

Piling Analysis Tutorial Manual

OASYS

Contents

Introductio	on	1
Section 1		2
Step-by-	Step Tutorial 1 Oasys Pile – Pile Capacity and Settlement Analysis	2
1.1 C	omponents of the User Interface	3
1.2 P	ile Capacity Analysis	4
1.2.1	Creating the input	4
1.2.2	Analysis and Outputs	10
1.2.2	2.1 Tabular Outputs	10
1.2.2	2.2 Exporting Tabular Results	12
1.2.2	2.3 Graphical Outputs	12
1.2.2	2.4 Printing Graphical Outputs	15
1.3 P	ile Settlement Analysis	16
1.3.1	Creating the input	16
1.3.2	Analysis and Outputs	18
1.3.3	Tabular Outputs	18
1.3.4	Graphical Outputs	19
Section 2		21
Step by S	Step Tutorial 2 Oasys Alp – Lateral Pile Capacity	21
2.1 C	omponents of the User Interface	22
2.2 C	reating the input	23
2.3 A	nalysis and Outputs	28
2.3.1	Tabular Outputs	28
2.3.2	Graphical Outputs	29
Section 3		31
Step by S	Step Tutorial 3 Oasys AdSec –Section Analysis	31
3.1 Ir	nput	32
3.1.1	Creating the Section	32
3.1.2	Applying the Load Cases	37
3.2 A	nalysis and Outputs	39
3.2.1	Load Moment Curve	39
3.2.2	SLS Loads	40
3.2.3	ULS Loads	41

Section 4	
Step by step Tutorial 4 Oasys ADC –Section Analysis	
Objectives	
4.1 Input	43
4.2 Analysis and Results	50
4.2.1 Tabular Outputs	54
4.2.2 Plotting Charts	55
Appendix	
EC7 – UK SAMPLE CALCULATION IN PILE	

Introduction

Oasys Pile, Alp, AdSec and ADC are programs that analyse single piles. The input wizards enable the quick generation of complex staged construction sequences. The outputs are designed to help the user examine relevant results, as well as visually communicate these results to clients. The calculation itself is based on verified and robust numerical methods and the simplicity of calculation enables new users to set up and run problems within hours of completion of this tutorial.

The various tutorial examples deal with a range of practical pile analysis but this Tutorial Manual is intended to familiarise the user with the programs. The examples should therefore not be used as a basis for practical projects.

Users are expected to have an understanding of soil mechanics and geotechnical theory, and should be able to work in a Windows environment.

It is important to realise that Pile, Alp, AdSec and ADC advanced programs and the user must be fully aware of the various methods of analysis, requirements and limitations discussed in the User Manuals before use. The Tutorial Manual will not provide theoretical background information on the analysis method, nor does it explain the details of various methods of analysis available in the programs. These details can be found in the User Manuals. This also contains detailed information on the available program features.

Short courses are also regularly organised and should you be interested in more hands-on experience you can contact <u>oasys@arup.com</u> for dates and program content.

Section 1

Step-by-Step Tutorial 1 Oasys Pile – Pile Capacity and Settlement Analysis

Objectives

By the end of the session the user should be able to:

- Navigate the Pile Interface
- Input Capacity and Settlement Data
- Run an analysis
- Navigate the Graphical Output
- Create simple graphs
- Export tabular outputs for further analysis

1.1 Components of the User Interface

The principal components of Pile's user interface are the Gateway, Table Views, Graphical Output, Tabular Output, toolbars, menus and input dialogs. These are illustrated below.

Standard toolbar		Pile toolbar) (Graphics toolb	ar							
Pile 19.3 - WorkingLoad.pls												
File Edit View Data Analysis Tools Gr	raphics Wi	ndow Hel	x 🗄 🖽 🐵	bmp 🖵 🖹 🕅 🤇	Ω Δa aΔ =							
×	III Work	dinal and play Da	ained Mater	iala								
linput		angroau.pts : Di	ameu Mater				F					
- Units		A		Material factor for	0		r	Skin frict	ion data	<u> </u>		<u> </u>
- Analysis Options		Material description	Bulk unit weight	soil strength	Skin friction	Beta	Delta	Coeff. of earth		qs	Limitin	g value
- Capacity Data		· · ·	[kN/m3]	(tan Deita)	computation		IDeal	pressure K	Top fkPal	Base	Specified	Value [kPa]
	Defaults	Drained #	20.00	1.00	Beta		Inedl				No	
 Material Properties 	1	Alluvium	18.00		Earth pressure		13.00	2.40			No	
- Undrained Materials (4)	2	RTD	20.00		Earth pressure		23.00	2.40	Table	view	No	
Drained Materials (6)	<u>3</u>	LMG_Opper	20.00		Earth pressure		22.00	2.40	Table		No	
- Soil Profiles (2)	5	LMG_Upnor Reduc	20.00		Earth pressure		22.00	1.70			No	
- Groundwater (1)	6	THS	20.00		Earth pressure		22.00	1.70			No	
- Soil Profile - Groundwater Map (2)	7											
- No-Phi Curves (1)	I P \A	📕 🕻 General 🖌 Fric	tion 🖌 Bearin	g/		<)		>
Nq-Phi Curve 3	Enter mat	erial name.										
 Applied Loads & Displacements (1) 	Mark	ringl and play Ta	hular Outou									
Displacement Radii	WOIN	angroau.pis . Ta	υσιαι συτμι	Л								
Lonvergence Lontrol Data	Notor											
- Tabular Output	Notes	•										
- Graphical Output	LaP di	splacements app	plied.									
	4.7mm	subtracted so	that min p:	ile movement =0m	n.							
								(Tabulata	فيتعافيتهم أمر		
Gateway	Analy	sis Options							Tapulate	α ουιρυι	,	
	,											
	Design	method			Working 1	oad						
	Are co	mpression calculation and the second	ulations en ion for com	nabled?	Yes 2 Vec							
	Global	factor on ult	imate bear:	ing capacity Fg	5.0000							
	Is par	tial FoS crite	rion for co	ompression activ	e? Yes							
	Partia	l factor on ul	timate skin	n friction Fsl	4.0000							
	Partia	I factor on ul	cimate end	bearing Pb	3.0000							
	👍 Work	cingLoad.pls:Gr	aphical Out	put								
	Soil profi	le1 🔽 — 🕂	Cross-section 1	→ + 13.00	m 🔽 — 🕂 🗔	lo settlemi	ent resul	ts> 🔽 — -	F.			
	<u></u>	¥ C fm n ² f	a la u C			P. P.		11 II II II -				
	-V - N		···· •			SIES	s (KPB)	HE IE O IIV."				
		500.0		250.0			D		-250.0			-500.0
		n	Veri, Eff. Sitess				/		Un Un	mai Sidn Friction Runged Canad Iv		_
		£ 2000 003 a +000 K*3	_ Upper 1.40-0e1ks = 19.08 deg							I End Beating	••	
		enno								and the second g		
		5 10.00 UNO	Upnor			<u>S</u> E			Cranhi	and output	-	_
		5 12.00 His	Roper Reduced			파막		A	Graphi	caroutpu		
		f 1600					1		1			
		- 18.00				立:	P			~		
		- 3000. 2000	-	-4000. 1000.			8		4000. -1000.			300.
		Scale x 1:6	ana y tirter			Capa	ct (y ()c#)					
	Ready											NUM

Hint: When using the Gateway, click '+' to expand an item. Double click on the item to open the corresponding window

1.2 Pile Capacity Analysis

1.2.1 Creating the input

- Once opened, create a new file by clicking the '*New File'* icon on the top left of the program or clicking *Ctrl* + *N*
- Fill the *Titles and Units* dialog box:

Exercise 1 - Pile Capacity.pls : Titles	
Job Number: Initials: Last Edit Date: 16-Jan-2013	Model Image
Job Title:	
Tutorial 1	
Subtitle:	
Pile Capacity Calculation	
Calc. Heading:	
Notes:	Copy Remove
<u>^</u>	
~	Written by: Pile version 19.3.0.6

Hint: Should the user need to change the Units, they should do so at this point by double clicking on *Units* in the Gateway

			×
Quantity	Unit	Conversion factor	ОК
Displacement	mm 🔻	1000 per m	Cancel
Force	kN 🔻	0.001 per N	
Length/level	m 🔻	1 per m	
Mass	kg 🔻	1 perkg	
Stress	kPa 🔻	0.001 per Pa	
Reset Units	kN-m	kip-ft kip-in	

- Double click on *Analysis Options* in the Gateway.
- Select *Capacity* and the following options:

Analysis (Options	×
Analys	sis type apacity	Settlement
Effect © Ca	ive stresses alculated	O User defined
Datum	n information evation	O Depth below ground level
		OK Cancel

- Double click on *Capacity Data* in the Gateway
- Select the *Working Load Calculation Method* and click *OK*

• Choose the following options:

Working Load		×
Compression		
Calculate compressive capacity		
Global FoS		
Use global FoS criterion		_
Global factor on ultimate capacity (Fg)	2.5	
Partial FoS		
Use partial FoS criterion		_
Partial factor on ultimate skin friction (Fs1)	1.5	
Partial factor on ultimate end bearing (Fb)	3	
Shaft FoS		
Use shaft FoS criterion		
Factor applied to ultimate skin friction (Fs2)	1.1	
Limiting pile stress		
Use limiting pile stress criterion		
Limiting pile material stress at working load	7000	kPa
Tension		
Calculate tensile capacity		
Shaft FoS		
Use shaft FoS criterion		_
Factor applied to ultimate skin friction (Fs2)	2.5	
Limiting pile stress		
Use limiting pile stress criterion		
Limiting pile material stress at working load	7000	kPa
< Back Finish	Cancel	Help

• Double click on *Pile Properties* in the Gateway

Select a Solid Pile without under-ream, E = 20 000 000 kPa

Select the inputs to calculate the Pile Capacity between 5m and 35m below ground level,

calculating the values every metre

Input Pile Diameters of 600mm and 700mm.

