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Notation 

Symbol Represents 

t  
Time 

T  
Period 

M  
Mass matrix 

K  
Stiffness matrix 

gK  
Geometric stiffness 

C  
Damping matrix 

u  
Displacement vector 

a  
Acceleration vector 

  Mode shape 

   Eigenvalue or buckling load factor 

  
diagonal eigenvalue matrix 

m~  
Modal mass 

k
~

 
Modal stiffness 

gk
~

 
Modal geometric stiffness 

f,f  Force or force vector 

f  Frequency 

  
Angular frequency 

  
Participation factor 

  Effective mass 

a  
Dynamic amplification 

 ,  Rayleigh damping coefficients 

  Damping ratio 

In general  

scalar quantities are denoted by italics – e.g. mass m or mass M  
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vector quantities are denoted by lower case upright characters – e.g. displacements u  

matrix quantities are denoted by upper case, upright characters – e.g. stiffness K  
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Degrees of freedom 

Active degrees of freedom 

Before the stiffness matrix is assembled it is necessary to decide which degrees of freedom need 

to be included in the solution. 

The nodes can be categorised as follows: 

• Inactive – the node does not exist. 

• Non-structural – the node is not part of the structure (e.g. orientation node). 

• Active – the node is part of the structure. 

Likewise the degrees of freedom can be categorised as: 

• Non-existent – this degree of freedom does not exist because the node is undefined. 

• Inactive – this degree of freedom exists but is not used (considered like a restrained 

node). 

• Restrained – the degree of freedom exists and is part of the structure but it is restrained 

and so it is not active in the stiffness matrix. 

• Slave – the degree of freedom is constrained (through being in a rigid constraint, or by a 

repeat freedom) to move relative to a master degree of freedom and so it is not active in 

the stiffness matrix. 

• Active – this degree of freedom is active in the stiffness matrix. 

In setting up a list of degrees of freedom the following operations are carried out: 

1. All the nodes are assumed to be inactive. 

2. Look at elements attached to nodes to see which degrees of freedom are required. 

3. Remove the degrees of freedom that are restrained by single point constraints or global 

constraints. 

4. Remove the degrees of freedom that are slaves. 

5. Remove degrees of freedom that have no local stiffness. 

6. Number the degrees of freedom. 

Front ordering 

The way in which the degrees of freedom are ordered is important in keeping the size of the 

stiffness matrix to a minimum. The methods offered in GSA are 

• Geometric – the degrees of freedom are ordered along a vector. By default this vector is 

along the longest dimension of the model but can be adjusted by the user. 



 Oasys GSA 
 

 

© Oasys Ltd 2019 11 

 

 

• Reverse Cuthill-McKee – use the bandwidth minimizer of the same name,. This looks at 

the connectivity of the structure by using graphs and reorders the degrees of freedom so 

as to minimize the bandwidth. 

• Cuthill-McKee – similar to the Reverse Cuthill-McKee method (but generally less optimal). 

• Approximate minimum degree – this is used for sparse solvers to avoid excessive fill-in 

when factorizing the stiffness matrix 

Active degrees of freedom 

The degrees of freedom are made active based on the elements attached at the nodes. The 

degrees of freedom will depend on the element type: These are summarised in the table below: 

Element Active degrees of freedom per node 

Bar 

Cable 

3 translational 

Rod 3 translational + 1 rotational 

Beam 3 translational + 3 rotational 

Translational spring 3 translational 

Rotational spring 3 rotational 

Mass 3 translational 

Mass with inertia 3 translational + 3 rotational 

2D plane stress 

2D plane strain 

Axisymmetric 

Bilinear formulation: 

 2 translational 

Allman-Cook formulation: 

 2 translational + 1 rotational 

2D bending Mindlin 

 1 translational + 2 rotational 

MITC 

 1 translational + 3 rotational 

2D shell Mindlin 

 3 translational + 2 rotational 

MITC 

 3 translational + 3 rotational 

2D wall element 3 translational + 3 rotational 

3D brick 3 translational 
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Degrees of Freedom with no Local Stiffness 

It is possible to construct a model and find that there is no stiffness associated with particular 

degrees of freedom, either for translation or rotation. For example a model made up of shell 

elements in a general plane 6 degrees of freedom will be assigned per node, but there is only 

stiffness in 5 of these. There are a number of approaches to avoid this problem. 

Geometry based automatic constraints 

At each node in the structure the attached elements are identified. A pseudo stiffness matrix 

associated with rotations is set up with a value of one on the diagonal if the element is stiff in 

that direction or zero if there is no stiffness. All off-diagonal terms are set to zero. The pseudo 

stiffness is transformed into the nodal axis system (so the off-diagonal terms are, in general, no 

longer zero) and added to a nodal pseudo stiffness matrix. 

Once this has been done for all the attached elements an eigenvalue analysis of the resulting 

pseudo stiffness is carried out to reveal the principal pseudo stiffnesses and their directions. If 

any of the principal pseudo stiffnesses are less that the pre-set “flatness tolerance” then those 

degrees of freedom are removed from the solution and an appropriate rotation to apply to the 

stiffness matrix at the node is stored. 

Stiffness based automatic constraints 

This is similar to the geometry based automatic constraints but instead of a value of one or zero 

assigned to degrees of freedom the actual stiffness matrix is used. The resulting stiffness matrix 

is the same as would result from restraining the whole model except from the rotations at the 

node of interest. 

Again an eigenvalue analysis is carried out to reveal the principal stiffnesses and their directions. 

If any of the principal stiffnesses are less that the pre-set “stiffness tolerance” then those degrees 

of freedom are removed from the solution and an appropriate rotation to apply to the stiffness 

matrix at the node is stored. 

Artificial stiffness in shells 

An alternative and cruder approach is to make sure that there is some stiffness in all directions 

by applying an artificial stiffness in the directions that are not stiff. This is done by constructing 

the element stiffness matrix for shell elements and then replacing the zeros on the leading 

diagonal with a value of 1/1000th of the minimum non-zero stiffness on the diagonal. 

Since this approach introduces an artificial stiffness term that has not physical basis it should be 

used with care. 
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Analysis Options 

Static & Static P-delta Analysis 

The static analysis is concerned with the solution of the linear system of equations for the 

displacements, u , given the applied loads. The applied loads give the load or force vector, f . The 

elements contribute stiffness, K , so the system of equations is 

 fKu   

When non-linear elements such as ties and struts are introduced the analysis is no-longer linear 

and become iterative. GSA uses initial stiffness method to avoid creation of global stiffness 

matrix at each iteration. The system of equation to be solved at each iteration 
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1ir  is residual force from the previous iteration 
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int

1   ii ffr  and 
iu  is the change in 

displacement for current iteration. This method sometimes requires a large number of iterations 

to converge to the solution and this may offset the advantage of constant stiffness. To improve 

the convergence speed acceleration scheme is applied to the solution strategy 
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The acceleration scheme estimates the ratio of the original tangent stiffness to local secant 

stiffness using the successive change in the displacements. To avoid inaccurate estimate the 

ratio, the acceleration scheme is only applied at every alternative iterations. 

