
 

 
 

 

 

 

 

  

Oasys GSA 
API Reference 



13 Fitzroy Street 

London 

W1T 4BQ 

Telephone: +44 (0) 20 7755 3302 

Facsimile: +44 (0) 20 7755 3720 

 

Central Square 

Forth Street 

Newcastle Upon Tyne 

NE1 3PL 

Telephone: +44 (0) 191 238 7559 

Facsimile: +44 (0) 191 238 7555 

 

e-mail: oasys@arup.com 

Website: oasys-software.com 

mailto:oasys@arup.com


Oasys GSA 
 

© Oasys 1985 – 2017 

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, 

or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without 

the written permission of the publisher.  

Products that are referred to in this document may be either trademarks and/or registered trademarks of the 

respective owners. The publisher and the author make no claim to these trademarks. 

While every precaution has been taken in the preparation of this document, the publisher and the author 

assume no responsibility for errors or omissions, or for damages resulting from the use of information 

contained in this document or from the use of programs and source code that may accompany it. In no event 

shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or 

alleged to have been caused directly or indirectly by this document. 

 

 



 Oasys GSA 
 

 

© Oasys Ltd 2016  

 

Contents 

Introduction 5 

Getting Started 5 

VB.NET 6 

Python 6 

API function reference 7 

Core functions 7 

View functions 9 

GwaCommand function 16 

Notes on using GwaCommand: 18 

String IDs (sIDs) and GwaCommand: 18 

Data functions 19 

Output functions 24 

Case and Task functions 31 

List functions 34 

Tool Functions 35 

Utility functions 36 

sID functions 36 

Structs 38 

Enums 40 

Other samples 43 

Early and Late Binding 43 



 Oasys GSA 
 

 

© Oasys Ltd 2015 5 

 

 

 

Introduction 

GSA APIs allow other programs and scripts to programmatically access to GSA functionality. The 

APIs are implemented using Microsoft’s COM technology. They allow GSA models to be created, 

edited, analysed and also allow results to be queried. 

GSA APIs can be invoked by any programming language or scripting environment that can work 

with COM and ActiveX. Examples include .NET (c# and vb), Python, VBA, C++ and MATLAB. We 

recommended the use of .NET to interact with GSA APIs – this environment is closely compatible 

with the APIs, and there are several code samples get your started. Python is also a good 

alternative.  

All the API is exposed via the type library file Gsa.tlb, which is also wrapped as a .NET interop dll 

‘Interop.Gsa_9_0.dll’, both of which are available in the GSA program files folder. The library 

exports a single object: ComAuto and several structs and enums. These are listed in the API 

reference section in the later part of this document. 

Note that function names are case sensitive. A log file is created in the same directory as the GSA 

model file to record the execution of each of the functions.  

The COM interface is ‘versioned’, i.e. each minor and major release of GSA has COM classes 

specific to that release. Instantiating these classes will specifically invoke the version of GSA they 

correspond to. Whilst this gives the flexibility to bind to a particular release of GSA, it is also 

possible to “always” bind to the latest release. The choice of whether a programmer wants to 

bind to a version specific COM class or version independent COM depends on how s/he invokes 

GSA COM (see the section Early and Late Binding). 

Getting Started 

The API can be thought of made up of “families of functions” for ease of understanding. This is 

reflected in the way it is documented in the reference. 

A good way to start using the API is by using one of the several code samples as a starting point. 

The rest of this section demonstrates a basic sample in two languages: VB.NET and Python. 

There are samples for .net, Excel/vba and C++ under the Samples\API_and_GWC folder under the 

GSA program files subdirectory. Each sample demonstrates the use of a section of the API. The 

file < C:\Program Files\Oasys\GSA 9.0\Samples\API_and_GWC\readme.txt > lists the samples and 

corresponding family of functions that is used by the sample. 

The first step in using the APIs is to import the type library or the interop dll into your 

programming environment. The COM interface is ‘versioned’, i.e., each minor and major release 

of GSA has COM classes specific to that release.  As an example, for using the GSA 9 API in 

vb.NET, import < C:\Program Files\Oasys\GSA 9.0\Interop.Gsa_9_0.dll> and then instantiate the 

object as follows: 

 Dim gsaObj As Gsa_9_0.ComAuto 

https://en.wikipedia.org/wiki/Component_Object_Model


 Oasys GSA 
 

 

© Oasys Ltd 2015 6 

 

 

 Set gsaObj = New Gsa_9_0.ComAuto 

Once we instantiate the objects, we can proceed to view the available functions in the ‘Object 

browser’ (if using Visual Studio) and call them. 

This basic sample creates the object, opens the GSA file, deletes results and runs all analysis 

tasks in the file.  

VB.NET 

        Dim gsa As New ComAuto 
 
        ' Write out the version of GSA that has been invoked 
        Console.WriteLine(gsa.VersionString()) 
 
        ' Open GSA file. (Ensure that the file exists at this path) 
        gsa.Open("c:\temp\stair.gwb") 
 
        ' delete any analysis results in the file 
        gsa.Delete("RESULTS") 
 
        ' analyse all tasks 
        gsa.Analyse() 
 
        ' save the analysed model with a different file name 
        gsa.SaveAs("c:\temp\stair_analysed.gwb") 
 
        gsa.Close() 
 
        gsa = Nothing 

Python 

# For a description of each line, see comments in the vb.net sample 
import win32com.client 
import pythoncom 
gsaobj = win32com.client.Dispatch("Gsa_9_0.ComAuto") 
gsaobj.VersionString() 
gsaobj.Open("C:\\temp\\Stair.gwb") 
gsaobj.Delete("RESULTS") 
gsaobj.Analyse() 
gsaobj.SaveAs("c:\\temp\\stair_analysed.gwb") 
gsaobj.Close() 

gsaobj = None 

  



 Oasys GSA 
 

 

© Oasys Ltd 2015 7 

 

 

 

API function reference 

GSA COM API functions are grouped as families of functions. This classification is purely for ease 

documentation and understanding – in reality all the functions below are offered by the ComAuto 

object. The families are: 

 Core functions 

 View functions 

 GwaCommand function 

 Data functions 

 Output functions 

 Case and Task functions 

 List functions 

 Tool functions 

 Utility functions 

Core functions 

integer NewFile () 

Open a new model.  

Returns status 

 0 – OK 

 1 – failed to open 

integer Open (filename) 

Open a GWB, GWA or CSV file.  

Returns status 

 0 – OK 

 1 – failed to open 

Argument 

 filename – the name of the file to be opened, including path and extension. 



 Oasys GSA 
 

 

© Oasys Ltd 2015 8 

 

 

integer Save () 

Save the data to the default file (i.e. overwriting the file that was opened or last saved).  

Returns status 

 0 – OK 

 1 – no GSA file is open 

 2 – no default path is available; use SaveAs 

 3 – failed to save 

integer SaveAs (filename) 

Save the data to GWB, GWA or CSV file.  

Returns status 

 0 – OK 

 1 – no GSA file is open 

 2 – invalid file extension 

 3 – failed to save 

Arguments 

 filename – the name of the file to be saved, including path and extension. 

integer Close () 

Close the current file.  

Returns status 

 0 – OK 

 1 – no GSA file is open 

integer Analyse (integer task) 

Analyse the tasks in GSA. 

Where the task is greater than zero then analyse that task. If the task is zero or less, and no 

analysis tasks exist then do linear static analysis of each specified load case. If the task is zero or 

less, and the analysis tasks exist then analyse all analysis tasks that have not been analysed. 