Hint: Move onto the next line in the input table to store the previous values inputted

- Double click on *Material Properties* in the Gateway
- Define materials which make up the soil profile around the pile.

Material #1						
General Properties						
Description	Layer1					
Туре	Effective Stress					
Bulk unit weight (kN/m³)	20					
Contributes to negative skin friction?	No					
Effective Stress Properties						
Skin friction computed by	Earth pressure method					
Angle of friction, delta (deg)	25					
Horizontal effective stress profile is :	Calculated					
Coefficient of earth pressure, K	0.8					
Limiting value of skin friction per unit area (kN/m²)	Unlimited					
Nq - specified or computed?	Specified					

• Specify Nq for Material #1 as 50.

Material #2						
General Properties						
Description	Layer 2					
Туре	Total Stress					
Bulk unit weight (kN/m³)	20					
Contributes to negative skin friction?	No					
Total Stress Properties						
Cu at Top of material (kN/m²)	60					
Cu at Bottom of material (kN/m²)	260					
Method of computation of α	User-specified					
α value	0.45					
Limiting value of skin friction per unit area (kN/m²)	200					
Method of computation of N _c	User-specified					
N _c value	9					
Limiting value of end bearing stress (kN/m ²)	Unlimited					

• See the help file for instructions on how to set the limiting value of end bearing to 'unlimited'.

Material #3						
General Properties						
Description	Layer 3					
Туре	Total Stress					
Bulk unit weight (kN/m³)	20					
Contributes to negative skin friction?	No					
Total Stress Properties						
Cu at Top of material (kN/m²)	260					
Cu at Bottom of material (kN/m²)	260					
Method of computation of α	User-specified					
α value	0.45					
Limiting value of skin friction per unit area (kN/m ²)	200					
Method of computation of N _c	User-specified					
N _c value	9					
Limiting value of end bearing stress (kN/m ²)	Unlimited					

- Double click on *Soil Profiles* in the Gateway
- Define layers constituting the soil profile around the pile:
 - o top of Layer 1 at 8mOD
 - o top of Layer 2 at 0mOD
 - o top of Layer 3 at -25mOD

Layer 1	- 25 00 dea				
K = 0.80 Deita	= 25.00 deg	 		 	
			-		
l aver 2*		 		 	
Edjor 2					
Layer 3*		 		 	

Note: The tab at the bottom of the table shown below allows the user to enter more than one soil profile, should they wish to compare the impact of different soil properties or stratigraphy boundaries

Enter level of the top of the soil layer

• Double click on *Groundwater* in the Gateway

- To define a hydrostatic pore-water distribution, just define the level of the phreatic surface.
- For this example, input the two phreatic surfaces for the soil profile to compare the impact of dewatering around the pile:
 - Groundwater Profile 1: 6 mOD
 - Groundwater Profile 2 : 0 mOD

Hint: Use the tab at the bottom of the table to input two different groundwater profiles

- Double click on *Soil Profile Groundwater Map* in the Gateway.
- Assign the inputted soil profile to Groundwater Profile 1.

Note: This feature allows the user to analyse the impact of different groundwater levels on the soil stratigraphy in one file. Once the analysis has been run for one profile, the file can be reanalysed to compare results

1.2.2 Analysis and Outputs

- Prior to analysis, check all inputs and save the file
- Click on the Σ analyse button to carry out the analysis
- The solution progress window will automatically appear and the analysis will run.

1.2.2.1 Tabular Outputs

The program will give the user the option to view tabular inputs and outputs.

• Select the outputs only by ticking Capacity Results:

Print Selection	X				
Capacity					
Notes	Analysis options				
Pile properties	Effective stress profiles				
Undrained materials	Drained materials				
Soil profiles	Groundwater				
Nq-Phi curves	Applied loads & displacements				
Capacity results					
Settlement					
Calculated limiting shaft skin frid	ction 0 -				
Displacement radii	Convergence control data				
Settlement results summary	Stresses & displacement along pile				
Soil displacements					
Select All Clear All	Invert OK Cancel				

• The tabular outputs enable the user to look at stress profiles and specific values for the pile as shown below:

Tutorial 1 Exercise 1.pls : Tabular Output										
	Cross-s	ection 1 res	sults:						*	
	Besulta Commencian									
	Results	- Compres	sion							
Soil Profile 1: Soil Profile 1										
	Level	Dile	IIItimate	Cumulative	Negative	IIItimate	Allowable	Limiting		
	Dever	length	hase	external	ekin	canacity	canacity	criterion		
		10119011	capacity	Friction	friction	oupdoidy	oupdoidy	#		
			(Q _b)	(Q _a)	(Qn = F)			-		
	[]	[m]	(1×10)	111	(FNI)	(NI	[FN]			
	3 0000	5 0000	989 60	144 15	0.0	1133 8	131 05	3	_	
	2,0000	6.0000	1131.0	196.89	0.0	1327.9	178.99	3		
	1.0000	7.0000	1272.3	256.66	0.0	1529.0	233.33	3		
	0.0	8.0000	1413.7	323.46	0.0	1737.2	294.06	3		
	0.0	8.0000	152.68	323.46	0.0	476.14	190.46	1	=	
	-1.0000	9.0000	173.04	377.75	0.0	550.79	220.31	1		
	-2.0000	10.000	193.40	438.82	0.0	632.22	252.89	1		
	-3.0000	11.000	213.75	506.68	0.0	720.43	288.17	1		
	-4.0000	12.000	234.11	581.32	0.0	815.43	326.17	1		
	-5.0000	13.000	254.47	662.75	0.0	917.22	366.89	1		
	-6.0000	14.000	274.83	750.97	0.0	1025.8	410.32	1		
	-7.0000	15.000	295.18	845.97	0.0	1141.2	456.46	1		
	-8.0000	16.000	315.54	947.76	0.0	1263.3	505.32	1		
	-9.0000	17.000	335.90	1056.3	0.0	1392.2	556.89	1		
	-10.000	18.000	356.26	1171.7	0.0	1527.9	611.18	1		
	-11.000	19.000	376.61	1293.8	0.0	1670.5	668.18	1		
	-12.000	20.000	396.97	1422.8	0.0	1819.7	727.90	1		
	-13.000	21.000	417.33	1558.5	0.0	1975.8	790.33	1		
	-14.000	22.000	437.69	1701.0	0.0	2138.7	855.47	1		
	-15.000	23.000	458.04	1850.3	0.0	2308.3	923.33	1		
	-16.000	24.000	478.40	2006.3	0.0	2484.8	993.90	1		
	-17.000	25.000	498.76	2169.2	0.0	2668.0	1067.2	1		
	-18.000	26.000	519.12	2338.9	0.0	2858.0	1143.2	1		
	-19.000	27.000	539.47	2515.3	0.0	3054.8	1221.9	1	*	
									• H	

• The user can determine which limiting criterion applies to different lengths of pile by using the key provided in the Tabular Output:

📃 Tutorial 1 Exe	ercise 1.pls : T	abular Output					• ×
-21.000	29.000	580.19	2888.5	0.0	3468.7	1387.5	1 🔺
-22.000	30.000	600.55	3085.3	0.0	3685.8	1474.3	1
-23.000	31.000	620.90	3288.9	0.0	3909.8	1563.9	1
-24.000	32.000	641.26	3499.2	0.0	4140.5	1656.2	1
-25.000	33.000	661.62	3716.4	0.0	4378.0	1751.2	1
-25.000	33.000	661.62	3716.4	0.0	4378.0	1751.2	1
-26.000	34.000	661.62	3936.9	0.0	4598.5	1839.4	1
-27.000	35.000	661.62	4157.5	0.0	4819.1	1927.6	1
<pre># Limiting criteria : 1: Global factor of safety 2: Shaft and base factors of safety 3: Shaft factor of safety 4: Pile material limiting stress [Compression]</pre>							
•							▶

1.2.2.2 Exporting Tabular Results

• Select File > Export Results

Pile 19.3 - Tutorial 1 Exercise 1.pls						
File	Edit View Data Analysis	Output T				
	New	Ctrl+N				
	Open	Ctrl+0				
	Close					
	Save	Ctrl+S				
	Save As					
	Export Results	Ē				
	Print Selection					
	Print	Ctrl+P				
	Print Preview					
	Print Setup	-				
	History	÷				
	Send To	1				
	1 Tutorial 1 Exercise 1.pls	8 4				
	2 Capacity_calc.pls					
	3 generic design DCIS.pls	T				
	4 Capacity_calc.pls					
	Exit					
	Graphical Output					

• Save the file as **Tutorial 1 Exercise 1.csv** to export the results to Excel

1.2.2.3 Graphical Outputs

- Double click on *Graphical Output* in the Output section of the Gateway
- Using the excerpt from the User Manual shown below, plot the ultimate and design capacities for the pile and determine the length of pile required to support a load of 1000kN.