Static P-delta 

The static P-delta analysis is similar to the static except that a first pass is done to calculate the 

forces in the elements. From these forces the differential stiffness can be calculated. The 

stiffness of the structure can therefore be modified to take account of the loading and the 

displacements are then the solution of 

   fuKK  g  

The options allow for 

• A single load case to be used as the P-delta load case 

• Each load case to be its own P-delta load case 

In the first case the first pass of the analysis solves 

 gPDPD KfKu   
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for the P-delta case: then for all the load vectors 

   fuKK  g  

is solved for all displacements 

In the second case there is a one for correspondence between P-delta load case and analysis 

case so 

 igii ,KfKu   

then for each case  

   fuKK ,  ig  

Modal 

The modal dynamic analysis is concerned with the calculation of the natural frequencies and the 

mode shapes of the structure. As in the static analysis a stiffness matrix can be constructed, but 

in a modal dynamic analysis a mass matrix is also constructed. The free vibration of the model is 

then given by 

 0KuuM   

The natural frequencies are then given when 

 0MK    

The eigenvalue problem is then 

 0MK    

Or across multiple eigenvalues 

 0MφKφ   

where  ,  are the eigenpairs – eigenvalues (the diagonal terms are the square of the free 

vibration frequencies) and the eigenvectors (the columns are the mode shapes) respectively. 

Modal P-delta 

The modal P-delta is similar to the normal modal analysis but takes into account that loading on 

the structure will affect its natural frequencies and mode shapes. In the same was as a static P-

delta analysis a first pass is carried out from which the differential stiffness can be calculated. 

This is used to modify the stiffness matrix so the eigenproblem is modified to 

   0MφφKK  g  
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Ritz Analysis 

Often the use of modal analysis requires a large number of modes to be calculated in order to 

capture the dynamic characteristics of the structure. This is particularly the case when the 

horizontal and vertical stiffnesses of the structure are significantly different (while the mass is 

the same). One way to circumvent this problem is to use Ritz (or Rayleigh-Ritz) analysis which 

yield approximate eigenvalues. While these are approximate they have some useful 

characteristics. 

The eigenvalues (natural frequencies) are upper bounds to the true eigenvalues 

The mode shapes are linear combinations of the exact eigenvectors 

The number of Ritz vectors required to capture the dynamic characteristics of the structure is 

usually significantly less that that required for a proper eigenvalue analysis. 

Ritz analysis method 

A set of trial vectors based initially on gravity loads in each of the x/y/z directions. The 

subsequent trial vectors are created from these with the condition that they are orthogonal to 

the previous vectors. The assumption is that we can get approximations to the eigenvectors by 

taking a linear combination of the trial vectors. 

So for trial vectors 

  mm xxxx 321X   

Let 

 



m

i

iim sxs
1

X  

and if the approximation to the eigenvalue is  , the residual associated with the approximating 

pair  ,  is given by 

 MφKφr   

The Rayleigh-Ritz method requires the residual vector be orthogonal to each of the trial vectors, 

so 

 0MXKXrX  
T

m

T

m

T

m  

Substituting for   from above gives 

 0sMXXsKXX  m

T

mm

T

m   

or 

 0sMsK  mm   
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with 

 

m

T

mm

m

T

mm

MXXM

KXXK




 

This eigenproblem is then solved for the eigenpairs  s,  and then the approximate 

eigenvectors are evaluated from  

 



m

i

iim sxs
1

X  

Ritz trial vectors 

The algorithm as applied in a single direction is as follows: 

Create a load vector f  corresponding to a gravity load in the direction of interest 

Solve for first vector 

 fKX
*

1     solve for 
*

1X  

 1MXX 11 
T

  normalize M  

Solve for additional vectors 

 1

*
MXKX  ii   solve for 

*

1X  

 
*

MXX i

T

jjc   for 1,,1  ij   

 





1

1

*
X

i

j

jjii cXX  orthogonalize M  

 1MXX m

T

m   normalize M  

Buckling 

The problem in this case is to determine critical buckling loads (Eulerian buckling load) of the 

structure. The assumption is that the differential stiffness matrix is a linear function of applied 

load. The aim of the buckling analysis is to calculate the factor that can be applied to load before 

the structure buckles. At buckling the determinant of the sum of the elastic stiffness and the 

critical differential (or geometric) stiffness is zero. 

 0KK ,  critg  

 

Using the assumption of differential stiffness a linear function of loads gives 
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 gcritg KK ,   

so the equation is 

 0KK  g  

and the eigenvalue problem is then 

 φKKφ g  

Model Stability Analysis 

When a structural model is ill-conditioned (as reported by the condition number estimate) it 

could be a result modeling errors in the model. These errors could be of two types: 

• Some elements may not be well connected or could be badly restrained, e.g. beam 

elements spinning about their axis. 

• Some elements very stiff compared with all other elements in the model, e.g. a beam 

element of short length but a large section. 

To detect such errors, model stability analysis, which is a qualitative analysis intended to reveal 

the causes of of ill conditioning in models, can be useful. The analysis calculates the smallest and 

largest eigenvalues and corresponding eigenvectors of the stiffness matrix, i.e. it solves the 

problem 

 uKu   

for eigenpairs  u, . For each mode that is requested, element virtual energies are calculated 

for each element in the model. These are defined as follows. 

The virtual strain energy es for large eigenpairs where  

 e

T

ees Ku  

and virtual kinetic energy ev for small eigenpairs, defined as  

 e

T

eev uu  

The virtual energies can be plotted onto elements as contours. Typically, for an ill conditioned 

model, a handful of elements will have large relative values of virtual energies.  

• Where the ill conditioning is caused from badly restrained elements, such elements will 

have large relative virtual kinetic energies. 

• If the ill conditioning is from the presence of elements with disproportionately large 

stiffnesses, then these elements will have large virtual strain. 
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The analysis also reports, in increasing order, the eigenvalues computed. For the case of badly 

restrained elements, there is usually a gap in the smallest eigenvalues. The number of smallest 

eigenpairs to be examined is given by the number of eigenvalues between zero and the gap. 

Non-linear Static Analysis 

The non-linear static solver works using the dynamic relaxation method. This is an iterative 

method which simulates a process of damped vibration in small time increments (cycles). This is 

a specialisation of the explicit time-history solution method. Fictitious masses and inertias are 

computed for each free node. 

At each cycle the forces and moments which elements exert on each node are summed for the 

current displacements. The linear and angular accelerations of each node are computed from its 

fictitious mass and inertia, damping is applied to the node’s current linear and angular velocities 

and the node’s shifts and rotations are calculated for the cycle. 

This process is repeated until it is terminated by the user or the solution has converged (the out-

of-balance forces and moments (residuals) at every free node are less than target values).  

If the damping is too high or the fictitious masses and inertias of the nodes are too large, their 

shifts and rotations at each cycle will be very small and many cycles will be needed to achieve a 

result. If on the other hand the damping is too low or the masses and inertias are too small, the 

simulated damped vibration becomes unstable.  