Returns status 

 0 – OK, analysis attempted 

(use CaseResultsExist or TaskStatus to establish whether the analysis succeeded in 

producing results) 



 Oasys GSA 
 

 

© Oasys Ltd 2015 9 

 

 

 1 – no GSA file is open 

 2 – failed to attempt analysis 

Arguments 

 task – analysis task number. Set to -1 (default) to run all analysis tasks.  

integer Delete (string option) 

Deletes results.  

Returns status  

 0 – OK 

 1 – no GSA file is open 

 2 – invalid option 

 3 –data is not present; – no action taken 

Arguments 

 option – valid settings are: 

  RESULTS – delete all results but not analysis cases. 

  RESULTS_AND_CASES – delete all results and analysis cases. 

integer Design(integer task, enum DesignOption option) 

Runs the specified design task. 

Returns status 

 1 – No GSA file open 

 2 – Design task does not exist 

 3 – Design task has results. 

Arguments 

 task – the reference of the Design task to be executed. A value of 0 indicates all tasks.  

 option – enum of the type DesignOption that specifies if the task will run as a ‘design’ or as 

a ‘check’.  

View functions 

UpdateViews () 

Refreshes all GSA views currently displayed. 



 Oasys GSA 
 

 

© Oasys Ltd 2015 10 

 

 

integer PrintView (string option) 

Print saved or preferred Graphic Views or Output Views. Returns a status, as follows: 

 0 – OK 

 1 – no GSA file is open 

 2 – invalid argument 

Arguments 

 option – valid settings are: 

  ALL_PGV – print all preferred Graphic Views. 

  ALL_SGV – print all saved Graphic Views. 

  ALL_POV – print all preferred Output Views. 

  ALL_SOV – print all saved Output Views. 

  ALL_LST – print all View Lists. 

  TAGGED_PGV – print tagged preferred Graphic Views. 

  TAGGED_SGV – print tagged saved Graphic Views. 

  TAGGED_POV – print tagged preferred Output Views. 

  TAGGED_SOV – print tagged saved Output Views. 

  TAGGED_LST – print tagged View Lists. 

  <name> – print the first view or view list found with the specified name. 

integer SaveViewToFile (string option,string filetype) 

Save saved or preferred Graphic Views or Output Views to file. Returns a status, as follows: 

 0 – OK 

 1 – no GSA file is open 

 2 – invalid argument 

Arguments 

 option – valid settings are: 

  ALL_PGV – save all preferred Graphic Views. 

  ALL_SGV – save all saved Graphic Views. 

  ALL_POV – save all preferred Output Views. 

  ALL_SOV – save all saved Output Views. 

  ALL_LST – save all View Lists. 

  TAGGED_PGV – save tagged preferred Graphic Views. 

  TAGGED_SGV – save tagged saved Graphic Views. 



 Oasys GSA 
 

 

© Oasys Ltd 2015 11 

 

 

  TAGGED_POV – save tagged preferred Output Views. 

  TAGGED_SOV – save tagged saved Output Views. 

  TAGGED_LST – save tagged View Lists. 

  <name> – save the first view or view list found with the specified name. 

 filetype – valid settings are: 

  WMF – save Graphic Views to WMF file. 

  PNG – save Graphic Views to PNG file. 

  JPG – save Graphic Views to Jpeg file. 

  TXT – save Output View to tab delimited TXT file. 

  CSV – save Output View to comma delimited CSV file. 

  HTM – save Output View to HTML file. 

integer HighestView (string option) 

Return the highest numbered saved or preferred Graphic View or Output View. 

 option – valid settings are: 

  PGV – highest numbered preferred Graphic View. 

  SGV – highest numbered saved Graphic View. 

  POV – highest numbered preferred Output View. 

  SOV – highest numbered saved Output View. 

  LST – highest numbered saved View List. 

integer ViewExist (string option, integer ref) 

Returns 1 if the saved or preferred Graphic View or Output View exists. 

 option – valid settings are: 

  PGV – preferred Graphic View. 

  SGV – saved Graphic View. 

  POV – preferred Output View. 

  SOV – saved Output View. 

  LST – saved View List. 

 ref – view number (1 based) 

string ViewName (string option, string ref) 

Returns the name of the saved or preferred Graphic View or Output View. 

Arguments  

option – valid settings are: 

  PGV – preferred Graphic View. 

  SGV – saved Graphic View. 

  POV – preferred Output View. 

  SOV – saved Output View. 

  LST – saved View List. 

 ref – view number (1 based) 



 Oasys GSA 
 

 

© Oasys Ltd 2015 12 

 

 

integer ViewRefFromName (string option, string name) 

Returns the saved graphic view or output view reference from its name. 

 option – valid values are: 

  SGV – saved Ouput View 

  SOV – saved Output View 

 name – the name of the saved view. 

integer CreateNewView(string name) 

Creates a new saved graphic view and returns its index.  

 name – the intended name of the created graphic view. 

integer SetViewBaseSettings(integer id, string SavedViewGwa) 

Applies “base” view settings from the saved view template provided onto the given saved view 

referenced by id. 

Returns status  

 1 – no file is open 

 2 – Saved graphic view with id does not exist 

 3 – SavedViewGwa string is empty or invalid 

 4 – could not read a valid saved view from SavedViewGwa 

 0 - OK 

Arguments 

 id – the index of the saved view to which you want to apply the template. 

 SavedViewGwa – the GWA record of a saved view that is to be used as a template for the 

contouring settings that you want to apply to the above view. 

Note 

See the documentation to SetViewContour for an explanation of the template and for the 

general use/workflow of this function. 

integer SetViewContour(integer id, integer dataref, string SavedViewGwa) 

Applies the contour settings from the saved view template provided onto a given saved view 

referenced by id. Then sets the output component that is contoured to ‘dataref’.  

Returns status  

 1 – no file is open 

 2 – Saved graphic view with id does not exist 

 3 – SavedViewGwa string is empty or invalid 



 Oasys GSA 
 

 

© Oasys Ltd 2015 13 

 

 

 4 – could not read a valid saved view from SavedViewGwa 

 0 - OK 

Arguments 

 id – the index of the saved view to which you want to apply the template. 

 dataref – the dataref of the result component that you want to contour. See ‘Output_Init’ 

for an explanation of how datarefs work. 

 SavedViewGwa – the GWA record of a saved view that is to be used as a template for the 

contouring settings that you want to apply to the above view. 

Note 

The SetViewContour, SetViewDiagram, SetViewLabels, and SetViewBaseSettings functions allow 

settings to be applied based on previously created saved views that are used as templates. The 

templates do not need to be in the same GSA file – all that’s needed is the GWA record of the 

template. These could be generated in one of the two ways: 

 Create a saved view with all the settings you would like to see in your final view and save 

the file as GWA. Open in text editor, and copy the relevant GR_VIEW record and paste in 

your code as a string constant.  

 Alternatively, create and save a GSA model with view templates as above. At runtime, use 

your program to open this GSA file, and get the GWA record of the appropriate template 

using the GwaCommand function. 

The following VB.NET code demonstrates the above workflow.  