Graphical toolbar buttons

- Axis provides a reference grid behind the drawing.
- Set Scale this allows the user to toggle between the default 'best fit' scale, the closest available engineering scale. e.g. 1:200, 1:250, 1:500, 1:1000, 1:1250, 1:2500, or exact scaling. The same options are available via the View menu "Set exact scale" command.
- Save Metafile this save icon allows the image to be saved in the format of a Windows Metafile. This retains the viewed scale. The metafile can be imported into other programs such as word processors, spreadsheets and drawing packages.
- Zoom Facility select an area to 'zoom in' to by using the mouse to click on a point on the drawing and then dragging the box outwards to select the area to be viewed. The program will automatically scale the new view. The original area can be restored by clicking on the 'restore zoom' icon as shown here.
- Aa aA Smaller/Larger font allows adjustment of the font sizes on the graphical output view.
- Edit colours allows line and fill colours to be edited.
- Axis provides a reference grid behind the drawing.
- Save BMP allows the file to be saved in the format of bitmap.
- Copy allows to copy the graphical view to be copied to clip board.

Capacity

- vertical effective stress toggles the vertical effective stress plot.
- or Horizontal effective stress toggles the horizontal effective stress plot.
- Pore water pressure toggles the pore water pressure plot.
- C, Undrained cohesion toggles the undrained cohesion plot.
- fune Unit shaft friction toggles the unit shaft friction plot.
- External skin friction compression toggles the external skin friction compression plot.
- Total skin friction compression toggles the total skin friction compression plot.
- Total skin friction tension toggles the total skin friction tension plot.
- End bearing capacity toggles the end bearing capacity plot.
- Internal skin friction toggles the internal skin friction plot.
- Wall end bearing toggles the wall end bearing plot.
- H Plugged end bearing toggles the plugged end bearing plot.

Capacity results can be viewed for a selected soil profile 1 - + and cross-section 1 - +

• The graphical output is shown below:

- Compare the results for a 600mm and 700mm diameter pile
- Re-run the analysis to view the impact of the other groundwater profile (phreatic surface at 0mOD) to the pile capacity

1.2.2.4 Printing Graphical Outputs

• Go to *Tools* > *Preferences* in the *menu* bar

Preferences			×
Numeric Format			
Engineering	5	significant figures	Company Info
Decimal	5	decimal places	Page Setup
Scientific	5	significant figures	
Smallest value distingui	shed fror	m zero 1e-006	
Restore Defaults			
Save file every 10	*	minutes	
Show welcome scree	'n		
		ОК	Cancel

- Select appropriate options for the print output, including company information and logos.
- Select *File > Print Preview* in the menu bar to check the output for printing

Note: The user can also print the tabular output in this format

1.3 Pile Settlement Analysis

1.3.1 Creating the input

- Once opened, create a new file by clicking the '*New File'* icon on the top left of the program or clicking *Ctrl* + *N*
- Fill the *Titles and Units* dialog box, outlining the Program is carrying out a Pile Settlement Analysis.
- Double click on *Settlement Data* in the Gateway.
- Input the following:

Settlement Data	_	×			
Young's modulus of soil above toe level of pile	20000	kPa			
Young's modulus of soil below toe level of pile	40000	kPa			
Rigid boundary level	-200	mOD			
Poisson's ratio of soil	0.25				
Number of pile elements	10				
Number of increments	1000				
Increment type					
Loads only Displacements	only	Ø Both			
Print increment results at rate of 1 for every	100	increments			
☑ Include effect of soil above pile base in base displacement calculation					
Note: Settlements are calculated for solid circular without under-ream sections only					
0	K Can	icel			

Note: the excerpt from the manual outlines the definition for the different inputs and the user must read these before moving on.

Settlement data is enabled when settlement analysis is selected.

Young's Modulus of soil above toe level of pile and Young's Modulus of soil below toe level of pile are average value representing the soil stiffness above and below the pile toe respectively.

Poisson's ratio is the average value from the different soil layers around the pile.

Include effect of soil above pile base in base displacement calculation.

For calculation of stiffness at the base node user can include/exclude effect of soil above pile base.

Depth of rigid boundary – the pile is divided into the number of elements and Pile Stiffness is calculated for each element.

Number of Increments - the load is applied in a number of equal increments, and

Increment type – i.e. whether load alone is incremented, or applied displacement alone is incremented, or both of them are incremented.

Increasing the increments helps to reduce any incompatibilities between relative displacements at the pile-soil interface, and the mobilized skin friction.

The user may also specify the rate at which the results from various increments need to be printed, i.e. one in every 10 increments etc. Irrespective of the frequency specified, the program always prints the last increment.

- Enter the same data for the following as the previous example:
 - Pile Properties
 - Material Properties
 - o Soil Profile
 - o Groundwater Data

Note: You can copy and paste between tables in different pile analysis files.

• Double click on *Applied loads and displacements* in the Gateway Menu Input a 1500kN load

Question: At what loads will the pile stresses be presented in the output?

- Double click on *Displacement* Radii in the Gateway Menu
- Input displacement radii at:
 - o 0.3m
 - o 1m
 - o 2m

Question: Why has a radii of 0.3m been chosen?

1.3.2 Analysis and Outputs

- Prior to analysis, check all inputs and save the file
- Click on the analyse button ^Σ to carry out the analysis
- The solution progress window will automatically appear and the analysis will run.

1.3.3 Tabular Outputs

The program will give the user the option to view tabular inputs and outputs.

• Select the Settlement outputs only

1.3.4 Graphical Outputs

A number of different options are available. Use the definitions below to produce two graphs outlined.

Settlement

- Limiting Shaft Skin Friction toggles the limiting shaft skin friction plot.
- Axis provides a reference grid behind the drawing.
- Shaft Skin Friction toggles the shaft skin friction plot.
- Bile Stress toggles the pile stress plot.
- Pile/Soil Displacement toggles the displacements for pile or soil.

Settlement results can be viewed for a selected s	soil profile	- + and cross-
section Cross-section 1 - + and selected	ed pile length	💌 - + and
selected load/applied displacement increments exist).	Load Inc 1 💌 — 🕂	(if load increments

- 1 Pile displacement and Soil displacement at 0.3m for a 20m long pile with 500kN load acting
- 2 Limiting shaft skin friction, shaft skin friction and pile stress for a 25m long pile with 700kN load acting

The expected outputs are shown below:

Pile Stress [kPa]

Tutorial 1 Exercise 2.pls : Increment - 700 : Total Increment = 700.00 [kN]

Section 2

Step by Step Tutorial 2 Oasys Alp – Lateral Pile Capacity

Objectives

By the end of the session the user should be able to:

- Navigate the Alp Interface
- Use the Alp Wizard and Gateway
- Run an analysis
- Navigate the Graphical Output
- Create simple graphs
- Export tabular outputs for further analysis

2.1 Components of the User Interface

The principal components of Alp's user interface are the Gateway, Table Views, Graphical Output, Tabular Output, toolbars, menus and input dialogs. These are illustrated below.