The two cases of an unstable structure and of unstable simulated damped vibration can be 

distinguished by inspecting the results. When the structure is unstable, the element forces 

change little from cycle to cycle and the shifts of the nodes at each cycle may be very large but 

do not vary significantly from cycle to cycle. If the simulated damped vibration is unstable, the 

forces and nodal displacements oscillate wildly between cycles and usually increase to enormous 

values. The third case of stable simulated damped vibration converging to a stable solution can 

be recognised because the residuals and the shifts of the nodes decrease overall from cycle to 

cycle. 

It should be noted that very few structures are so unstable that they do not eventually converge 

to a solution. Generally secondary effects become operative with large deflections and allow the 

structure to reach some kind of equilibrium. 

Matrix Solver Options 

There are two main approaches to the solution of the system of equations – direct solutions and 

iterative solutions. The iterative solutions can be split into ones that involve the full system 

matrix and element by element (EBE) methods. 

For the direct (matrix) solutions there a number of options available. The general equation to be 

solver in GSS is 

 uKf   

In all cases the fact that the matrix K  is symmetric and relatively sparse is exploited in the 

solution. 
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Once the matrix is factorized the solution of the equations is a straightforward back substitution 

in two passes. 

Sparse Parallel Direct Solver 

The sparse parallel direct solver uses a similar storage scheme as the sparse direct solver but 

factorizes the matrix in parallel, utilising multiple cores in CPUs. This makes use of the 'Pardiso' 

solver from Intel Math Kernel Library. Pardiso uses METIS based reordering for reducing fill-in 

and employs Bunch-Kauffman based pivoting for a sparse LDLT factorization. 

Sparse Direct Solver 

The sparse direct solver is another option with exploits the sparsity of the structure matrices. 

The solution method is similar to the active column solver in that the solution method is direct 

although the actual methods used are somewhat different. The sparse direct solver makes use 

of the approximate minimum degree (AMD) algorithm to order the degrees of freedom. This 

method is useful in minimizing the amount of fill when factorizing the matrices. The actual 

factorizing uses a sparse LDLT algorithm. 

These algorithms have been developed at the University of Florida CISE 

(http://www.cise.ufl.edu/research/sparse/). 

Conjugate Gradient Solver 

The conjugate gradient solver exploits the sparsity of the matrix to the full by keeping an index 

of the non-zero terms in the matrix. This means that the factorizing which produces fill-in is no 

longer an issue. Conjugate gradient solvers work with a preconditioner – so are known as pre-

conditioned conjugate gradient (PCG) solvers to improve the condition number of the ‘matrix’ 

leading to better convergence. 

The significant difference with the PCG is that itis iterative. In theory the solution will converge in 

no more iterations than the number of degrees of freedom in the solution, however rounding in 

the calculations means that this cannot be guaranteed. Moreover the aim is to get the solution 

to converge in a much smaller number of iterations so the preconditioner is used to give faster 

convergence. The line Jacobi preconditioner is recommended in GSA. 

The conjugate gradient method and the use of preconditioners are described in many text books 

and the user is directed to the bibliography for further information. 

Active Column Solver 

The active column solver only makes partial use of the sparsity of the matrix. The stiffness matrix 

is stored using skyline storage – only the above diagonal elements and that exist below the 

‘skyline’ are stored. Some or many of the entries within the skyline may be non-zero however in 

the factorization there is fill-in which leads to these entries becoming non-zero. This type of 

storage works well with an active column solver where the factored matrix 

 
TLDLK   

http://www.cise.ufl.edu/research/sparse/
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where the (transpose of the) lower triangle TL and the diagonal D  can be stored within the 

same skyline profile. 

Long Term Analysis 

Long term analysis is not a different type of analysis as such. Instead it is an analysis where 

creep is taken into account for concrete materials. A creep coefficient is specified and this is used 

in the analysis to give effective E and G values for the concrete materials. 
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Nonlinear Dynamic Analysis 

GSA uses explicit time integration in the nonlinear dynamic solver. This progresses the solution 

in small steps updating the state at each time step. This allows us to move from the conditions at 

time t to those at a new time t+t. The fist update is to calculate the force at time t, ft. This is used 

to update the acceleration, at, at time t and from this the velocity and displacement are updated 

to the next time step. 
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In GSA the mass matrix is diagonalized so the inverse of the mass matrix is trivial. For this 

scheme to work the time step t has to be small or the solution is unstable. It needs to subdivide 

the natural period of the mesh. 

The shortest natural period depends on the smallest element mesh dimension. Consider a 

portion of a large mesh vibrating so that alternate layers of elements stretch and compress, 

ignoring and differences in the density and elastic modulus. 
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The nodal mass and element stiffness are 

 

3

2

2
2

m d

Ed
k Ed

d


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Where ρ is the density and E the elastic modulus. The natural frequency, ω, is 

 
3

2 2 2
2

Ed E c

d d d


 
     

Where c is the wave speed in the material. For stability 

 
2 d

t
c

 


   

Where α is a factor less than one to ensure stability – typically ≤ 0.9. 

It is clear that the element size has a direct impact on the time step and hence the number of 

iterations to arrive at a solution.  

To avoid a small number of small element having an adverse effect on the solution time mass 

scaling can be used. For these elements the density can be artificially increased so that the size 

does not impact on the time step. For example if there is one element that is half the size of the 

others, a quadrupling of the density of this element, halves the wave speed and this leaves the 

solution time step unaffected by this small element. Provided it is used sparingly the effect on 

the local an overall mass is negligible. 
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Dynamic Relaxation Analysis 

Dynamic relaxation is an analysis method for non-linear statically loaded structures using a 

direct integration dynamic analysis technique. In dynamic relaxation analysis it is assumed that 

the loads are acting on the structure suddenly, therefore the structure is excited to vibrate 

around the equilibrium position and eventually come to rest on the equilibrium position. In 

order to simulate the vibration, mass and inertia are needed for each of the free nodes. In 

dynamic relaxation analysis, artificial mass and inertia are used which are constructed according 

to the nodal translational stiffness and rotational stiffness. If there is no damping applied to the 

structure, the oscillation of the structure will go forever, therefore, damping is required to allow 

the vibration to come to rest at equilibrium position. There are two types of damping: viscous 

damping and kinetic damping. Kinetic damping is an artificial damping which will reposition the 

nodes according to the change of system kinetic energy. 

Damping 

There are two types of viscous damping, one is viscous damping and one is artificial viscous 

damping. Viscous damping will apply the specified (or automatically selected) percentage of the 

critical damping to the system. Artificial viscous damping will artificially reduce the velocity at 

each cycle by the specified (or automatically selected) percentage of velocity in previous cycle. 

Once artificial viscous damping is used, kinetic damping will be disabled automatically. By 

applying one or both of these artificial damping methods, the vibration will gradually come to 

rest at the equilibrium position and this will be the solution given by dynamic-relaxation analysis. 