Dim gsa As New ComAuto 
       ' this is the GSA file that has our view templates 
       gsa.Open("viewtemplates.gwb") 
 
       Dim ref_template_contour = gsa.ViewRefFromName("SGV", "template-contour") 
       Dim ref_template_labels = gsa.ViewRefFromName("SGV", "template-labels") 
 

Dim contour_template As String = gsa.GwaCommand("GET, GR_VIEW," & 
ref_template_contour) 

Dim label_template As String = gsa.GwaCommand("GET, GR_VIEW," &  
ref_template_labels) 
       gsa.Close() 
 
       gsa.Open("steel_design_medium.gwb") 
 
       ' Create a new saved view that will display a contour 
       Dim viewRef As Integer = gsa.CreateNewView("contour") 
 
       ' Now "apply" contour_template to this view and set  
       ' the result component to nodal displacement, z 
       gsa.SetViewContour(viewRef, 12001003, contour_template) 
 
       ' Turn labels on by apply the labels template 
       gsa.SetViewLabels(viewRef, label_template) 

 



 Oasys GSA 
 

 

© Oasys Ltd 2015 14 

 

 

integer SetViewLabels(integer id, string SavedViewGwa) 

Applies labels settings from the supplied view template onto the saved view with the given 

reference.  

Returns status  

 1 – no file is open 

 2 – Saved graphic view with id does not exist 

 3 – SavedViewGwa string is empty or invalid 

 4 – could not read a valid saved view from SavedViewGwa 

 0 - OK 

Arguments 

 id – the index of the saved view to which you want to apply the template. 

 SavedViewGwa – the GWA record of a saved view that is to be used as a template for the 

contouring settings that you want to apply to the above view. 

Note 

See the documentation to SetViewContour for an explanation of the template and for the 

general use/workflow of this function. 

integer SetViewDiagram(integer id, integer dataref, string SavedViewGwa) 

Applies the diagram settings from the saved view template provided onto a given saved view 

referenced by id. Then draws the diagram for the output component represented by ‘dataref’. 

Returns status  

 1 – no file is open 

 2 – Saved graphic view with id does not exist 

 3 – SavedViewGwa string is empty or invalid 

 4 – could not read a valid saved view from SavedViewGwa 

 0 - OK 

Arguments 

 id – the index of the saved view to which you want to apply the template. 

 dataref – the dataref of the result component that you want to contour. See ‘Output_Init’ 

for an explanation of how datarefs work. 

 SavedViewGwa – the GWA record of a saved view that is to be used as a template for the 

contouring settings that you want to apply to the above view. 

Note 



 Oasys GSA 
 

 

© Oasys Ltd 2015 15 

 

 

See the documentation to SetViewContour for an explanation of the template and for the 

general use/workflow of this function. 

integer GetViewOrientation(integer id, ref GsaViewOrientation orientation) 

Returns the view orientation settings of a saved graphic view in the form of a 

GsaViewOrientation object (see struct GsaViewOrientation). 

Returns status  

 1 – no file is open 

 2 – Saved graphic view with id does not exist 

Arguments 

 id – the index of the saved view to which you want to apply the template. 

 orientation – An object of struct GsaViewOrientation. 

The GsaViewOrientation struct contains fields that correspond to the settings from the Graphics 

settings > Orientation dialog in an interactive session. 

 integer SetViewOrientation(integer id, GsaViewOrientation orientation) 

Sets the view orientation settings of a saved graphic view as supplied in the GsaViewOrientation 

object (see struct GsaViewOrientation). 

Returns status  

 1 – no file is open 

 2 – Saved graphic view with id does not exist 

 3 – Error in the definition of orientation object: one of orientation or MidPoint or 

ObjectPoint are null.  

 0 - OK 

Arguments 

 id – the index of the saved view to which you want to apply the template. 

 orientation – An object of struct GsaViewOrientation. 

The GsaViewOrientation struct contains fields that correspond to the settings from the Graphics 

settings > Orientation dialog in an interactive session. 

integer RescaleViewToFit(integer id) 

Rescales the saved graphic view associated with the supplied id.  

Returns status 

1- no file is open 

2- Saved graphic view with id does not exist 



 Oasys GSA 
 

 

© Oasys Ltd 2015 16 

 

 

Arguments 

 id - the index of the saved view that you want to rescale. 

Note 

This function has the same effect as the ‘Scale to fit’ command in an interactive session. 

integer RescaleViewData(integer id) 

Rescales the contour and diagram data (i.e. recalculates extents, etc.) for the graphic view 

associated with the supplied id.  

Returns status 

1- no file is open 

2- Saved graphic view with id does not exist 

Arguments 

 id - the index of the saved view that you want to rescale. 

Note 

This function has the same effect as the ‘Rescale data’ command in an interactive session. 

 

GwaCommand function 

GWA commands are commands that interact directly with the data in a GSA session. This allows 

the user to modify any of the data in a GSA file. GSA data is stored in modules that are one of the 

following types: 

 specification – single record module (e.g. General Specification) 

 ordered table modules – multi-record but can include gaps in the records (e.g. Nodes) 

 collection table modules – multi-record without gaps in the records (e.g. Beam Loads) 

Generally collection table modules are those that are not cross referenced with other modules, 

so, for example, switching a couple of load records does not affect the data integrity while 

switching a couple of node records does. 

The syntax of the command is based on GWA syntax and the units follow the GWA unit syntax; – 

refer to the “GSA Text (ASCII) File” chapter for details. 

variant GwaCommand (string command) 

Issue a GWA command to GSA. 

Argument  



 Oasys GSA 
 

 

© Oasys Ltd 2015 17 

 

 

 command – a command in GWA format with fields separated by a tab or the list separator 

(typically a comma or semi-colon). The commands that can be used are: 

 key_word, {data} – this is used to insert a record of data (e.g. writing a complete set 

of data to a GSA model). 

SET, key_word, {data} – this is similar to the previous command and inserts a record 

of data (for specification and ordered table modules). For a node this will overwrite 

the node (if it is already defined) as the node number is part of the data – but for a 

load it will simply append to the module as the load records do not have a record 

number). 

SET_AT, record, key_word, {data} – set a particular data record (for collection table 

modules) this allows, for example, load records to be modified and overwritten as 

the record number is specified. 

ADD, key_word, {data} – add a data record at the end of the module (for collection 

table modules). 

GET, key_word, {data} – return a record of data. 

HIGHEST, key_word – return the number of the highest record number. 

BLANK, key_word, low_record [, high_record] – blank a record or a range of records 

(without reordering subsequent records). 

DELETE, key_word, low_record [, high_record] – delete a record or a range of records 

(reordering subsequent records to close the gap). 

EXIST, key_word, record – return true if the record exists. 

LOCKED, key_word, record – return true if the record is locked. 

– where items in [ ] are optional and items in { } represent a list of values. 

Examples of command: 

To create a node 25 at (10,4.5,8) 

 SET, NODE, 25, 10, 4.5, 8 

or 

 UNIT_DATA, LENGTH , cm, 100 

 NODE, 25, 1000, 450, 800 

To set beam load 1 to be a UDL of −1000 in z on elements 1 to 10 for case10 in global axes 

 SET, 1, LOAD_BEAM, 1 to 10, 10, GLOBAL, NO, Z, -1000 

or to append this beam load 

 ADD, , LOAD_BEAM, 1 to 10, 10, GLOBAL, NO, Z, -1000 

To check if element 11 exists 



 Oasys GSA 
 

 

© Oasys Ltd 2015 18 

 

 

 EXIST, EL, 11 

To create a beam element 11 with property 1, group 101 and nodes 12 and 22 and orientation 

node 3 

 SET, EL_BEAM, 11, 1, 101, 12, 22, 3 

 

To return the data for material 3 

 GET, MAT, 3 

To get the displacements for node 25 in case 4 

 GET, DISP, 25, 4 

To check the highest node 

 HIGHEST, NODE 

To see if an axis 4 is locked 

 LOCKED, AXIS, 4 

To blank element 40 

 BLANK, EL, 40 

or to delete the element 

 DELETE, EL, 40 

Notes on using GwaCommand: 

 The GwaCommand fully exposes the GSA data structure, so care should be taken to 

ensure that the data is not corrupted. 