🙀 Alp 19.1 - ALPman.alw	Standard Toolbar	Alp Toolbar					Graphics T	oolbar				×
File Edit View Data Analysis	Graphics Tuols Window Help						*					
📄 🖻 🔙 🖌	L 🛯 🕹 🖉 🎯 🍐 🖂	📔 🛷 🔆 📃 Σ 🕻	Σ	± •∳•	🖬 🖻 🎙	(A• •A =	📕 🗄 El İh	θ δ P _{at}	, → 🔹 🗷	i i i		
■ Input	🛷 ALPman. alw : Graphical Out	put		ALPr								×
- Titles - Units - Generial Data - Convergence Control - Node Levels (15) - Sol Data [2] - Pic Properties (15) - Broundwater (0)	Graphical O	utput		Outp Iterat 20 40	ut for lo tion Nam Inc Disy Inn 23.1	ad increm at 10 node ex 1 [55 1 0. 96 1 0.	nent 1 hisp Pressu ror error nm] (kW/m ² 0564 0.76 0010 0.01	re [Tabular O	utput		
App. Loads and Disp. (1)				Node	Level	Det1	Rotation	5011 Fr	essure Ben	nding	Shear	
Restraints (1)				1	[n] 10.000	(mm) -23.964 -	[rad] 128.428-6	0 (K.	n/ne*) () 0.0	2Nm) 0.0	0.0	
Succharges(i)	12.00	~		1	10.000			-	115.5B	0.0		
Tabular	1000	╘┼╓╈┓╬╞╌┼╶┽╶╌┥╎╌╌┥┝╌╴	-	2	9.0000	-22.391 -	0.0030179 0.0059074 P	1 -	0.0 -: 38.250 -:	115.58	D.D 22 955	
- Graphical		/ 900000. kN m/lad		3	8.0000	27.520			115.5B -:	177.04	22.755	
	15.00kN/m		[1]	4	7.0000	-11.210 -	0.0060709 P	1 -	73.030 3	38.509	-110.27	
	6.000			6	5.0000	-1.2754 -	0.0026454	1 -	68.071 . 17.005 0	104.96 39.728	25.435	
Catanan	4.000		[2]	7	4.0000	D.39771 -	849.283-6	z	4.4054	54.089	32.775	
Gateway	2.000	· <mark></mark>		8	3.0000	D.80659 -	68.2633-6	2	8.9345 2	24.177	24.1D4	
				10	1.0000	D. 43483	230.231-6 262.513-6	z	1.6224 - 3 4.8155 - 3	5.8801 Z.4080	5.1573	
	Water Table	H		11	0.0	D. 20455	191.228-6	2	2.2658 -4	4.4344	0.55369	
	-2.000 Pressure			12 .	-1.0000	0.056221	108.448-6	2 0	.62275 -3	3.5153	-1.3239	
	-120.0 -80.00 -40.00	.0 40.00 80.00	120.0	13 .	-2.0000	0.021021	51.7351-6	2 -0	. 23285	0.000	-1.5775	¥
	Scale x 1:318 y 1:318 Pi	essure [kW/m²]	E	≣ ALPn	nan.alw:	Elastic · plas	tic soils		Table V	/iew		X
	Qutout fo	r load increment 1			A	B	C	D	E	F	G	7
				No.	Top node	E [kPa]	Unit wt. [kN/m³]	Passive Re Coeffs.	ಃ. Phi [deg]	Kq	Кс	
				Defaults				User Spec				
			1	1	3	200	00.00 19.00	User Spec		1.3	0 1.6	
			4	2	- · ·	180	00.00 20.00	User Spec		1.2	.0 1.5	
			2	¢		1	1		_			–
				be too re	de within H	nis stratum					<u> </u>	
For Help, press F1			>	no cop ne	as within t	is su atum					NUM SCRL	

2.2 Creating the input

- Once opened, create a new file by clicking the '*New File*' icon on the top left of the program or clicking *Ctrl* + *N*
- Fill the **Titles and Units** dialog box:

w Model Wizard : Titl	es and Units			×
Job Number	Initials ZF	Edit Date 23-Jan-2013		
Job Title				_
Subtitle				
Tutorial 2				
Calc. Heading				
Notes				
				^
	Unit	S		
		< Back	Next >	Cancel

Hint: Should the user need to change the Units, they should do so at this point or by double clicking on *Units* in the Gateway.

Quantity	Unit	Conversion factor	OK	
Displacement	mm 🔻	1000 per m	Cance	
Force	kN 🔻	0.001 per N		
Length/level	m 🔻	1 per m		
Mass	kg 🔻	1 per kg		
Stress	kPa ▼	0.001 per Pa		
Reset Units				
SI kN-m kip-ft kip-in				

• Select the default options for the **General Data** box.

lew Model Wizard : General Data					
Soil Model Elastic-plastic Specified P-Y curves Generated P-Y curves					
Factor on soil E value: 0.8 Loadcase Image: Number of increments: 1 Cyclic					
Increment					
By level By node Use partial factors for soil parameters and loads					
< Back Next > Cancel					

- (Note: The user will have the opportunity change the Soil Model if required on leaving the wizard via the Gateway menu)
- In the **Pile and Soil Data** box, input the parameters for the following, keeping the rest of the options for Soil Properties and Node Generation Control Parameters as default:

0	Pile top	0mOD
0	Pile bottom	-13mOD
0	Pile diameter	0.6m
0	Pile El	70 000 kNm2
0	Force	50kN at -1mOD
0	Moment	-150kN at -1mOD

0mOD

o Groundwater -2mOD

• Soil top

- Double click on *General Data* in the Gateway.
- Select the Generated P-Y curve option

T Alp1 : General Data	
Soil Model Elastic-plastic Specified P-Y curves Generated P-Y curves	Node Generation Control Parameters Ratio of maximum node spacing to minimum node spacing: Maximum number of nodes: 50 Maximum number of nodes:
Factor on soil E value: 0.8 Loadcase Number of increments: 1 Cyclic Increment Loadcase O Cyclic Displacements only O Both	Use partial factors for soil parameters and loads Section Wizard Options Concrete design code: EN 1992-1-1:2004 Eurocode 2
Input	Bending axis: O y O z

- Double click on Soil Data in the Gateway menu
- Enter the properties outlined below for the following stratigraphy:

III Alp Tu	utorial.alw:	Generated P-Y cur	ves						
	Α	В	C	D	E	F	G	Н	I
No.	Top Level	Туре	Unit wt.	E50	Cu (top)	dCu/dz	KO	K1	Phi
	[m]		[kN/m³]		[kPa]	[kPa/m]		[kPa/m]	[deg]
Defaults		Soft Clay							
1	0.00	Soft Clay	17.00	0.0100	80.00	1.50			
2	-3.00	Stiff Clay	19.00	0.0050	100.00	1.50			
3	-8.00	Sand (API 21)	18.00						35.00
4									

- Soft Clay 0mOD
- o Stiff Clay -3mOD
- Sand (API 18) -8mOD

Use the User Manual to determine the E50 values-which Section have they been derived from and what do the curves look like?

- Double click on *Restraints* in the Gateway menu
- Input a rotational restraint at 0mOD with a stiffness of 100 kN m/radian
- Double click on *Sections* in the Gateway menu
- Select *Generated* in the *Input Type* column

	I Alp Tutorial.alw : Section Properties					
		A	В	C	D	
		Section Name	Input Type	Effective Width	EI	
				[m]	[kNm²]	
	Defaults		Explicit			
	1	Section 1	Explicit 📃	0.600	700000.0	
	2		Explicit			
			Generated			
						=
						Ŧ
	•		III		4	
Î	- Explicity e	entry or calculated width and FI				
	ang neny s					-11

• The Wizard will appear. Name the section *Pile with Reinforcement*.

Section Cor	nponent Definition	
Name	Pile with Reinforcement	m Pile
Member type	Pile Continuous Width no	none
Material type	Concrete Material C30/37	▼
Profile	None	
Environmenta	al attributes Component attrib	ibutes
Oerive from	m material O Specify directly Steel Design	gn
Enviro	nmental Parameters Reinforcemen	ient
	Holes	
Properties	Miscellaneous	
Modifiers	Reference Point Switch to Comp	mpouna
ОК	Cancel	

- Click on the *Profile* button in the Wizard and choose a Circular section with 600mm diameter.
- Click on the *Reinforcement* button.

- The Section Concrete/Reinforcement Definition Box will appear. Click on the *Add* button.
- In the General Reinforcement box, select the following options for the reinforcement bars:

General Reinforcement De	finition	-		×
Bar details Bar 12mm ▼ m	Area 113 Bundle (3 bars) Pr Finish 100	3.097E-1 m ² Bundle (4 re-stress %	bars) None	
Bar positions Definition type Circle O Number of bars Maximum centre/centre bars	▼ 8 ar spacing 0	Extents (-0,	-0) (0,0)	-
Centre Point on cirde	y 2 0 0.2	z 0 0	m m	
OK Cancel				

• Now click on **OK** and exit the Section Wizard.

2.3 Analysis and Outputs

- Prior to analysis, check all inputs and save the file
- Click on the analyse button Σ to carry out the analysis
- The solution progress window will automatically appear and the analysis will run.

2.3.1 Tabular Outputs

The program will give the user the option to view tabular inputs and outputs.

• View the tabular output.

Question: What is load increment?

• Export the tabular output

2.3.2 Graphical Outputs

Double click on Graphical Output in the Gateway •

Use the following icons to determine the maximum bending moment and effective length of • the pile:

bending moment

shear

• Zoom into a section of the pile between -8mOD and -10mOD and unzoom

Hint: To zoom, right left click and draw a box. To unzoom, use the unzoom icon

• Check your results with the tabular results

Question: Go back to *General Data* and increase the number of increments. How does it change your calculation?

Section 3

Step by Step Tutorial 3 Oasys AdSec –Section Analysis

Objectives

By the end of the session the user should be able to:

- Navigate the AdSec Interface
- Use the Alp Wizard and Gateway
- Run an analysis
- Navigate the Graphical Output
- Create simple graphs and plot load cases
- Understand the difference between Serviceability and Ultimate Limit State Calculations

3.1 Input

3.1.1 Creating the Section

- Once opened, the program start up screen will give a number of options.
- Choose to *Create a New Section*.