The structure below shows the effect of viscous damping on the dynamic relaxation analysis 

process. The oscillation of the structure eventually comes to rest at the static equilibrium 

position if viscous damping is applied. The problem with viscous damping is that it is not an easy 

task to estimate the critical damping of the structure. 
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Kinetic damping is unrelated to conventional concepts of damping used in structural dynamic 

analysis. It is an artificial control to reduce the magnitude of the vibration in order to make it 

come to rest. It is based on the behaviour of structures with only one degree of freedom or the 

vibration of a multiple degree of freedom structure in a single mode. For these cases it is known 

that the structure’s kinetic energy reaches a maximum at the static equilibrium position. 

 

The structure’s kinetic energy is monitored in the analysis at each time increment. The Kinetic 

energy increases as the nodes approach equilibrium position and starts to decrease once the 

nodes are away from equilibrium position. Once the kinetic energy starts to decrease, an 

estimate of the equilibrium position of the nodes can be interpolated from the previous nodal 

positions and kinetic energies. 

At this point the kinetic damping process is applied. The vibration is stopped and the nodes 

repositioned to correspond to the maximum kinetic energy. Assuming the relationship between 

structural kinetic energy and time is a parabola, then the moment at which the kinetic energy 

peaked can be calculated. Based on the previous nodal displacements and rotations, the 

equilibrium positions of the nodes can be estimated. After shifting the nodes to their optimum 

positions, the analysis will restart again by resetting the time, speed and acceleration to be zero. 
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Since it is unlikely that a multiple degree of freedom structure will vibrate in a single mode, it is 

impossible to find the equilibrium position just by reaching the maximum kinetic energy of the 

structure once or twice. Nevertheless, previous experience has shown that the use of kinetic 

damping is very efficient in searching for the equilibrium position in dynamic relaxation analysis. 

Solution Process 

The following steps are used in a dynamic relaxation analysis. 

1. Compute equivalent nodal forces and moments. In this process, member loads are 

converted into nodal force or moments. These are the forces that initiate vibration. 

2. Construct dummy mass and dummy inertia for the unrestrained (active) nodes according 

to the translational and rotational stiffness of the members at the nodes 

3. Compute the acceleration, speed and displacement for each node at each cycle. 

4. Compute a new nodal position and rotation for each node at each cycle; update the 

nodal stiffness and member force acting on the nodes. 

5. Check the force and moment residuals at each node at the current position. 

6. If no residual exceeds the limit, the analysis is considered to have converged and the 

final position is considered as the equilibrium position of the structure. 

7. If any residual is not satisfied, the analysis is continued to the next step. 

8. Compute the total kinetic energy of the structure. If the kinetic energy at a cycle 

overshoots the maximum, it is considered that the equilibrium position has been passed. 

Therefore, all nodes will be re-positioned so that they are closer to the equilibrium 

position. Reset the speed and acceleration to be zero and let the structure start to 

vibrate again from the new position. 

9. After analysis has been converged, the element forces, moments and stresses are 

calculated according to the final equilibrium position of the nodes. 

Fictitious masses and inertia 

To speed up and simplify dynamic relaxation analysis, fictitious (dummy) masses and inertia 

rather than real masses and inertia are used in dynamic relaxation analysis. The fictitious 

masses and inertia are generated automatically in the solver. However, fictitious masses and 

inertia can be adjusted pre and during analysis by applying dummy mass and inertia factors 

and/or dummy mass and inertia power. 

The fictitious masses and inertias calculated by the program are designed to be small enough for 

convergence to be reasonably fast but large enough to prevent nodes shifting too much in one 

cycle, which causes the solution method to become unstable. To this end, it is logical to take the 

fictitious masses and inertia proportional to the nodal translational stiffness and rotational 
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stiffness respectively. From previous experience, it is found that the best estimate of the 

fictitious masses and inertia are two times the nodal translational stiffness and rotational 

stiffness respectively and they are calculated as follows 

• Fictitious mass of a node = 2 × sum of translational stiffness of the elements connected 

to the node 

• Fictitious inertia of a node = 2 × sum of rotational stiffness of the elements connected to 

the node 

Control parameters 

The iterative dynamic relaxation process continues until convergence criteria (unbalanced nodal 

force and moment) are met. If this does not happen, the iteration will continue for a maximum 

number of cycles, or analysis time in minutes. 

It is almost impossible to achieve 100% accurate results in non-linear analysis, so an acceptable 

residual (tolerance) force and moment should be specified. The residual may be absolute or 

relative. 

If relative residual is selected, the actual force residual and moment residual at each node are 

calculated from 

 n

m
m

n

f
f

m

f













 

where 

 mf  ,  are force residual and moment residual respectively 

 mf  ,  are relative force residual and relative moment residual respectively 

  f is the sum of the total imposed loads including both nodal and member loads 

 n is the number of nodes in the structure 

If there is no imposed load, e.g. a structure subjected only to support settlement, the force 

residual and moment residual are calculated from 
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where 
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  mf KK , are the sum of nodal translational stiffness and rotational stiffness of all 

the nodes in the structure. 

If an absolute residual is selected, the specified force residual and moment residual will be used 

in the analysis. 

Beam – Axial force 

The axial force xf of a beam is first calculated as 

 EAff px   

where pf is the pre-stress force. 

If this force is greater than the yield capacity in tension it is set to the yield capacity in tension; if 

it is less than the yield capacity in compression it is set to the yield capacity in compression. The 

yield capacities are 

 
compycompy

tensytensy

Af

Af
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,,






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where tensy,  is the tensile yield stress and compy, is the compressive yield stress 

The strain is calculated as 

 
   

 lengthunstressed

lengthunstressednodesbetweendistance 
  

The unstressed length is the initial distance between the end nodes (or the ‘initial length’ as 

specified by the user) modified for temperature. 

Beam – Shear force and torsion 

The shear modulus of a beam is assumed to be 

 
 


12

E
G  

The shear strain caused by a shear force is considered to be uniform over the whole beam for 

planes normal to a principal axis. The shear strain between a principal axis and the local beam x 

axis is taken as 
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xy


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
  ,  

and the effective shear stress is taken as 
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Where zy kk are the shear factor along the principal axis closest to the local beam y/z axis. 

The angle by which a beam is twisted about its local x axis is simply considered to be 

 
GJ

lM x  

Beam – Axial force – flexural stiffness interaction 

If slenderness effects are to be considered the bending stiffness of a beam is modified according 

to the axial load by using Livesey’s ‘stability functions’1. 

For a continuous/continuous beam within the elastic range the bending moment at end 1 is 

taken as 
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  equation A 

S and SC are derived from series 

 



























32

32

!10

8

!8

6

!6

4

!4

2

!9

8

!7

6

!5

4

!3

2

kkk

kkk

S  

 



























32

32

!10

8

!8

6

!6

4

!4

2

!9!7!5!3

1

kkk

kkk

SC  

where 
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k x

2
  

and compression is positive. 

For a continuous/pinned beam within the elastic range the bending moment at end 1 is taken as 
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1
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


  equation B 

                                                        

 

1 M.R. Horne & W. Merchant “The Stability of Frames” Pergamon 1965 
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S″ and C are derived from series 
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where 
2M is the moment at end 2 and compression is positive. 