 When creating elements the entity type is specified in the keyword, so to create a beam 

element the keyword is EL_BEAM but when inquiring about an element the keyword is 

simply EL. 

 To check the highest user module or to delete a user module refer to the respective 

user module title record. E.g. 

 HIGHEST, USER_MOD_NODE_TITLE 

 DELETE, USER_MOD_ELEM_TITLE, 3 

String IDs (sIDs) and GwaCommand: 

 The model sID is accessed by using the SID key_word. 

 SET, SID, {tag1:value1}{tag2:value2} 

 Object sIDs are appended to the object key_word. 



 Oasys GSA 
 

 

© Oasys Ltd 2015 19 

 

 

 SET, EL_BEAM:{tag1:value1}{tag2:value2}, 11, 1, 101, 12, 22, 3 

 

Refer to Working with the Program — String IDs for information on sID formatting. 

Data functions 

integer NodeCoor(integer id, double x, double y, double z) 

Retrieves the position of a node in global coordinates.  

Returns status 

 0 – OK 

 1 – node not found 

Arguments 

 ref – node reference 

 x – x coordinate of the node (double*) 

 y – y coordinate of the node (double*) 

 z – z coordinate of the node (double*) 

integer Gen_NodeAt (double x, double y, double z, double tol) 

Returns the node number of the newly generated node or the existing node for the given 

coordinate(x, y, z). 

Arguments 

 x – x coordinate of the node 

 y – y coordinate of the node 

 z – z coordinate of the node 

 tol – tolerance to use existing node 

string Gen_SectionMatchDesc (string sectdesc, integer flags) 

Returns valid GSA section description from the given tentative section description (sectdesc) 

 sectdesc – tentative section description 

 flags – compound flag; valid settings are: 

Enum Gen_SectionMatchDesc_Flags 

 SEC_INCL_SS = &H1  include superseded sections in search 



 Oasys GSA 
 

 

© Oasys Ltd 2015 20 

 

 

 SEC_ATTEMPT_STD = &H2 attempt to assemble a standard section from tentative 

section description (sectdesc) 

End Enum 

integer MembNumElem (integer id) 

Returns the number of elements associated with the given member. 

Argument 

 id – member number 

integer MembElemNum (integer id, integer index) 

Returns the element number for the given member and element index. 

Arguments 

 id – member number 

 index – element index for the member (zero based) 

integer ElemMembNum (integer id) 

Returns the member number of associated with the given element. 

Argument 

 ref – element number 

double Tool_GetEntLength(integer id, GsaEntity type) 

Returns the length of the entity. 

Arguments 

 ref – entity reference 

 type – an enum variable of type GsaEntity 

integer Gen_RegionMeshCheck (integer id, ref integer error, ref integer warning, 

ref string message) 

Check the validity of the given region.  

Returns status 

 0 – no errors or warnings 

 1 – some errors or warnings 

Arguments 

 id – region reference number (if ref is zero, all regions are checked) 



 Oasys GSA 
 

 

© Oasys Ltd 2015 21 

 

 

 error – the number of errors generated in running this function  

 warning – the number of warnings generated in running this function  

 message – the message explaining the status of running this function  

integer Gen_RegionMeshGen (integer id, ref integer error, ref integer warning, ref 

string message) 

Generate meshes for the given region (ref).  

Returns status 

 0 – at least one region meshed successfully 

 1 – no region meshed 

Arguments 

 id – region reference number (if ref is zero, meshes are generated for all regions) 

 error – the number of errors in running this function  

 warning – the number of warnings in running this function  

 message – the message explaining the status of running this function  

integer Gen_RegionMeshDel (integer id) 

Delete the mesh for the given region.  

Returns status 

 0 – mesh for at least one region deleted successfully 

 1 – no region mesh deleted 

Arguments 

 id – region reference number (if ref is zero, all regions are deleted) 

integer Nodes(array nodeRefs, ref array nodes) 

Fetches an array of GsaNode objects given an array of node references. 

Returns status  

0 – OK 

1 – No file open or invalid input 

Arguments 

nodeRefs – integer array of valid node references 

nodes – array of GsaNode objects associated with the node references 



 Oasys GSA 
 

 

© Oasys Ltd 2015 22 

 

 

Note 

As an example the following VB.NET snippet retrieves all nodes in the GSA model 

Dim nodeRefs() As Integer 
s = gsaObj.EntitiesInList("all", GsaEntity.NODE, nodeRefs) 
Debug.Assert(Not s.Equals(0) And Not (nodeRefs Is Nothing)) 
Dim nodes() As GsaNode 
s = gsaObj.Nodes(nodeRefs, nodes) 

integer SetNodes(array nodes, bool Overwrite) 

Sets an array of GsaNodes into the GSA model data. 

Returns status 

0 – OK 

1 – No file open or invalid input 

Arguments 

 nodes – array of GsaNode objects. 

 Overwrite – Boolean flag to indicate if existing nodes, if any, are to be overwritten 

 

integer Elements(array elemRefs, ref array elems) 

Fetches an array of GsaElement objects given an array of element references. 

Returns status  

0 – OK 

1 – No file open or invalid input 

Arguments 

 elemRefs – integer array of valid element references 

 elems – array of GsaElement objects associated with the element references 

Note 

For an example, see documentation for the function Nodes(...). 

integer SetElements(array elems, bool Overwrite) 

Sets an array of GsaElement objects into the GSA model data. 

Returns status 

0 – OK 

1 – No file open or invalid input 

Arguments 



 Oasys GSA 
 

 

© Oasys Ltd 2015 23 

 

 

 nodes – SAFEARRAY of GsaElement objects. 

 Overwrite – Boolean flag to indicate if existing elements, if any, are to be overwritten 

integer Sections(array sectRefs, ref array sections) 

Fetches an array of GsaSection objects given an array of section references. 

Returns status  

0 – OK 

1 – No file open or invalid input 

Arguments 

 sectRefs –integer array of valid section references 

 sections –array of GsaSection objects associated with the section references 

Note 

For an example, see documentation for the function Nodes(...). 

integer SetSections(array sections, bool Overwrite) 

Sets an array of GsaSection objects into the GSA model data. 

Returns status 

0 – OK 

1 – No file open or invalid input 

Arguments 

 sections – array of GsaSection objects. 

 Overwrite – Boolean flag to indicate if existing elements, if any, are to be overwritten 

integer Members(array memberRefs, ref array Members) 

Fetches an array of GsaMember objects given an array of member references. 

Returns status  

0 – OK 

1 – No file open or invalid input 

Arguments 

 sectRefs –integer array of valid member references 

 sections –array of GsaMember objects associated with the section references 

Note 



 Oasys GSA 
 

 

© Oasys Ltd 2015 24 

 

 

For an example, see documentation for the function Nodes(...). 

integer SetMember(array members, bool Overwrite) 

Sets an array of GsaMember objects into the GSA model data. 

Returns status 

0 – OK 

1 – No file open or invalid input 

Arguments 

 members – array of GsaMember objects. 

 Overwrite – Boolean flag to indicate if existing elements, if any, are to be overwritten 

 

integer NodeConnectedEnt(GsaEntity entityType, integer nodeRef, ref array 

entRefs) 

Fetches the indices of elements or members connected to a node. 