Welcome to Ad	Sec		×
	Oasys AdSec 8.2 SP1 build 58		About AdSec
	Create a new section	20	
	Work on your own	110	
	Open existing file		
	Select recent file	AdSec.ads Webinar.ads Pile Sections.ads	
	🔽 Show this dialog or	n StartUp OK Cancel	Help

- Complete the *Titles and Units* section of the Wizard.
- In the Design Option section, choose *Eurocode 2*

neral Section Wiza	rd : Design option	
Design code	EN 1992-1-1:2004 Eurocode 2	
Country	Generic	
Bending axes	Bi-axial Uni-axial Slab/wall	
Uni-axial bending c geometry or loading	onstrains the neutral axis to remain horizontal despite asymmetric . Moments generated about the vertical axis are ignored.	
Use this option for a standard rectangula	constrained sections (eg angles restrained by walls and slabs) and for ar beams to EC2 to allow crack widths to be calculated.	pr
For all other cases a rotate from horizont applied bending ab	a bi-axial bending analysis should be used, allowing the neutral axis al as a result of any asymmetry of reinforcement or section, even for out the horizontal axis.	to
Current units	Force: kN Units Length: m Section:mm Stress: kPa Mass: t	
Surface tolerance	2 mm	
The surface toleran tolerance determine facets the more acc	ce is used in sections with shapes defined by arcs. The surface is the number of facets to represent the arc. The larger the number curate the results, but the analysis will run more slowly.	of
	< Back Next > Cancel	Help

Note: The user can click on the Units button if you wish to change from SI Units
• In the *Definition* section of the Wizard, name the section appropriately and choose an Aggregate Size of 20mm.

General Section W	zard : Definition
Section	
Name	Reinforced Pile
Material Type	Concrete
Material Grade	C30/37 -
Section	STD C 600.
_	eg STD R 400 300
The 'Section' I new section sha	utton opens the 'Section Wizard' to define the e and dimensions.
Aggregate size	20 mm
	< Back Next > Cancel Help

- Click on the **Section** button to open the Section Wizard.
- Choose a circular section with 600mm diameter.
- In the *Reinforcement* section of the wizard, click on the *Template* button.

General Section Wizard : Reinforcement	×
General Reinforcement Bars, lines and arcs of bars	
Add Modify Shift 🗈 🛍 🔀 🔀	
Template Reinforcement	General bars
Standard reinforcement arrangements for beams and columns	General - prestress force
Template	Template bars
	Spiral reinforcement
< Back Finish	Cancel Help

- In the *Template Definition* box, choose Column Arrangement.
- In the *Links and Cover* box, choose the following options:

Reinforcement Wiz	ard : Links and	Cover				×
Cover to links						
Output Uniformation	m All faces	3 75	mm		Code Cove	۲
🔿 Variab	le Outside	75	mm	Inside	75	mm
Link diameter	10mm 👻	mm				
Rebar for links	500B	•	Used to ca	alculate lini	k bend radi	ius
The 'Code Cover cover allowed in Where the term 1	' option allows th the design code ink' is used this i	e cover to th s equivalent t	e links to be o 'stirrup' ar	e located b nd/or 't ie' in	based on th	ne minimum AS
Aggregate size	20 r	nm				
	< Ba	ack	Vext >	Can	cel	Help

• Finally, in the *Circular/Elliptical Reinforcement* section of the wizard, choose the following options:

Reinforcement Wiza	ard : Circular/I	Iliptical Reinforcement		×
Outside Reinforce	ement			
Bars per ring	8	Diameter	40mm 👻	mm
Number of rings	1	Clear distance between rings	25	mm
Rebar	500B	-		
Inside Reinforcer	nent			
Include				
Bars per ring		Diameter	-	mm
Number of rings	0	Clear distance between rings	25	mm
Rebar	500B	-		
	< Bi	ack Finish C	ancel	Help

3.1.2 Applying the Load Cases

• Once the User exits the Wizard, they can view the Section and the Gateway:

Note: Using the Material Properties section of the Gateway, the User can amend standard properties and apply these to their section if the options offered are not sufficient)

- Expand Loads in the *General* tab of the Gateway.
- Double click on Loading and input the following loads:

I For Tr	aining S	Session.ads : Loads			
	Α	В	С	D	E
	Load	Load Tupo	Force	Mor	nent
Load	Case	Luau Type	N	Муу	Mzz
			[kN]	[kNm]	[kNm]
Defaults	1	Section Force	0	0	0
1	1	Section Force	3000	100	0
2	2	Section Force	1700	650	0
3					
					III
Define the	e loads (or strains) applied to t	he section (or	component)	

• Double click on *Analysis Cases* in the Gateway and input the following cases:

<u>Ultimate Limit State Case</u>

	Α	В	C
Analysis Case	Name	Description	Prestress Factor
Defaults	ULS Case #	L#	1
1	ULS Case 1	1.4L1	1
2	ULS Case 2	1.4L2	1
3			

Servicability Limit State Case

	A	В	C	D	E	F	G
Analysis Case	Name	Analysis Type	Load Description	Prestress Factor	Creep Coeff.	Crack Width Strain	Duration Factor
Case						[mm]	
Defaults	SLS Case #	Long	L#	1	2	Equation 7.9	Normal
1	SLS Case 1	Long	L1	1	2	Equation 7.9	Normal
2	SLS Case 2	Long	L2	1	2	Equation 7.9	Normal

3.2 Analysis and Outputs

• Prior to analysis, check all inputs and save the file

3.2.1 Load Moment Curve

- Click on the N-M Chart Icon
- Plot the N-M Chart
- Click on the Additional chart Points icon
- Use the Load Point button to plot the specified loads on the chart

Note: Which load case is likely to cause the most cracking and why? Stop to discuss with the trainer

3.2.2 SLS Loads

- Click on the SLS Loads icon. $\Sigma_{\text{Loads}}^{\text{SLS}}$
- Select all load cases and continue
- Choose to view General Results and Crack Results

Output Specification	×
Title & Specification	OK Cancel Reset
Case list all	
🔽 Output Table 📃 Output Summary	Help

Note: Look carefully at the results. Have the results converged successfully? Stop and discuss with the trainer

- View Material and Reinforcement strains and stresses.
- View crack widths.

Question: Do the results correspond with the predictions made from the N-M chart?

- Click on *Section View* to view the section.
- Choose Analysis Case 2 in the Section View window. The user will be able to view where cracking is most likely to occur.

Click on the Label icon $\overset{\frown}{\sim}$ to show strains on the section for SLS Load Case 2

3.2.3 ULS Loads

- Use the ULS Load and ULS Strength icons.
- How do the Stresses/Strains compare between the two results sets and why? Stop to discuss with your trainer.

Section 4

Step by step Tutorial 4 Oasys ADC –Section Analysis

Objectives

By the end of the session the user should be able to:

- Navigate the ADC Interface
- Use the ADC Wizard and Gateway
- Run an analysis
- Navigate the Graphical Output
- Create simple graphs

4.1 Input

• Once opened, the program start up screen will give a number of options. Choose to *Create a New Section*.

Welcome	to ADC		X
1	Oasys ADC		About ADC
11	8.4 build 10		
	Oreate a new data f	île	
	O Work on your own		
	Open an existing file	:	
	⊘ Select recent file	Adc.adcol Adc.adcol Adc.adcol AdCol_Win4.adcol	
	Show this dialog on t	StartUp	OK Cancel Help

• Complete the *Titles and Units* section of the Wizard.

• In the *Program Option* section, choose Column Design and the Eurocode 2 Design Code

w Model Wizard : Program option	
Design code EN 1992-1-1:2004 Eurocode	e 2 (GB) Show parameters
Current units kN, m, mm, N/mm ²	Units
Program Option Column Design Beam Design	 Pile Design Beam Check
⊘ Ribbed Slab Design	 Ribbed Slab Check
One Way Solid Slab Design	One Way Solid Slab Check
< Back	Next > Cancel Help

Note: The user can click on the Units button if you wish to change from SI Units

• In the *Definition* section of the Wizard, name the section appropriately and choose an Aggregate Size of 20mm.

ew Model Wizard : Section and Material	s 💽 🛃
Column Section Section e.g. STD C 600. e.g. STD R 4 The 'Section' button opens the 'Section and dimensions.	400 300 on Wizard' to define the new section shape
Materials Concrete Column C20/25 -	Reinforcement Main 500B ▼ Link 500B ▼

Click on the **Section** button to open the Section Wizard.

Choose a circular section with 600mm diameter.

Note: Click on the Concrete and Reinforcement options to see what is offered by the program

• In the *Slenderness Details* box, choose the following options for a 9m pile:

Apply the following Load Case (the moments are obtained from the Alp Output):

Axial Force = 1000kN

Top Moment (yy) = 200kNm

Bottom Moment (yy) = 0kNm

		1000	kN		Sign Conv	entions
Moments					- olgin oom	ondono
бор	уу	200	kNm	zz	0	kNm
ottom	уу	0	kNm	zz	0	kNm
Effective Cre	ep Rati	os				
Moment ratio) y	0.65	Creep coef	ficient	2]
doment ratio) Z	0.65				
ational loads k the 'Sign (and an Convent	alysis cases i ions' button f	may be input a or help on loa	atter co d sign (mpletion of th conventions i	e Wizard. n AdCol.