These series are used to pre-calculate S, SC, S″ and C for ten values of K. During calculation cycles 

values of S, SC, S″ and C are interpolated for the current value of K. 

Beam – Yielding 

For an explicitly defined section the bending moments about the principal axes are limited to the 

following value 

   pcompytensy IA ,,45.0   

For equal yield stresses this is a good approximation to the plastic bending moment capacity. 

The axial force is computed as above. 

The calculations for the axial force and for the bending moments about the principal axes are all 

performed independently. Beams are assumed to behave elastically up to the limiting force or 

bending moment. Thus plastic behaviour is only modelled with any degree of realism for cases 

where either 

• only axial forces are significant or 

• only bending about one principal axis is significant, the tensile and compressive yield 

stresses are similar and the transition between first yield and full plasticity can be 

ignored. 

If the bending moment at one end of a beam has been limited to the plastic moment capacity, 

the bending moment at the other end is obtained by using equation B above 
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This bending moment is in turn limited to the plastic moment capacity. 

For a beam with a standard shape section and a specified yield stress, the program calculates 

the tensile and compressive yield forces of the section, which are taken to be 
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The program then constructs a ‘look up’ table for each shape before the commencement of 

calculation cycles. 

The ‘look up’ table contains values of 

• bending moment causing first yield (i.e. the lowest bending moment at which with elastic 

behaviour yield stress is attained in tension or compression at one point in the section) 

• plastic bending moment (i.e. the bending moment with the section on one side of the 

neutral axis at the tensile yield stress and on the other side of the neutral axis at 

compressive yield stress). 

for 

• nine values of axial force equally spaced between the tensile and compressive yield axial 

loads of the section. 

• angles of applied moment at intervals of 15 degrees from 0 to 345 degrees with 

reference to the principal axis that is nearest to the beam local y axis. 

During calculation cycles the program computes the bending moment at first yield and the 

plastic bending moment in a beam for the current axial force and angle of applied bending 

moment by linear interpolation between the values in the “look up” table (both bending 

moments are of course zero when the axial force equals the tensile or compressive yield force, 

and the axial force of a beam is limited to values between the tensile and compressive yield 

forces) 

The program initially calculates the forces and bending moments at each end of a beam 

assuming elastic behaviour. If the net bending moment at the first end is greater than the 

moment causing first yield then the bending moment is modified according to the formula 

  yiyi MMMM  5.01  equation C 

If the bending moment at the first end of a beam is modified, the bending moment at the second 

end is obtained by using equation B 
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l

SEI
M 





 

If the bending moment at the second end exceeds that at first yield, it is modified in the same 

way as was the one at the first end, and the bending moment at the first end is obtained by 

using equation B 

 
mod,21 MC
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If this bending moment is greater than the moment causing first yield, the whole process is 

repeated until the bending moments cease to be modified. 
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Equation C is equivalent to halving the stiffness of a beam at first yield. 

Fabric- Stress computation 

The warp and weft directions are assumed to be perpendicular. The direct and shear strains are 

first computed for the warp and weft directions assuming uniform strains over each triangle and 

the stresses are calculated from the equations 
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 xyxy G    

where x is the warp direction and y is the weft direction. 

The principal stresses are then computed. If a triangle is set to take no compression, 

compressive principal stresses are set to zero. 

The forces exerted by the triangle are calculated from the principal stresses. 

Equations A and B are obtained by rewriting 
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and 
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Poisson’s ratio for pure warp stress xy  is defined in the material table. yx , the Poisson’s ratio for 

pure weft stress is calculated from 
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If no shear modulus is specified it is calculated as 
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For isotropic materials where EEE yyxx  and   yxxy this is equivalent to 
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This corresponds to elastic behaviour. 

Applied Displacements and Lagrange Multipliers 

The basic equations for a linear static analysis are 

 Kuf   

The applied displacements are applied by using Lagrange multipliers. The basic concept is that 

the structure matrix can be modified to apply a displacement condition 
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Where   are the Lagrange multipliers used to enforce a constraint condition and u~  are the 

applied displacements. 

Expanding the matrix equation gives 

 ueu~

λeuKf

T



 

or 

 
 λefKu 1  

 

 
  λefKeu~ 1  T

 

so 

 
   λeKeu~fKe 11   TT

 

 λK̂f̂ 1  

Solving this equation gives the Lagrange multipliers, which can then be used in  

 
 λefKu 1  

 

to solve for the displacements. 

Axes 

Axes can be either Cartesian, cylindrical or spherical. The coordinates in these are: 

• Cartesian –  zyx ,,  

• Cylindrical –  zr ,,  

• Spherical –   ,,r  
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An axis is defined by three vectors irrespective of axis type. These define the location and basic 

orientation. The x axis vector is any vector pointing in the positive x axis direction. The xy plane 

vector is any vector in the xy plane of the axis that is not parallel with the x axis vector. The axes 

are then constructed as follows: 

 
xzy

xyxxyxz

xxx







planeplane

axisaxis

 

The basic axis system is the Global Cartesian axis system, normally referred to as the Global axis 

system. All other axis systems are located relative to the Global axis system. Global axis 

directions are generally denoted X, Y and Z to distinguish from other, more general axis 

directions which use x, y and z. 

All the axes systems in GSA are right handed axes systems. 

 

Rotations about the axes follow the right hand screw rule 
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Composite 

Composite Slabs 

Composite slabs are a slab supported on steel deckling. These can be modelled as a solid slab 

with adjustment to the in-plane (tp) and bending (tb) thickness. For a unit width the area of slab is 

A concrete (Ac) and steel (As) are known as are the second moments of area (Ic and Is) and the E 

values (Ec and Es). 

Referring back to the concrete as the primary material the effective area is 

 
  scsceff AEEAA 

 

And the effective thickness (in-plane) is 
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Give the centroid of the concrete (zc) and steel decking (zs) the centroid of the composite section 

is then 
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and the effective second moment of area (Ieff) is 
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And the effective thickness in bending is 
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Effective Elastic Properties 

In order to simplify calculations it is possible to determine affective elastic properties of a 

section. The simplest of these is the area. Consider a section with both concrete and steel with 

areas Ac and As respectively. The axial stiffnesses are 

 l
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cc
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And the total stiffness is then 
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To simply calculation we can choose a reference material. So for concrete as a reference material  
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or 

 c

s

sceff
E

E
AAA 

 

More generally for a collection of components with a reference section 
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For a section made of multiple components the effective centroid is defined as 
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As for axial properties effective bending properties can be defined (allowing for the different 

centroids) as 
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Condition Number 

Ill conditioning arises while solving linear equations of the type 
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 xKf   

for given loads f and stiffness K in (say) linear static analysis, approximations are introduced in 

the solution because all calculations are carried out in finite precision arithmetic. This becomes 

important when K  is ill-conditioned because there is a possibility of these approximations 

leading to large errors in the displacements. The extent of these errors can be quantified by the 

'condition number' of the stiffness matrix.  

The condition number of a matrix (with respect to inversion) measures worst-case of changes in 

{x} corresponding to small changes in K or f . It can be calculated using the product of norm of 

the matrix times the norm of its inverse. 