Returns status  

0 – OK 

1 – No file open or invalid input 

2 – Node does not exist 

Arguments 

 entityType – enum of type GsaEntity. Has to be ELEMENT or MEMBER. 

 nodeRef – reference of the node to query for 

 entRefs – array holding the references to connected entities. (Output) 

 

Output functions 

The following functions are for extracting processed data, for example, derived enveloped 

stresses. 

integer Output_Init (integer flags, string axis, string case, integer dataref, integer 

num1dpos) 

Initialises the output functions. Call this before calling any other “Output_” functions.  

Returns status 

 0 – OK 



 Oasys GSA 
 

 

© Oasys Ltd 2015 25 

 

 

 1 – no GSA file is open 

 3 – invalid axis 

 4 – invalid case 

 5 – invalid dataref 

Arguments 

 flags – compound flag; valid settings are: 

Enum Output_Init_Flags 

 OP_INIT_2D_BOTTOM = &H1  output 2D stresses at bottom layer 

 OP_INIT_2D_MIDDLE = &H2  output 2D stresses at middle layer 

 OP_INIT_2D_TOP = &H4   output 2D stresses at top layer 

 OP_INIT_2D_BENDING = &H8  output 2D stresses at bending layer 

 OP_INIT_2D_AVGE = &H10  average 2D element stresses at nodes 

 OP_INIT_1D_AUTO_PTS = &H20  calculate 1D results at interesting points 

End Enum 

E.g. OP_INIT_2D_TOP Or OP_INIT_2D_AVGE 2D stresses at top layer, averaged at nodes 

 axis – output axis; enter the name of a standard axis or the number of a user defined axis; 

examples of valid entries: 

  "default" – the default for the data being extracted 

  "global" 

  "local" 

 case – the output case, ignored if not relevant; CasePermString may be used to collate this 

string; examples of valid entries: 

  "L1" 

  "A3" 

  "C3" 

  "C4max" – assumes C4 is an envelope 

  "C4min" – <ditto> 

  "C4abs" – <ditto> 

  "C4signabs" – <ditto> 

  "C4p3" – <ditto> 

 dataref – an integer data reference; refer to file “Output_DataRef.txt” in the Docs folder for 

available options; for example: 

  14003001 refers to beam element axial stress 



 Oasys GSA 
 

 

© Oasys Ltd 2015 26 

 

 

 num1dpos – the number of equidistant internal positions ainteger 1D elements to be 

considered for 1D element results, in addition to the automatic interesting positions if 

specified in flags 

Note 

The dataref field is determined by looking at the Output_DataRef file. First locate the result 

header that you are interested (for e.g. for Nodal displacement in y direction the header is 

REF_DISP). Then add the offset of the position of the result you seek. In the case of nodal 

displacement in y this corresponds to REF_DISP_DY, which is at an offset of 2 from REF_DISP, 

therefore the right value of dataref for REF_DISP_DY is 12001000+2 = 12001002. 

The ‘Output’ worksheet in the < C:\Program Files\Oasys\GSA 

9.0\Samples\API_and_GWC\vba.zip\vba\GsaComGwaSample.xls> file demonstrates the use of 

the Output family of functions. In particular, it can also been used to validate if you are working 

with the right value of the dataref argument. To validate, enter appropriate values for the file 

name, node/element ids and the dataref. Then click the Output button. The Title field should get 

populated with the name of the output quantity that dataref corresponds to. 

integer Output_SetStage (integer stage) 

Returns status  

 0 – OK 

 1 – no GSA file is open 

 2 – Output_Init not called 

Argument 

 stage – the analysis stage to be considered; only relevant for input data (e.g. properties) 

since results are for the stage that was analysed; use 0 for “whole model” 

string Output_DataTitle (integer flags) 

Returns the title of the data specified in the last call to Output_Init, as a string. 

Argument 

 flags – compound flag; valid settings are: 

  1 – full title (otherwise the abbreviated title is returned) 

integer Output_IsDataRef (integer flags) 

Returns 1 if the flags condition applies to the data specified in the last call to Output_Init. 

Argument 

 flags – compound flag; valid settings are: 

Enum Output_IsDataRef_Flags 



 Oasys GSA 
 

 

© Oasys Ltd 2015 27 

 

 

 OP_IS_AND = &H1  otherwise OR 

 OP_IS_PER_REC = &H2 

 OP_IS_PER_NODE = &H4 

 OP_IS_PER_ELEM = &H8 

 OP_IS_PER_MEMB = &H10 

 OP_IS_PER_1D_DISP = &H20 

 OP_IS_PER_1D_FRC = &H40 

 OP_IS_PER_TOPO = &H80 

 OP_IS_AT_CENTRE = &H100 

End Enum 

E.g. OP_IS_PER_1D_DISP Or OP_IS_PER_1D_FRC – data is reported at 1D element internal 

displacement OR internal force positions. 

E.g. OP_IS_AND Or OP_IS_PER_ELEM Or OP_IS_PER_TOPO – data is reported per element AND per 

node per element. 

string Output_UnitString () 

Returns the units of the data specified in the last call to Output_Init, as a string. 

float Output_UnitFactor () 

Returns the factor to convert the data specified in the last call to Output_Init from SI to the 

current model units. 

integer Output_DataExist (integer id) 

Returns 1 if the data specified in the last call to Output_Init exists for the specified item. 

Argument 

 id – the record or node or element or member number to be considered 

integer Output_NumElemPos (integer id) 

Returns the number of positions on the element or member for which the data specified in the 

last call to Output_Init are available. For 1D elements this will be the end positions plus the 

internal positions, based on the arguments supplied in the last call to Output_Init. For 2D 

elements this will be the number of nodal positions on the element plus, for some data options, 

the centre value.  

Argument 

 ref – the element or member number to be considered 

Note 

Important: this function must be called before Output_1DElemPos and Output_Extract for 1D 

element results.  



 Oasys GSA 
 

 

© Oasys Ltd 2015 28 

 

 

float Output_1DElemPos (integer pos) 

Returns the position along a 1D element as a proportion of the element length for specified 

position number.  

Argument 

 pos – the position number to be considered; zero based (i.e. “0” is the first position and 

“Output_NumElemPos − 1” is the last) 

Note 

Call Output_NumElemPos before calling this and after calling Output_Init. 

variant Output_Extract (integer ref, integer pos) 

Returns the requested data for the specified axis and case in the current model units. 

Output_NumElemPos should be called before calling this for 1D element data, and after calling 

Output_Init. 

Argument 

 ref – the record or node or element or member number to be considered 

 pos – the position number to be considered; zero based (i.e. “0” is the first position and 

“Output_NumElemPos − 1” is the last) 

integer Output_Extract_CurPerm () 

Returns the envelope permutation that gave the data returned by the last Output_Extract call. 

This is only relevant if the current case, set in Output_Init, is a "Cnmax", "Cnmin", "Cnabs" or 

"Cnsignabs" case. 

integer Output_Init_Arr (integer flags, string axis, string case, enum ResHeader 

header, integer num1dpos) 

Initializes the Output Array API for a specified case, axis, header and flags. 