Finally, in the *Reinforcement* section, the Arrangement and Cover need to be specified:

• Click on the *Arrangement* box.

Click on the **Standard** box to select the number of bars per ring.

Circular Column Reinforcement Arrangements											
Number of Rings Numbers of Bars Per Ring											
۹ 1	6	▲ Standa	rd								
© 2	8	None									
© 3	10	-									
◎ 4	Note: multip	ble selection is perm	itted								
Ring Spacing											
Cover/pitch	Cover/pitch Pitch										
O Diameter	Ring 1 Diameter	0 mr	n								
	Ring 2 Diameter	0 mr	n								
	Ring 3 Diameter	0 mr	n								
	Ring 4 Diameter	0 mr	n								
ОК	Cancel	Не	lp								

• Click on the *Cover* box.

Input the cover of 75mm.

Covers	23
Units mm	
Minimum Nominal Cover	
Outer 75	
Code	Cover
OK Cancel H	elp

Note: Click the Code Cover box to see what the requirement is of the code you have specified

4.2 Analysis and Results

• Now that all the Data is specified in the Reinforcement section, click on the **Finish** button

New Model Wizard: Reinforcement									
Sizes and Limits Bar sizes available and limits selected									
✓ Arrangement Bar arrangement									
✓ Cover Minimum nominal cover to bars									
Checks Checks of spacing, minimum areas, cover and links	5								
Notes ★ Data required to be specified ✓ Data specified									
< Back Finish Cancel Help									

• The following box will appear, checking if you are happy with the number of sections.

Click **OK** to proceed with the analysis.

Adc	
?	100 sections are to be validated. Do you wish to validate and create these sections? If you select 'No' you will not be prompted again after changing input data. Select the 'validate' button or menu option instead.
	(This warning appears because the number of sections exceeds 50. To raise this threshold see the Preferences option of the Tools menu.)
	Yes No

Adc2 : Gr	aphic View					
Ànalysis Case	Pending Design	-	+	— Current Section	n (g(s)/6 bars per ring/16mm bars/8mm links 🔽 🕂 —	
Section		•			1: 1 ring(s)/6 bars per ring/20mm bars/8mm lingement Details 6: 1 ring(s)/6 bars per ring/20mm bars/8mm lingement 1 ring(s)/6 bars per ring/20mm bars/8mm linforcement 10: 1 ring(s)/6 bars per ring/40mm bars/8mm linforcement 1 fmain bars 10: 1 ring(s)/6 bars per ring/20mm bars/8mm linforcement 1 fmain bars 11: 1 ring(s)/8 bars per ring/20mm bars/8mm linforcement 1 206.33 20: 1 ring(s)/8 bars per ring/20mm bars/8mm linforcement 1 206.33 31: 1 ring(s)/8 bars per ring/20mm bars/8mm linforcement 1 206.33 31: 1 ring(s)/8 bars per ring/20mm bars/8mm linforcement 1 206.33 31: 1 ring(s)/8 bars per ring/20mm bars/8mm linforcement 1 206.33 31: 1 ring(s)/10 bars per ring/20mm bars/8mm linforcement 1 206.33 51: 1 ring(s)/10 bars per ring/20mm bars/8mm linforcement 1 206.33 51: 1 ring(s)/10 bars per ring/20mm bars/8mm linforcement 1 206.33 51: 1 ring(s)/10 bars per ring/20mm bars/8mm linforcement 1 206.33 51: 1 ring(s)/10 bars per ring/20mm bars/8mm linforcement 1 206.33 51: 1 ring(s)/10 bars per ring/20mm bars/8mm linforcement 1 206.33 51: 1 ring(s)/12 bars per ring/20mm bars/8mm linforcement 1 206.33 51: 1 ring(s)/12 bars per ring/20mm bars/8mm linforcement 1 206.33 51: 1 ring(s)/12 bars pe	:)/6 bars per rin 7mm²
Pending [Design					

• The *Graphic View* will appear, showing the acceptable reinforcement:

• Click on the *Design* icon to run the analysis for the load case specified

• The following Graphical View will appear.

Toggle through the different cases by pressing the + button to see the results.

4.2.1 Tabular Outputs

- Click on the **Output View** icon
- Select the following options in the *Column Output Settings* window to view the sections with adequate capacity for the load case specified in order of area of reinforcement:

View Input Myy/Mzz Chart Invalid Sections N/M Chart Results Results Results Presentation Image: Capacity Analysis Case Image: Capacity Sorted By Area of Reinf. No. of Results All	Column Output Settings										
Input Myy/Mzz Chart Invalid Sections N/M Chart Results Results Results Presentation Analysis Case Capacity Adequate Sorted By Area of Reinf. No. of Results	View										
Invalid Sections N/M Chart Results Results Presentation Analysis Case Capacity Adequate Sorted By Area of Reinf. No. of Results	Input Myy/Mzz Chart										
Results Results Presentation Analysis Case Capacity Adequate Sorted By Area of Reinf. No. of Results	Invalid Sections										
Results Presentation Analysis Case Capacity Adequate Sorted By Area of Reinf. No. of Results	Results										
Analysis Case Image: Capacity Capacity Adequate Sorted By Area of Reinf. No. of Results All	Results Presentation										
Capacity Adequate Sorted By Area of Reinf. No. of Results All	Analysis Case										
Sorted By Area of Reinf. No. of Results All	Capacity	Adequate 👻									
No. of Results All	Sorted By	Area of Reinf. 👻									
	No. of Results All										
OK Cancel											

View the Tabular Output results
 Scroll to the Column Summary Results to view the section with the lowest reinforcement area with adequate capacity

4.2.2 Plotting Charts

- Click on the *N/M Chart* Icon
- Choose the appropriate section to plot and view the results, noting the load case within the envelope
- Click on the *Myy/Mzz Chart* Icon
- Choose the appropriate section to plot and view the results, noting the load case within the envelope

Appendix

EC7 – UK SAMPLE CALCULATION IN PILE

The following example has been based on the design example given in "Design of pile foundations following Eurocode 7" by R. Frank. The final analysis file is also available in the Sample Files provided with the program.

Pile Geometry:

Solid circular pile with diameter 600 mm. The pile is "driven".

<u>Soil Data:</u>

Sand layer with following properties:

Density = 21 kN/m3

Angle of internal friction = 35 degrees

SPT N = 25

Based on SPT, following values are assumed:

End bearing stress, qb = 1370 kPa

Skin friction stress, qs = 70 kPa

These values are assumed to be uniform throughout the layer.

Groundwater Data:

GWT is located at a depth of 2 m below the ground level.

Load Data:

Characteristic permanent load Gk = 1200 kN

Characteristic variable load Qk = 200 kN

Design Code:

EC7 (United Kingdom)

Following data need to be entered in the Pile data file:

- 1 Analysis Options
- 2 Capacity Data (for selecting design code)
- 3 Pile Properties
- 4 Materials
- 5 Soil Profiles
- 6 Groundwater
- 7 Soil –profile Groundwater Map
- 8 Applied Loads & Displacements

Each of the preceding items are explained in detail in the following sections:

Analysis Options:

This and other data modules can be invoked by clicking the relevant item in the Gateway:

0 Pile 19.3 - R_Frank_May_2006	
File Edit View Data Analysis Tools	Graphics Window Help
🕞 🚚 🚍 Σ 🗵 📄 🔌 📓 🐰 🤅	
×	
⊡- Input	R_Frank_May_2006 : Titles
Titles	Job Number: Initials: Last Edit Date:
Units	P001 VG 27-Mar-2012 Model Image
Analyris Options	
- Settlement Data	JOD IIDE:
··· Pile Properties	EC7 OK Validation 1
Material Properties	Subtitle:
Undrained Materials Drained Materials (1)	
- Soil Profiles (1)	Calc. Heading:
Groundwater (1)	
Soil Profile - Groundwater Map (1)	Analysis type
	Notes:
- Applied Loads & Displacements (2)	
··· Displacement Radii	Effective stresses
Convergence Control Data	Written t
- Output	Datum information
Graphical Output	
	Elevation O Elevation O Depth below ground level
	OK Cancel

Analysis type:

In this example, only capacity calculations are carried out. Hence, only "Capacity" check box is checked.

Effective Stresses:

The program will be calculating the effective stresses, as opposed to user specifying the same. Hence, "Calculated" radio button is selected.

Datum information:

The data corresponding to soil layers, groundwater etc. is based on depth. Hence, "depth below ground level" is selected.

Capacity Data:

Selecting this item in the Gateway brings up a wizard. To enable EC7 calculations, "Code based" option should be selected in the first page.

Then, "EC7 (U.K. National Annex)" should be selected in the "Country Code" drop down box.