 
  1KKK 

 

where is a subordinate matrix norm. 

 

If K is a symmetric matrix, the condition number κ(K) can be shown to the ratio of its maximum 

and minimum eigenvalues max and 
min .  

 

 
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maxK



 

 

The minimum value of  K  is 1 and the maximum value is infinity. If the condition number is 

small, the computed solution x is reliable (i.e. a reliable approximation to the true solution of 

xKf  . If the condition number is large, (i.e. if the matrix is almost singular) the results cannot 

be trusted. 

GSA computes a lower bound approximation to the 1-norm condition number of K and this is 

reported as part of the solver output. This can be used to evaluate the accuracy of the solution 

both qualitatively and quantitatively. The (qualitative) rule of thumb for accuracy is n – the 

number of digits of accuracy in x is 

 log16 n  

In general any stiffness matrix with condition number above 1015 can produce results with no 

accuracy at all. Any results produced from matrices with condition number greater than 1010 

must be treated with caution. 

Where a model is ill-conditioned, Model Stability analysis can help detect the causes of ill 

conditioning. 

For a given condition number, we can also compute the maximum relative error in x . The max. 

relative error in x  is defined as the maximum ratio of norms of error in x  to x , i.e. 

 
x

x
max
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Given a matrix K with condition number  , the maximum relative error in x when solving 

xKf   is 

 



1

2

 

where  is the constant 'unit-roundoff' and is equal to 1.11e-16 for double precision floating 

point numbers. The maximum relative error is computed and reported as part of solver output. 

Ideally, this should be small  1 , since a small relative error indicates a reliable solution but as 

 1 , the relative error grows rapidly.  

GSA calculates the condition number using Higham and Tisseur's block 1-Norm condition 

number estimation algorithm. 

These are reported in the Analysis Details output. 

Constraint & Constraint Equations 

Constraint equations for the basis of the different constraint types in GSA: 

• Joints 

• Rigid constraints 

• Constraint equations 

• Tied interfaces 

Constraint Equation 

The form of a constraint equation is  

  imis uau ,  

and is used to tie degrees of freedom in the model.  

Joint 

For a joint this becomes a set of equations for the linked degrees of freedom of the form 

 ms uu 
 

Rigid Constraints 

For a rigid constraint there are a set of constraint equations which respect the geometry of the 

constraint. So for a single slave node the constraint equations are  
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where the δ terms are 1 for a fixed and 0 for a pinned rigid constraint.  

Different terms in the matrix are dropped for reduced constraint types. The two most common 

special types are plane and plate constraints with equations (for the xy case) 
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for an xy plane constraint 

 






























 


















vm

um

m

vs

us

s wxyw













1

 

for a z plate constraint. 

Tied interfaces 

Tied interfaces are composed of master and slave surfaces. Internally these are broken down to 

nodes on the slave side and element (faces) on the master side. The nodes on the slave side are 

connected to the adjacent master face via a set of constraint equations.  

The (r,s) coordinates of the nodes relative to the master face are established and then the shape 

functions are used to construct a set of constraint equations 

 

  
i

imis uhsru ,,

 

In the case of a quad-4 face this expands to  

 
              4,4

1
3,4

1
2,4

1
1,4

1 11111111, mmmms usrusrusrusrsru 
 

which forms the constraint equation. This is repeated for all the displacement directions. 

The special case is the drilling degree of freedom. As the 2D elements have either no drilling 

freedom or one which can work quite locally. For this degree of freedom the rotation is linked to 

the translations of the 2D element. If the node is internal to the element base the rotation of the 

element as a whole. If the node is on the edge use the rotation of just that edge. 
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For each element node define a vector iv from the slave node position to the node in the plane 

of the element. Let 
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The displacement at the centre of the 2D element is 
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Then the rotation of the node at a distance il is and angle i  
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So rotation at (r,s) is 
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Or expanding 
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Direction Cosines 

Direction cosines contain information that allows transformation between local and global axis 

sets. Given a set of orthogonal unit axis vectors the direction cosine array is defined as 

  zyxD ||  

Any vector or tensor can then be transformed from local to global through 
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The inverse transformation uses the transpose of the direction cosine array 
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Dynamic Response Analysis 

Harmonic Analysis 

Harmonic analysis is used to calculate the elastic structure responses to harmonic (sinusoidally 

varying) loads at steady state. This is done using modal superposition. 

The dynamic equation of motion is: 

  tsinpKuuCuM    

Where p represents the spatial distribution of load and  the time variation. 

From the mode shape results of a modal dynamic analysis, the nodal displacements, velocities 

and accelerations can be expressed as 

 

qΦu

qΦu

qΦu











 

where qqq  ,, are the displacement, velocity and acceleration in modal (generalized) coordinates, 

for the m modes analysed. 

Substituting these in the original equation gives 

  tsinpqKΦqCΦqMΦ    

Pre-multiplying each term in this equation by the transpose of the mode shape gives 

  tTTTT sinpΦ qKΦΦqCΦΦqMΦΦ    

According to the orthogonality relationship of the mode shapes to the mass matrix and the 

stiffness matrix and also assuming the mode shapes are also orthogonal to the damping matrix 

(e.g. Rayleigh damping), this equation can be replaced by a set of m uncoupled dynamic 

equations of motion as shown below. 

  tiqqq
T
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T

iii

T

iii

T

i sinpφKφφCφφMφφ    

Setting 
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Then the uncoupled equations can be expressed in a general form as follows 

  tipqkqcqm iiiii sinˆˆˆˆ    

where all the terms are scalars. Solving this equation is equivalent to solving a single degree of 

freedom problem. 

For the single degree of freedom problem subjected to harmonic load, the dynamic 

magnification factors  of the displacement for mode i  in complex number notation is  
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and i θi is the natural frequency of mode i . 

The maximum displacement, velocity & acceleration of mode i  in the modal coordinates are 
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Substituting gives the maximum actual nodal displacements, velocities & accelerations at the 

steady state of the forced vibration as 

 i

m

i
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i

i qφuqφuqφu
111

 


  

After obtaining the maximum nodal displacements, the element forces and moments etc can be 

calculated as in static analysis. 
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Periodic Load Analysis 

GSA periodic load analysis is to calculate the maximum elastic structure responses to generic 

periodic loads at steady state. Modal superposition method is used in GSA periodic load analysis. 

The dynamic equation of motion subjected to periodic loads is 

  tfpKuuCuM    

Where  tf  is a harmonic load function. Using a Fourier Series, the periodic function of time 

can be expressed as a number of sine functions 
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h
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where hr are the Fourier coefficients (or dynamic load factor) defined by the user and T is the 

period of the periodic load frequency and H is the number of Fourier (harmonic) terms to be 

considered. 

Substituting in the first equation we can rewrite as a number of dynamic equations of motion 

subjected to harmonic loads: 

 







 t

T

h
rh

2
sinpKuuCuM   

The maximum responses of this can be solved using harmonic analysis for each of the harmonic 

loads  ,2,1h  then the maximum responses from the periodic loads can be calculated using 

square root sum of the squares (SRSS) 

 



H

h

hRR
1

2

max,max
 

Linear Time-history Analysis 

Linear time history analysis is used to calculate the transient linear structure responses to 

dynamic loads or base acceleration using modal superposition.  