Returns status 

 0 – OK 

 1 – no GSA file is open 

 3 – invalid axis 

 4 – invalid case 

 5 – invalid dataref 

Arguments 

 flags – compound flag; valid settings are: 



 Oasys GSA 
 

 

© Oasys Ltd 2015 29 

 

 

  Enum Output_Init_Flags 

OP_INIT_2D_BOTTOM = &H1  ' output 2D stresses at bottom layer 

OP_INIT_2D_MIDDLE = &H2  ' output 2D stresses at middle layer 

OP_INIT_2D_TOP = &H4   ‘ output 2D stresses at top layer 

OP_INIT_2D_BENDING = &H8  ' output 2D stresses at bending layer 

OP_INIT_2D_AVGE = &H10  ' average 2D element stresses at nodes 

OP_INIT_1D_AUTO_PTS = &H20  ' calculate 1D results at interesting points 

OP_INIT_INFINITY = &H40  ' return infinity and NaN values as such, 

else as zero 

OP_INIT_1D_WALL_RES_SECONDARY = &H80 ' output secondary stick of wall 

equivalent beam results, else primary 

  End Enum 

  E.g. OP_INIT_2D_TOP Or OP_INIT_2D_AVGE ' 2D stresses at top layer, averaged at 

nodes 

 axis – output axis; enter the name of a standard axis or the number of a user defined axis; 

examples of valid entries: 

"default" – the default for the data being extracted 

"global" 

"local" 

 case – the output case, ignored if not relevant; CasePermString may be used to collate this 

string; examples of valid entries: 

"L1" 

"A3" 

"C3" 

"C4max" – assumes C4 is an envelope 

"C4min" – <ditto> 

"C4abs" – <ditto> 

"C4signabs" – <ditto> 

"C4p3" – <ditto> 

 header -- enum of the type, defined by ResHeader 

 num1dpos – the number of equidistant internal positions ainteger 1D elements to be 

considered for 1D element results, in addition to the automatic interesting positions if 

specified in flags 

Note 

The Output_Init_Arr and Output_Extract_Arr offer faster, array-based alternatives to the 

Output family of functions. The difference between the two is that array based functions work 



 Oasys GSA 
 

 

© Oasys Ltd 2015 30 

 

 

with result headers, and therefore return all components of the requested result type in a single 

function call. For example, initializing Output_Init_Arr with ResHeader.REF_DISP returns all 

components of nodal displacements. When working with elements, the array based functions 

will retrieve all components along all points along an element.  

integer Output_Extract_Arr(integer id, array results, integer numComponents) 

Returns the output data for a node, element or member, as an array. 

Arguments 

 id – the entity reference to return results for 

 results – array of struct GsaResults (Output) 

 numComponents – number of result components for the header in question (Output) 

Note 

The function Output_Extract_Arr returns an array of results for the element or node in question. 

For an element, the results array consists of an array of GsaResults objects. The number of 

objects returned is equal to one of the following: 

 number of intermediate points on 1D elements 

 topology points on 2D elements 

 1 if the entity in question is a node 

Each GsaResults object has 2 members 

 a dynamically allocated array called dynaResults. This contains double values 

corresponding to results for each component for the given header (as specified in the 

Output_Init_Arr function). 

 an integer member NumComponents that contains the number of components in 

dynaResults. 

For e.g. the call 

gsaObj.Output_Set_Init(Output_Init_Flags.OP_INIT_1D_AUTO_PTS, "default", "A1", 

ResHeader.REF_DISP, 2) 

initializes the results API with REF_DISP, the nodal displacements.  

From the file Output_DataRef.txt, we note that REF_DISP has the following components: 

REF_DISP_DX, REF_DISP_DY, REF_DISP_DZ, REF_DISP_TRANS, REF_DISP_RXX, REF_DISP_RYY, 

REF_DISP_RZZ, REF_DISP_ROT, REF_DISP_DXY   

Then, the call 

gsaObj.Output_Extract_Arr(iNode, arrRes, numComp) 

populates arrRes with a single struct that contains dynaResults of length 9 and value of 

NumComponents is set to 9. 



 Oasys GSA 
 

 

© Oasys Ltd 2015 31 

 

 

The order of components in dynaResults is the same as their order in the DataRef enums. 

integer Output_Extract_CutAssembly(integer ref, bool Avg2DStress, string case, 

string axis, array results) 

Fetches ‘Cut Section Forces’ results for a given assembly. See documentation for the Cut Section 

Forces for more explanation of the parameters. 

Arguments 

 ref – the assembly reference to extract forces for. 

 Avg2DStress – use averaged 2D stresses 

 case – case description 

 axis – axis definition 

 results – array of GsaResults object where 

  GsaResults.dynaResults stores the x, y, z xx, yy, zz results in that order, 

  GsaResults.Pos stores the position of the cut. 

Note 

For example: 

Dim results() As GsaResults 
gsa.Output_Extract_CutAssembly(1, False, 0, 0, "A1", "1", results) 

Case and Task functions 

The following functions are for extracting information on GSA load, analysis and combination 

cases. 

integer HighestCase (string caseop) 

Returns the highest numbered case. 

Argument 

 caseop – the type of case; valid entries are: 

  "L" – load case 

  "A" – analysis case 

  "C" – combination case 

integer CaseExist (string caseop, integer id) 

Returns 1 if the case exists. 

Argument 



 Oasys GSA 
 

 

© Oasys Ltd 2015 32 

 

 

caseop – the type of case; valid entries are: 

 "L" – load case 

 "A" – analysis case 

 "C" – combination case 

id – case number 

string CaseName (string caseop, integer id) 

Returns the name of the case as a string. 

Argument 

caseop – the type of case; valid entries are: 

 "L" – load case 

 "A" – analysis case 

 "C" – combination case 

id – case number 

integer CaseNumPerm (string caseop, integer id) 

Returns the number of permutations in the case or 0 if the case is not an enveloping case. 

Argument 

caseop – the type of case; valid entries are: 

 "A" – analysis case 

 "C" – combination case 

ref – case number 

string CasePermDesc (string caseop, integer id, integer perm) 

Returns the case description of the case as a string. 

Argument 

caseop – the type of case; valid entries are: 

 "A" – analysis case 

 "C" – combination case 

id – case number 

perm – permutation number or 0 



 Oasys GSA 
 

 

© Oasys Ltd 2015 33 

 

 

string CasePermString (string caseop, integer id, integer perm) 

Returns the case reference as a string, e.g. "C4p3". 

Argument 

 caseop – the type of case; valid entries are: 

  "L" – load case 

  "A" – analysis case 

  "C" – combination case 

 id – case number 

 perm – permutation number or 0 

float CasePermAnalFactor (string caseop, integer id, integer perm, integer analref) 

Returns the factor of the specified analysis case that contributes to the specified case reference 

as a string, e.g. "C4p3". 

Argument 

 caseop – the type of case; valid entries are: 

  "A" – analysis case 

  "C" – combination case 

 id – case number 

 perm – permutation number or 0 

 analref – the analysis case number; the returned factor of this analysis case contributes to 

the case specified by caseop, id and perm 

integer CaseResultsExist (string caseop, integer id, integer perm) 

Returns 1 if results exist for the case. 

Argument 

 caseop – the type of case; valid entries are: 

  "A" – analysis case 

  "C" – combination case 

 ref – case number 

 perm – permutation number or 0 



 Oasys GSA 
 

 

© Oasys Ltd 2015 34 

 

 

integer CaseTask (integer id) 

Returns the reference number of the analysis task that is parent to the analysis case. 

 id – analysis case number 

integer TaskStatus (integer id) 

Returns the status of the analysis task.  

Returns status 

 0 – task exists and has been analysed 

 1 – no GSA file is open 

 2 – task does not exist 

 3 – task exists but has not been analysed 

Arguments 

 ref – analysis task number 

integer DesignTaskStatus(integer id) 

Returns the status of a design task. 

Returns status 

 1 – no file open 

 2 – Design task does not exist 

 3 – Design task has results 

 4 – Design task has not been designed or checked. 

Argument 

 id – design task reference. 

List functions 

integer IsItemIncluded (string option, integer id, string list) 

Returns 1 is the item reference is included in the list 

Arguments 

 option – valid settings are: 

 ITEM – a general list. 