Capacity Calculations		×
Calculation Method		
Working Load		
O Design Resistance		
Ode Based	Ν	
Design Code	14	
besign bode	FOR ALK National Associa	
Country Code	EC7 (U.K. National Annex)	
 Note: In Working Load appare applied to skin friction is included capacity. In Design Resistance factors are still applied However, user needs in Negative skin friction is resistance. In Code Based appr They are not defined based appr 	proach, user-defined partial/global factors ion and end bearing components. Negative in computation of allowable bearing e approach, user-defined partial/global to skin friction and bearing components. to specify material and model factors too. s excluded in the calculation of design oach, FoS are taken directly from the code. by the user unlike the above two methods.	
< Ba	ck Next > Cancel H	lelp

Eurocode 7 (U.K.) X Design Approach 2 O DA3 O DA2 Operation (C1 + C2) Pile Type Bored CFA Oriven Model factor 1.4 Partial Factors On Negative Skin Friction Set A1 partial factor 1 Set A2 partial factor 1 Serviceability is verified by load tests(preliminary/working) carried out on more than 1% of constructed piles to loads not less than 1.5 times the representative load for which they are designed Resistance is verified by a maintained load test taken to the calculated, unfactored, ultimate resistance. Print detailed output of capacities from all combinations < Back Finish Cancel Help

Then, the following page is shown on clicking "Next"

It can be seen that only DA1 design approach is allowed, as is the case with U.K. national annex.

The pile type should be specified as "driven" as per the data given for this example.

The "Model factor" is read only. This is set to 1.4 by default.

The pile type should be specified as "driven" as per the data given for this example. The "Model factor" is read only. This is set to 1.4 by default.

However, if the user specifies that the resistance is verified by maintained load test taken to calculated, unfactored ultimate resistance by clicking the relevant check box, then the model factor is set to 1.2.

The user also needs to verify whether explicit verification of SLS is carried out, by checking the relevant check box. This selection influences the R4 resistance factors as per Table A.NA.6 in U.K. national annex.

The A1 and A2 partial factors on negative skin friction would be used for calculating the factored load due to negative skin friction, which is treated as an unfavourable action. The users may refer to A.3.1. section in UK national annex for guidance on these factors. These values can be ignored if there is no negative skin friction in the model.

Clicking on the last check box in this page allows the user to see the results from both the combinations of DA1.

Clicking on "Finish" closes the wizard and saves the code specific data.

Pile Properties:

The pile geometry needs to be specified in the wizard invoked by selecting the relevant item in the Gateway:

Pile Properties	×
Pile cross-section	Solid Circular 🔻
Young's modulus	2e+007 kPa
Reduction factor for internal skin friction	0.9
Under-reams (Solid only)	
With under-ream	Without under-ream
Note: Settlemente are calculated for solid	circular without undergram sections
Note: Settlements are calculated for solid	
< Back Next	> Cancel Help

For the given model, "Solid circular" and "Without under-ream" options need to be selected.

The "Young's modulus" is not relevant to capacity calculations. Hence, leave the default value as it is.

Once this data is entered, the user can specify the range of pile lengths for which capacity calculations need to be carried out.

For this model, the range of pile lengths from 10m to 25m is suggested with an increment of 1m.

Also, since basement piles are not being modelled, "Depth of pile top below top of highest soil layer" needs to be set to zero as shown.

Pile Lengths		×
L _{max} N _{Increment}	5	
🔲 Single pile length		
Minimum pile length	10	m
Maximum pile length	25	m
Number of increments	15	
⊘ Increment size	1	m
Depth of pile top below the top of the highest soil layer	0	m
< Back Next > Canc	el	Help

Next, the dimensions of a range of piles needs to be specified.

Pile Cross-section	n Dimensions	×
ß		
Units o	of cross-section dimensions mm 💌	
Defaults 1 2	A Diameter 600.00	
	< Back Finish Cancel	Help

In this model, we are interested in the capacity of only 600 mm diameter pile. Hence, only one entry is given.

Clicking on "Finish" closes the wizard and saves the "Pile Properties" data.

Material Properties – Drained materials:

In this model, there is only one drained material - Sand. The following data for the same needs to be entered in the "Undrained Materials" table by invoking the same from the Gateway.

As the material tables are wide, it is suggested to enter the data directly in the "General", "Friction" and "End Bearing" worksheets, instead of using the "All" worksheet.

I R_Fra	nk_May_2006 : Drai	ined Materials							C	1		
	A	B	C									*
	Material description	Bulk unit weight	Material fa soil stre (tan De	ictor for ingth elta)								
		[kN/m³]			1							
Defaults	Drained #	20.00		1.00	1							
1	Sand	21.00]							
2]							
												E
	UII Constal (Triv	ation (Decrin	- 1									
	W AGeneral A File	cuon A Beanni	9/									the P distance
Enter ma	terial name.											.4)
⊞ R_Fra	nk_May_2006 : Drai	ined Materials								C	5	
	A	B	C	D	E	F	G	Н	I	J	ĸ	A
	Skin friction data]			
	description	Skin frictio	n Beta	Delta	Coeff. of earth	(T	18	Limitin	g value	Qs mater	ial factors	4
		computati		[Dec]	piessule K	10p 1kD_1	Base [LD_]	specified	Value (kps)	MI	<u>M2</u>	4 1
Defaulto	Drained #	Beta		Tregl		[KPa]	[KFa]	No	[Kra]	1.00	1.00	4
1	Sand	as specified				70.00	70.00	110		1.00	1.00	
2	o unu	go opcomod				10.00	10.00			1.00	1.00	- 1

	description	computation	Deta	Dena	pressure K	Тор	Base	Specified	Value	M1	M2	
			1	[Deg]		[kPa]	[kPa]		[kPa]			
Defa	Its Drained #	Beta						No		1.00	1.00	
1	Sand	qs specified				70.00	70.00			1.00	1.00	
2												
	∖All (General) Fri	ction (Bearing /					•			п	11	
Enter	material name.											

I R_Fran	nk_May_2006 :	Drained Materials												N			x
	Α	В	C	D	Е	F	G	н	I	J	ĸ	L	M	N	0	Р	-
	Manadal									End bea	aring data						
	description	End bearing	Na	Phi	PhiD	Phicy'	icv' Ir <mark>N</mark>		aterial factors	g	b	Limiting	value	Na-Phi curve	Qbm	aterial factors	
	decemption	computation				111101			M1 M2		Base	Specified	Value	ing i in curve	<u>M1</u>	M2	
				[Deg]	[Deg]	[Deg]				[kPa]	[kPa]		[kPa]				
Defaults	Drained #	Nq specified						1.00	1.00			No		Berezantzev Ak Bk Curves	1.00	1.00	
	Sand	qb specified								1370.00	1370.00				1.00	1.00	
2							<u> </u>					-	ļ		_		-
																	1 I
																	Ξ
	II & General J		10	_	_	_	_	_		1						•	
Whether	limiting value	will be specified.															

In the "Friction" and "Bearing" worksheets, the user needs to select the "qs –specified" and "qb-specified" options, and enter the relevant values respectively as shown.

The fields M1 and M2 correspond to the material factor sets. In EC7 (U.K.), all the M1 factors are always 1.0. Hence the fields are not editable.

The field M2 may need to be explicitly entered by the user only in some circumstances. For example, DA1 C2 uses M2 factors to calculate the unfavourable Geo actions – which translates to negative skin friction for this program. However, the code only specifies M2 factors for

- Angle of shearing resistance,
- Effective cohesion,
- Undrained shear strength, and
- Unconfined strength.

The user need not explicitly enter the material factors if the skin friction and end-bearing values are solely computed on the basis of the above 4 parameters. However, if the user directly specifies qs, Nc, Nq or qb, then the program does not know the theory/formula which has been used in computing the same. In these cases, the program uses the material factors specified by the user in the tables above, to derive the "material factored" unfavourable geotechnical actions.

For this example, however, as there is no negative skin friction involved, these factors can be left at the default value of 1.0.

Soil Profiles :

The user then has to define the soil profiles. Each soil profile is a collection of material layers.

The user can specify multiple soil profiles, particularly if he is using the "Model Pile" procedure".

However, for EC7 (U.K.) national annex, the program only uses the "Alternative procedure". Hence, the user would be entering only one soil profile "S1" as shown:

I R_Fra	nk_May_2006 : S	oil Profiles		×
	A	B	C	*
Layer	Depth below ground level	Material	Contribute to negative skin friction	
	[m]			
Defaults	0.00	Sand	No	
1	0.00	Sand	No	
				H
	CA Add Day			Ŧ
UUV	: ST & Add Pag	e/ (•	
Enter dep	oth below groun	d level		

The user can enter multiple soil profiles for the "Alternative approach" also. In this case, the program calculates design resistance of pile in each of these soil profiles independently.

Groundwater:

The user can specify the groundwater tables in the model in these worksheets.

I R_Frank_May	_2006 : Groundw	ater		×
	Α	В	C	
Groundwater	Depth below ground level [m]	Pressure [kPa]	Unit weight of water [kN/m³]	
Defaults	0.00	0.00	10.00	
1	2.00	0.00	10.00	
2				
				III
	Add Page /	•	III •	-
Enter depth of pl	reatic surface of	r piezometer		
leves ashered by				

In this particular example, there is only one soil profile and one ground water table. The same is entered as shown.