The dynamic equation of motion of structure subjected to dynamic loads is 

  tfpKuuCuM    

If the excitation is base acceleration 

 Mvp   

where v is an influence vector that represents the displacement of the masses resulting from 

static application of a unit base displacement defined by the base excitation direction and the 

force due to the base acceleration is 

    tutf g
  
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To use the results (mode shapes) from modal dynamic analysis, the nodal displacements, 

velocities and accelerations can be expressed in modal coordinates as 
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Then setting 

 

pφˆ

Cφφˆ

Kφφˆ

Mφφˆ

T

ii

i

T

ii

i

T

ii

i

T

ii

p

c

k

m









 

gives 

  tfpkcm i
ˆqˆqˆqˆ    

This gives a single degree of freedom problem that can be solved using any of the direct 

numerical analysis methods such as Newmark or central differences (Newmark is used in GSA). 

There are m such equations that are corresponding to each of the modes from the modal 

dynamic analysis. Superimposing the responses from each of the one degree of freedom 

problem the total responses of the structure can be calculated from 

i

m

i

ii

m

i

ii

m

i

i qφuqφuqφu
111

 


  

Footfall Analysis 

Footfall analysis (or in full, footfall induced vibration analysis) is used to calculate the elastic 

vertical nodal responses (acceleration, velocity, response factor etc.) of structures to human 

footfall loads (excitations). The human footfall loads  tf  are taken as periodic loads. Using to 

Fourier Series, the period footfall loads can be expressed as: 
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where G is the body weight of the individual, and hr are the Fourier coefficients (or dynamic 

load factor), the actual values of dynamic load factors can be found from reference 24, 25 and 26 

in the bibliography, T is the period of the footfall (inverse of walking frequency) and H the 

number of Fourier (harmonic) terms to be considered, 4 is used for walking on floor using CCIP-

016 method, 3 is used for walking on floor using SCI method and 2 is used for walking on stairs. 

 After subtracting the static weight of the individual (since it does not vary with time and does not 

induce any dynamic response), the dynamic part of the footfall loads are the sum of a number of 

harmonic loads 
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There are two distinctive responses from the footfall excitation, the resonant (steady state) and 

transient. If the minimum natural frequency of a structure is higher than 4 times the highest 

walking frequency (see reference 24), the resonant response is normally not excited since the 

natural frequencies of the structure are so far from the walking (excitation) frequency, therefore 

the transient response is normally in control, otherwise, the resonant response is probably in 

control. Both resonant (steady state) and transient analyses are considered in GSA footfall 

analysis, so the maximum responses will always be captured. 

Resonant response analysis 

As footfall loads are composed of a number of harmonic loads (components), harmonic analysis 

is used to get the responses for each of the harmonic components of footfall loads and then to 

combined them to get the total responses. From one of the harmonic components  h  of the 

footfall loads in equation above and the given walking frequency  T1 , the following dynamic 

equation of motion can be obtained 

 







 t

T

h
Grhkhhh




2
sinKuuCuM   

where k is a unit vector used to define the location of the harmonic load. All the components in 

this vector are zero except the term that corresponds to the vertical direction of the node 

subjected footfall load. 

Since the number of footfalls is limited and the full resonant response from the equation above 

may not always be achieved, a reduction factor mh, for the dynamic magnification factors  is 

needed to account for this non-full resonant response. The reduction factor can be calculated 

from 

 
N

mh
me

 2

, 1


  

Where m is damping ratio of mode m and hWN 55.0 with h the harmonic load number and 

W the number of footfalls. 

 Applying this reduction factor to the dynamic magnification factors    in Harmonic Analysis, 

this equation can be solved using the method described in Harmonic Analysis Theory section. 

Repeating this analysis, the responses from the other harmonic loads of the footfall can also be 

obtained. The interested results from this analysis are the total vertical acceleration and the 

response factor from all harmonic loads of the footfall. The total vertical acceleration is taken as 

the square root of the sum of squares of the accelerations from each of the harmonic analyses. 

The response factor for each of the harmonic loads is the ratio of the nodal acceleration to the 

base curve of the Root Mean Square acceleration given in reference 25 as shown below. This 

total response factor is then taken as the square root of the sum of squares of the response 
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factors from each of the harmonic loads. According to this, the total acceleration and response 

factor can be calculated from 
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where 

 ia  is the maximum acceleration at node i  

 hiu ,
  is the maximum acceleration at node i by the excitation of harmonic load h  

  H  is the number of harmonic components of the footfall loads considered in the 

analysis 

 if  is the response factor at node i  

  hif ,  is the response factor at node i  by the excitation of harmonic load h  

 iw is the frequency weighting factor and it is a function of frequency 

For standard weighting factors see Table 3 of BS6841. 

Transient response analysis 

The transient response of structures to footfall forces is characterised by an initial peak velocity 

followed by a decaying vibration at the natural frequency of the structure until the next footfall. 

As the natural frequencies of the structure considered in this analysis is much higher the highest 

walking frequency, there is no tendency for the response to build up over time as it does in 

resonant response analysis. The maximum response will be at the beginning of each footfall. 

Each footfall is considered as an impulse to the structure, according to references 35 & 29, the 

design impulse can be calculated from 

When walking on floor (Concrete Centre/Arup method) 
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When walking on floor (SCI P354 method) 
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When walking on stairs (Concrete Centre/Arup method) 
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When walking on stairs (SCI P354 method) 

 0, mdesI  

where 

 mdesI ,  is the design impulse for mode m in NS 

 f is the walking frequency in Hz 

 mf is the natural frequency of the structure in mode m in Hz 

 Q is the weight of the walker in N 

 For this impulse, the peak velocity in each mode is given by 
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and the peak acceleration in each mode is given by 
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where 

 mv̂ is the peak velocity in mode m  by the footfall impulse  

 mâ is the peak acceleration in mode m  by the footfall impulse  

 mrme uu ,, , are the vertical displacements at the excitation and response nodes respectively 

in mode m  

  mm̂ is the modal mass in mode m  

The variation of the velocity with time of each mode is given by 

    tfevtv m

tf

mm
m 

2sinˆ 2
  

and the variation of the acceleration with time of each mode is given: 

    tfeata m

tf

mm
m 

2sinˆ 2
  

where  is the damping ratio associated with mode m  
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The final velocity and acceleration at the response node are the sum of the velocities and 

accelerations of all the modes  M  that are considered 
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This gives the peak velocity and peak acceleration. The root mean square velocity and root mean 

square acceleration can be calculated from the period of the footfall 
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The response factor at time t (t is from 0 to T and T is the period of the footfall loads) can be 

calculated from 

    
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where 

 mw is the frequency weighting factor corresponding to the frequency of mode m  

The final transient response factor, based on the root mean square principle, is given by 

  
T

RR dttf
T

f
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Element axes 

The orientation of elements depends on the element type. These are represented by the 

direction cosines based on the element x, y and z axis directions.  

