Kannan, R., Hendry, S., Higham, N., & Tisseur, F. (2014). Detecting the causes of ill
conditioning in structural finite element models. Computers & Structures, 79-
89.

Oasys GSA 8.7 Software Manual. (2015, November). https://www.oasys-
software.com/media/Manuals/Latest_Manuals/gsa8.7_manual.pdf. Retrieved
from oasys-software.com/gsa.

Tisseur, F., & Higham, N. (2000). A block algorithm for matrix 1-norm estimation,
with an application to 1-norm pseudospectra. SIAM Journal of Matrix Analysis
and Applications, 1185-1201.

	Abstract
	Introduction
	Solving problems numerically on computers
	Numerical errors and structural analysis problems
	Estimating the conditioning of the stiffness matrix
	A new technique to detect the causes of ill-conditioning
	Accuracy of element force calculation
	Conclusions
	Bibliography