If the user wants to model perched groundwater in a soil profile, he can use multiple data points to model the pore-pressure in the soil profile. In this case, the pore pressure distribution will not be hydrostatic.

Soil –profile Groundwater Map:

This table is really used to associate a particular groundwater table to a particular soil profile.

I	≣ R_Fra	nk_May_2006 : Soil prof	s - grou 🗖 🔳 🛃	ĸ
		A	В	
	Test	Soil Profile	Groundwater	
E	Defaults		None	=
	1	S1	GWT1	
				Ŧ
	•	III	•	зđ
C	Cell [A][1]		зđ

IMPORTANT: By default, no groundwater table is associated to the soil profiles created by the user. Hence, it is important to explicitly enter the data in this table when groundwater is present in a soil profile.

Applied Loads & Displacements:

For the capacity part, the "Displacements" are not relevant.

The following load data needs to be entered as shown:

I R_Fran	nk_May_2006 : Applied L	oads & Displace.	ements			×
	Α	В	C	^{VS} D	E	
	Description	Depth below ground level	Applied load	A1	A2	
		[m]	[kN]			
Defaults		0.00	0.00			
1	Gk	0.00	1200.00	1.35	1.00	
2	Qk	0.00	200.00	1.50	1.30	
3						
Cell [A][1]						

Fields A1 and A2 refer to the action factor sets in EC7 (U.K.) N.A.

For this model example, it is assumed that for

Action factor set A1:

Dead load factor = 1.35

Live load factor = 1.50

Action factor set A2:

Dead load factor = 1.00

Live load factor = 1.30

Analysis & Results:

Once the data is input as shown above, the user can proceed for analysis by clicking the "Analyse" button as shown:

Pile 19.3 - R_Frank_May_2006			_	4	-		_	-			_			
File Edit View Data Analysis Tools Graphics Window Help														
ĨE I I I I I I I														
×	R Frank May 2006 : Titles													
⊡ Input														
Intes	Job Number:	Initials	: Last Edit	Date:Model	Imag	e					_			
Analysis Options	P001	VG	27-Mar	-2012		-								
Capacity Data	Job Title:	III R Fra	unk May 2006	Drained Material	-									
Settlement Data	EC7 UK Vali		T A	. Dramed Waterian	, L C I								r.	_
Pile Properties	a Luni		A .	В	լւ	<u> </u>	E	F	6	н		J	K	
Matenal Properties Judgained Materials	Subtite:		Material	End bearing					Γ.	Nan	naterial factors		<u>aring data</u> b	÷
Drained Materials (1)			description	computation	Nq	Phi	PhiD	Phicy.	lı.	M1	M2	Тор	Base	Ís
Soil Profiles (1)	Calc. Headin		D 1 10	NI 77 1		[Deg]	[Deg]	[Deg]		1.00	1.00	[kPa]	[kPa]	
Groundwater (1)		Defaults	Urained #	Ng specified					-	1.00	1.00	1370.00	1370.00	N
Soil Profile - Groundwater Map (1)		2										1010.00		
	Notes:	3		🔤 R_Frank_N	lay_20	006 : An	alysis ch	necks						E
Applied Loads & Displacements (2)														
···· Displacement Radii				No errore o		ninge								
Convergence Control Data				NO EITOIS C	n wan	iirigs.							^	
Tabular Output	1													
····· Graphical Output														
			■ R F	ra										
				-										
			Tes	ι										
			Defau	lts										
		Whether	limit										Ŧ	E
		Jwnether						_	_	_				L
			E Collina	114			Proce	ed		Quit	t			
			Cell [A										_	
			Jenter											

This brings up the Pre-Analysis check dialog giving any warnings or errors in the model. If there are no errors, the user can run the analysis by clicking the "Proceed" button.

After completion of analysis, the following print selection dialog appears:

rint Selection	
Capacity	
Notes	Analysis options
Pile properties	Effective stress profiles
Undrained materials	Drained materials
Soil profiles	Groundwater
Nq-Phi curves	Applied loads & displacements
Displacement radii	Convergence control data
Calculated limiting shaft skin fri	ction 0 -
Settlement	
Capacity results	Stresses & displacement along pile
Settlement results summary	Soil displacements
Select All Clear All	Invert OK Cancel
The user can select the data of interest to be shown/printed in the tabular output, which comes up after clicking the "OK" button above:

🔲 R_Frank_May_2006 : Tabular Output 5 Analysis Options DA1(C1 + C2) Design approach: Pile type: Driven Model factor: 1.40 Serviceability verified by load tests No (preliminary/working) carried out on more than 1% of constructed piles to loads not less than 1.5 times the representative load for which they are designed? Resistance verified by a maintained load test No taken to the calculated, unfactored, ultimate resistance? Effective stress profile Calculated **Pile Properties** Pile type Solid Pile cross-section Circular Under-ream No Calculation profile Range Minimum pile length 10.000 m Maximum pile length 25.000 m Number of increments 15

R_Frank_May_2006.pls : Tabular Output										
Cross section 1 results:										
Cross-section Tresuits.										
Results - Compression										
			Т							
Soil Profile 1	• \$1		~							
Denth	Dile	IIItimate	Cumulative	Negative	Net	Desim	Limiting	Factored		
Depon	length	base	external	skin	ultimate	resistance	criterion	* load		
	201901	capacity	Friction	friction	resistance		#			
		(Qb)	(Q ₂)	(Q_{nef})						
[m]	[m]	1101		[kN]	[kN]	CEN1		DEN1		
10 0000	10 0000	387 358	1319 47	0.0	1706 83	791 074	2	1460 00(C)		
11.0000	11.0000	387.358	1451.42	0.0	1838.77	853,906	2	1460.00(C)		
12.0000	12.0000	387.358	1583.36	0.0	1970.72	916.738	2	1460.00(C)		
13.0000	13.0000	387.358	1715.31	0.0	2102.67	979.570	2	1460.00(C)		
14.0000	14.0000	387.358	1847.26	0.0	2234.61	1042.40	2	1460.00(C)		
15.0000	15.0000	387.358	1979.20	0.0	2366.56	1105.23	2	1460.00(C)		
16.0000	16.0000	387.358	2111.15	0.0	2498.51	1168.07	2	1460.00(C)		
17.0000	17.0000	387.358	2243.10	0.0	2630.46	1230.90	2	1460.00(C)		
18.0000	18.0000	387.358	2375.04	0.0	2762.40	1293.73	2	1460.00(C)		
19.0000	19.0000	387.358	2506.99	0.0	2894.35	1356.56	2	1460.00(C)		
20.0000	20.0000	387.358	2638.94	0.0	3026.30	1419.39	2	1460.00(C)		
21.0000	21.0000	387.358	2770.89	0.0	3158.24	1482.22	2	1460.00(C)		=
22.0000	22.0000	387.358	2902.83	0.0	3290.19	1545.06	2	1460.00(C)		-
23.0000	23.0000	387.358	3034.78	0.0	3422.14	1607.89	2	1460.00(C)		
24.0000	24.0000	387.358	3166.73	0.0	3554.08	1670.72	2	1460.00(C)		-
25.0000	25.0000	387.358	3298.67	0.0	3686.03	1733.55	2	1460.00(C)		
# Limiting	criteria	-								
2 - DA1 C1										
*(C) => Com	pression 1	and (T)->	Tension loss	4						
Note: Design resistance does not include any consideration of negative skin friction.										
•									÷.	đ

The program prints the factored load and design resistance information at the pile lengths specified by the user.

Validation:

A short validation is given below for the pile length of 25 m: Unit end bearing stress = 1370 kPa Area of the pile base = (PI/4)* (0.6)*(0.6) = 0.283 m² Ultimate end bearing capacity = 1370*0.283 = 387.36 kN Unit skin friction = 70kPa Length of pile = 25 m Ultimate skin friction capacity = PI*0.6*70*25 = 3298.67 kN <u>DA1 C1</u> "A1 + M1 + R1" Action set A1: Factored load = 1.35*1200 + 1.5*200 = 1920 kPa Partial factor combination: Design resistance = ((Ultimate shaft resistance/shaft factor) +

(Ultimate base resistance/base factor))/model factor

= (3298.67/1.0 + 387.6/1.0)/1.4 = 2632.88 kPa

<u>DA1 C2</u>

"A2 + M1 + R4"

Action set A1:

Factored load = 1.00*1200 + 1.3*200 = 1460 kPa

Note: R4 factor set is based on "No explicit SLS verification"

Partial factor combination:

Design resistance (Partial Factors) = ((Ultimate shaft resistance/shaft factor) +

(Ultimate base resistance/base factor))/model factor

= (3298.67/1.5 + 387.6/1.7)/1.4 = 1733.65 kPa

Design capacity is the minimum from all the 4 cases above.

Design capacity is the minimum from all the 2 cases above.

<u>Hence, the design capacity is 1733.65 kN, and the governing combination is DA1 C2. The</u> <u>corresponding factored load is 1460 kN.</u>