 NODE – list is a list of nodes. 

 ELEM – list is a list of elements. 



 Oasys GSA 
 

 

© Oasys Ltd 2015 35 

 

 

 MEMBER – list is a list of members. 

 CASE – list is a list of cases. 

 GRID_PT – list is a list of grid points. 

 ref – item to be checked for inclusion 

 list – the list represented by a string (e.g. 1 3 5 or 1 to 10 not 7) 

integer EntitiesInList (string lst, ref enum GsaEntity listType, array entities) 

Retrieves entities from a list description or a saved list. 

Returns status 

0 – OK 

1 – no GSA file open 

2 – saved list does not exist 

3 – no items in the list 

Arguments 

 lst – list description or saved list reference (passed as a string) 

 listType – input or output parameter of type GsaEntity depending on whether lst is a list 

description or a saved list. 

 If lst is a simple description (e.g. "1 to 10"), listType is an input parameter specifying the 

type of list 

 If lst is a saved list reference (e.g. "1"), listType is an output parameter returning the type of 

the saved list 

 arrayEntities – the array of all valid entities in the list. (Output) 

Tool Functions 

integer Tool_UpdateElemSections () 

Returns true if successful 

Call this function to update element section properties according to corresponding member’s 

section properties. 

integer Tool_ResetMemberSections () 

Returns true if successful 

Call this function to reset member section properties according to associated elements’ section 

properties. 



 Oasys GSA 
 

 

© Oasys Ltd 2015 36 

 

 

Utility functions 

short SetLocale (Locale locale) 

Set the locale for Decimal and List Seperators for use by the GwaCommand function. 

Arguments 

 option – enum of type Locale. Valid options are: 

LOC_SYSTEM – Use the system default setting. 

LOC_EN_GB – Use English.(‘,’ and ‘.’) 

Returns status 

0 – OK 

1 – invalid Locale 

The Locale setting is culture and language dependent and varies from one machine to the other. 

GwaCommand strings use decimal and list separators for input and output. Call this function to set 

GwaCommand to operator in a locale independent way. 

integer NumArg(string line) 

Returns the number of arguments in a line 

Argument 

 line – a string of comma separated arguments 

For example NODE, 25, 10, 4.5, 8 would return 5 

string Arg(integer index, string line) 

Returns as a string the argument at the index position in the line 

Argument 

 index – index in line (zero based) 

 line – the line to be decoded 

For example the third argument from NODE, 25, 10, 4.5, 8 would return 4.5 

sID functions 

Sid for each module record can be set and read though the GwaCommand using their format in 

GWA files. But this requires a lot of string parsing and hence the following functions are provided 

to set and get sids directly for each valid module record. For more information on sids, refer to 

String IDs 



 Oasys GSA 
 

 

© Oasys Ltd 2015 37 

 

 

integer WriteSidTagValue(string key, integer record, string tag, string value) 

Writes a Tag-Value pair to the sid of the module record specified. 

Returns status  

 0 – OK, successfully written 

 1 – otherwise 

Arguments 

 key – the keyword of the module 

 record – the index of the record 

 tag – the tag to be written to the sid 

 value – the value associated with the above tag 

This function writes a Tag-Value pair if none exists inside the sid of the record. If there’s already a 

tag present, the associated value is overwritten with the new value. Eg.(VB .NET) 

Dim iSuccess as Integer = gsaObj.WriteSidTagValue("SEC_BEAM", 12, "RVT", "Structural 

Framing - W44x285") 

string GetSidTagValue(string key, integer record, string tag) 

Returns the value for a tag stored inside the sid of the module record specified 

Arguments 

 key – the keyword of the module 

 record – the index of the record 

 tag – the tag for which value is to be retrieved from the sid 

An example of usage (VB .NET) 

 Dim sValue as String = gsaObj.GetSidTagValue("MEMBER", 3, "RVT") 

Note 

The WriteSidTagValue function sets the sid in the standard format specified in the 

documentation. Consequently the GetSidTagValue retrieves a value from sid only if it is in the 

same format. 

Keyword for model sid is "SID".  

An auth oring application using the sid feature must write a model sid. Otherwise sids written to 

module records will not persist. 

It’s the authoring application’s responsibility to ensure that the record exists for the module on 

which it is being called – otherwise GSA might throw an exception 



 Oasys GSA 
 

 

© Oasys Ltd 2015 38 

 

 

Structs  

These structs are used as arguments by various functions. The text in the brackets after each 

field provides an explanation of the field. 

GsaViewOrientation 

 Latitude (Direction of view – Latitute) 
Integeritute (Direction of view - Integeritude) 

 EyeDistance (Eye to object distance) 
 ObjectPoint (Object point coordinates as array of doubles) 

MidPoint (Mid-point coordinates as array of doubles) 
 PictureRotation (Picture rotation) 

GsaResults 

 NumComponents (Number of components available) 
 dynaResults() (Dynamic array of doubles) 
 Pos (Position of the cut -- applicable to Cut Section results only) 

 

GsaElement 

 Ref (Reference)  
 Name  
 Color  
 eType (Element Type)  
 Property (Property reference) 
 Group (Group reference)  
 NumTopo (Number of topology nodes) 
 Topo() (Topology as an array of node references) 
 Beta (Orientation angle) 
 OrientNode (Orientation node) 
 Dummy (Dummy status) 

 

GsaNode 

 Ref (Reference) 
 Name  
 Color  
 Coor() (Coordinates X, Y and Z as array of doubles)  
 Restraint (Nodal restraints as integer values) 
 Stiffness() (Stiffnesses in X, Y, Z, XX, YY, ZZ as array of doubles)  

 

GsaSection 

 Ref (Reference) 
 Name  
 Color  
 SectDesc (Section Description string) 
 Material (Analysis Material) 
 eMatType (Material type – read-only) 
 MaterialGrade (Design Material) 
 Props() (Properties – read-only) 



 Oasys GSA 
 

 

© Oasys Ltd 2015 39 

 

 

 

GsaMember 

 Ref (Reference) 
 Name 
 Color 
 Property (Property reference)   
 Group (Group) 
 Pool (Pool) 
 NumTopo (Number of topology nodes) 
 Topo() (Topology as an array of node references) 
 Beta (Orientation angle) 
 OrientNode (Orientation node) 
 MemberEnd_1 (Member End condition End 1) 
 MemberEnd_2 (Member End condition End 2) 

 



 Oasys GSA 
 

 

© Oasys Ltd 2015 40 

 

 

Enums 

 enum GsaEntity // consistent with SelType 

  NODE    = 1, 
  ELEMENT    = 2, 
  MEMBER    = 3, 
  LINE    = 6, 
  AREA    = 7, 
  REGION    = 8 

  

 enum Locale 

  LOC_SYSTEM  = 1, 
  LOC_EN_GB  = 2 

  

 enum ResHeader  // consistent with Headers in  

  REF_DISP       = 12001000, 
  REF_VEL       = 12002000, 
  REF_ACC       = 12003000, 
  REF_REAC       = 12004000, 
  REF_FORCE_CONSTR    = 12005000, 
  REF_FORCE_NODAL     = 12006000, 
  REF_MASS_NODAL      = 12007000, 
  REF_SOIL_NODAL     = 12008000, 
  REF_DISP_EL0D     = 13001000, 
  REF_FORCE_EL0D     = 13002000, 
  REF_DISP_EL1D     = 14001000, 
  REF_END_ROT_EL1D    = 14001500, 
  REF_FORCE_EL1D      = 14002000, 
  REF_STRESS_EL1D     = 14003000, 
  REF_STRESS_EL1D_DRV    = 14003200, 
  REF_STRAIN_EL1D     = 14003500, 
  REF_SED_EL1D      = 14004000, 
  REF_SED_AVG_EL1D     = 14005000, 
  REF_STL_UTIL      = 14006000, 
  REF_DISP_EL2D     = 15001000, 
  REF_FORCE_EL2D_DRV    = 15002000, 
  REF_MOMENT_EL2D_PRJ    = 15003000, 
  REF_FORCE_EL2D_PRJ    = 15004000, 
  REF_STRESS_EL2D_DRV    = 15005000, 
  REF_STRESS_EL2D_AX    = 15006000, 
  REF_STRESS_EL2D_PRJ    = 15007000, 
  REF_RC_SLAB_REINF     = 15010000, 
  REF_DISP_EL3D     = 15011000, 
  REF_STRESS_EL3D_DRV    = 15012000, 
  REF_STRESS_EL3D_AX    = 15013000, 

  

 ElementType // consistent with ElementType 

  BAR   = 1,  // Bar (2 nodes) 



 Oasys GSA 
 

 

© Oasys Ltd 2015 41 

 

 

  BEAM  = 2,  // Beam (2 nodes) 
  SPRING  = 3,  // Spring (2 nodes) 
  MASS  = 4,  // Mass element (1 node) 
  QUAD4  = 5,  // Quad (4 nodes) 
  QUAD8  = 6,  // Quad with mid-side nodes (8 nodes) 
  TRI3  = 7,  // Triangle (3 nodes) 
  TRI6  = 8,  // Triangle with mid-side nodes (6 nodes) 
  LINK  = 9,  // Link (2 nodes) 
  CABLE  = 10,  // Cable (2 nodes) 
  BRICK8  = 12,  // 3d elements 
  BRICK20  = 13, 
  WEDGE6  = 14, 
  WEDGE15  = 15, 
  TETRA4  = 16, 
  TETRA10  = 17, 
  GRD_SPRING = 18,  // Grounded spring (1 node) 
  SPACER  = 19,  // Spacer (2 nodes) 
  STRUT  = 20,  // Strut (2 nodes) 
  TIE   = 21,  // Tie (2 nodes) 
  BEAM3  = 22,  // Curved Beam  
  ROD   = 23,  // Rod (2 nodes) 
  DAMPER  = 24,  // Damper (2 nodes) 
  GRD_DAMPER = 25,  // Grounded damper (1 node) 

 

 enum RestraintDir // consistent with Direction flags in gsdgen.h 

  RD_FREE   = 0,  // Not restrained 
  RD_X   = 0x1,  // Restrained for x force 
  RD_Y   = 0x2,  // Restrained for y force 
  RD_Z   = 0x4,  // Restrained for z force 
  RD_PIN   = 0x7,  // Restrained for all force 
  RD_XX    = 0x8,  // Restrained for x moment 
  RD_YY    = 0x10,  // Restrained for y moment 
  RD_ZZ    = 0x20,  // Restrained for z moment 
  RD_RPIN   = 0x38,  // Restrained for all moment 
  RD_ENC    = 0x3f,  // Restrained for force & moment 
  RD_DIS    = 0x7,  // mask for force 
  RD_ROT    = 0x38,  // mask for moment 
  RD_ALL    = 0x3f,  // mask for all 

  

 enum DesignOption // consistent with DesignTask::Option 

  CHECK = 0, 
  DESIGN = 1, 

  

 enum MaterialType // consistent with Oasys::MatType 

  UNDEF = 0, 
  GENERIC = UNDEF, 
  STEEL = 0x1, 
  CONCRETE = 0x2, 
  ALUMINIUM = 0x3, 
  GLASS = 0x4, 
  FRP = 0x5, 



 Oasys GSA 
 

 

© Oasys Ltd 2015 42 

 

 

  REBAR = 0x6, 
  TIMBER = 0x7, 
  FABRIC = 0x8, 
  SOIL = 0x9, 

  



 Oasys GSA 
 

 

© Oasys Ltd 2015 43 

 

 

Other samples  

Excel/VBA 

The following is an example of invoking the GSA API from VBA script. 

Sub RunGsa2() 

    Dim iName0, iName1, iName2 As String 

    Dim GsaAuto As Object 

    Set GsaAuto = CreateObject("Gsa.ComAuto") 

    iName0 = "C:\Temp\gsa_com0.gwa" 

    iName1 = "C:\Temp\gsa_com1.gwa" 

    iName2 = "C:\Temp\gsa_com2.gwb" 

    GsaAuto.Open (iName0) 

    GsaAuto.Analyse 

    GsaAuto.Save 

    GsaAuto.PrintView ("TAGGED_SGV") 

    GsaAuto.Delete ("RESULTS") 

    GsaAuto.SaveAs (iName1) 

    GsaAuto.Delete ("RESULTS_AND_CASES") 

    GsaAuto.SaveAs (iName2) 

    GsaAuto.Close 

    Set GsaAuto = Nothing 

End Sub 

COM C++ Example 

The following is an example C++ code to run GSA remotely. 

 if(FAILED(CoInitializeEx(0, COINIT_APARTMENTTHREADED))) 
  return; 
 
 IComAutoPtr pObj(__uuidof(ComAuto)); 
 short ret_code = 0; 
  
 _bstr_t bsFileName = (LPCTSTR)filename; 
 ret_code = pObj->Open(bsFileName); 
 if(ret_code ==1) 
  return; 
  
 _bstr_t bsContent(_T("RESULTS")); 
 ret_code = pObj->Delete(bsContent); 
 ASSERT(ret_code != 1); // file not open! 
  
 _variant_t vCase(0L); 
 ret_code = pObj->Analyse(vCase); 
 ASSERT(ret_code ==0); 
 _bstr_t bsAnalysedFileName = (LPCTSTR)analysed_filename; 
 ret_code = pObj->SaveAs(bsAnalysedFileName); 
 ASSERT(ret_code ==0); 
 pObj->Close(); 

 

Early and Late Binding 

In simplest terms, early and late binding refer to when COM programmers choose to let the 

compiler* know that the object created is of type Gsa.ComAuto. 

In early binding, the object is declared to be of type Gsa.ComAuto and then invoked**. 



 Oasys GSA 
 

 

© Oasys Ltd 2015 44 

 

 

     Dim gsaObj As Gsa_8_4.ComAuto 

     Set gsaObj = New Gsa_8_4.ComAuto 

 

In late binding, the object is simply declared to be of the type ‘Object’ and it’s only when the code 

is run does the compiler know that it beintegers to the type Gsa.ComAuto. 

     Dim gsaObj As Object 

     Set gsaObj = CreateObject("Gsa.ComAuto") 

 

When a particular approach is to be adopted over the other depends on particular needs(see 

reference 2) but broadly late binding allows for the code to be set up and prototyped quickly and 

is recommended if the programmer doesn’t want to be bothered with the version of GSA he is 

using. Early binding on the other hand lets the code run faster and gives a better handle on the 

version of class being invoked. 

References: 

http://visualbasic.about.com/od/usingvbnet/a/earlybind.htm [about.com] 

http://support.microsoft.com/kb/245115 [microsoft.com] 

 

*Compiler/interpreter. In case of Excel, it’s VBA. 

** In VBA, this must be preceded by adding a reference to Gsa.tlb, from ‘Tools | References’. 

Gsa.tlb can be found in the GSA program files folder. Other IDE’s have equivalent methods. 

 

 

 