Section elements 

Section elements include beams, bars, rods, ties and struts are defined by two nodes locating the 

ends of the element. The x axis of the element is along the axis of the element (taking account of 

any offsets) from the first topology item to the second. 

The definition of the element y and z axes then depends on the element’s orientation, verticality, 

orientation node and orientation angle. The element is considered vertical in GSA if the element 

is within the ‘vertical element tolerance’. 

Non-vertical elements 

If an orientation node is not specified, the element z axis of a non-vertical element defaults to 

lying in the vertical plane through the element and is directed in the positive sense of the global 

Z direction. The element y axis is orthogonal to the element z and x axes. The element y and z 

axes may be rotated out of this default position by the orientation angle. 

 

Vertical elements 

If an orientation node is not specified, the element y axis of a vertical element defaults to being 

parallel to and is directed in the positive sense of the global Y axis. The element z axis is 

orthogonal to the element x and y axes. The element y and z axes may be rotated out of this 

default position by the orientation angle. 
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Orientation node 

If an orientation node is specified, the element x-y plane is defined by the element x axis and a 

vector from the first topology position to the orientation node, such that the node has a positive 

y coordinate. The element z axis is orthogonal to the element x and y axes. Specifying an 

orientation node overrides the “vertical element” and “non-vertical element” definitions 

described above. The element y and z axes may be rotated out of this default position by the 

orientation angle. 

Orientation angle 

The element y and z axes are rotated from their default positions about the element x axis by 

the orientation angle in the direction following the right hand screw rule. This occurs regardless 

of whether or not the element is vertical and of whether or not an orientation node is specified. 

Spring elements 

The definition of the element axes for a spring depends on the spring element. For a two-noded 

element with non-zero length the definition of the local axis is the same as for a beam element. 

If the element is a ground spring or has zero length the axis system is set in the spring property. 

If the axis system is ‘local’ then the rules for orientating section elements apply. If the axis system 

is ‘global’ or user defined, these are used and the topology, orientation node and orientation 

angle are ignored. User defined axes can be Cartesian, cylindrical or spherical. 

Grounded spring and mass elements 

The definition of the element axes for a grounded spring or mass depends on the axis system 

set in the spring or mass property. If the axis system is ‘global’ or user defined, these are used. If 
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the axis system is ‘local’ the element axis is taken as global. User defined axes can be Cartesian, 

cylindrical or spherical. 

Cable elements 

Cable elements act only in the axial direction, so only the x axis is defined following the same 

definition as the x axis of a beam element. 

Link elements 

The local axes of link elements are the same as those of the master node. 

2D element axes 

2D element local axes may be defined either by reference to an axis set or topologically. This is 

determined by the axis system defined in the 2D element property. If the axis system is ‘global’ 

or user defined then the specified axis set is used. If the axis system is ‘local’ then the topological 

definition is applied. User defined axes can be Cartesian, cylindrical or spherical. 

Typically defining 2D element local axes by reference to an axis set results in more consistent 

local axes in the mesh. 

The local axes for flat 2D elements are chosen so that the plane of the element is the local x-y 

plane. 

The normal to the element is defined as 

    2413 ccccn   

Where ic  is the coordinates on a point on the element, i.e. the coordinates of the node, i , plus 

any offset, io , at that topology position. 

 iii occ  ,0  

2D element axes defined by axis set 

If the 2D element property axis is set to other than 'local' then the specified axis system is 

projected on to the element. For Cartesian axes the x axis of the axis set is projected onto the 

element 

 

 
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nyx

xnxny axisaxis







 

The exception to this rule is when the x axis of the axis set is within 1° of the element normal in 

which case a vector for an interim y axis is defined as 
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
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This axis set is then rotated about the element normal equivalent to an orientation angle of 90°. 

For Cylindrical and Spherical axes the z axis of the axis set is projected on to the element to 

become the local y axis. 

 

 

nz

xny

nznzx axisaxis







 

Topological definition of 2D element axes 

If the 2D element property axis is set to 'local' the local x and y axes are based on the topology of 

the element. 

 

 

vun

ccv

ccu







13

24

 

 

 

nz

xny

ccccx





 1212

 

If an orientation angle is defined these axes are rotated by the orientation angle in a positive 

direction about the element z axis. 

3D element axes 

3D element local axes may be defined either by reference to an axis set or topologically.  
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Updated element axes 

In a geometrically non-linear analysis the axes of the element must deform with the element. 

This has to resolve the difference between the original (undeformed) configuration and the 

current (deformed) configuration. 

For 1D elements the deformed direction cosines can be represented by a new x vector based on 

the deformed positions of the ends of the element and the average rotation of the element 

about its x-axis. 

 

For 2D elements the undeformed configuration can be represented by direction cosines based 

on the  000 ,, tsr  axes. 

  0000 || tsrD   
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The deformed configuration at i can be represented by direction cosines based on the deformed

 iii tsr ,,  axes. 

  iiii tsrD ||  

 The base direction cosines 0eD can then be updated using 

 i

T

eei DDDD 00  

Elements 

Bar and Rod Elements 

The bar element stiffness is 
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The mass matrix is 
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And the geometric stiffness is 
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The rod element stiffness is 
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Cable, Tie and Strut Elements 

These elements are variants on the bar element. Cable and tie elements can carry only tensile 

forces, while strut elements can carry only compressive forces. The stiffness matrix for ties and 

struts is identical to that for a bar elements. The non-linear aspect being part of the solver, 

solution process. The stiffness of cable elements is similar to a bar element but the lAE is 

replaced by a stiffness term where the cable stiffness is 

 
AEkcable   
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Beam Elements 

The beam element stiffness is 
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These are modified for a shear beam as follows 
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The mass matrix is 
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And the geometric stiffness is 
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where 

 zzyyxx III 
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Non-symmetric Beam Sections 

In a beam with a symmetric section the bending properties depend only on the yyI  and 
zzI

terms. If such a beam is loaded in the ‘y’ or ‘z’ axis the deflection is in the direction of the loading. 

When the section is not symmetric and is loaded in the ‘y’ or ‘z’ direction there is a component of 

deflection orthogonal to the loading. This is because the bending properties depend on zzyy II ,  

and yzI . 

By rotating the section to principal axes this cross term can be omitted and if the beam is loaded 

in the ‘u’ or ‘v’ (principal) axis the deflection is in the direction of the loading. In this case the 

stiffness matrix for the element is calculated using the principal second moments of area and is 

then rotated into the element local axis system. 

For a beam with a non-symmetric section the user must consider if the beam is restrained (so 

that deflections are constrained to be in the direction of the loading) or if it will act in isolation 

(resulting in deflections orthogonal to the loading). 

If the beam is to act as constrained the user should use the ‘Ignore Iyz’ option. In this case the yyI  

and 
zzI values are used and the yzI value is discarded. 

If the beam is to act in isolation the user should not use the ‘Ignore Iyz’ is option. In this case the 

stiffness matrix for the element is calculated using the principal second moments of area and is 

then rotated into the element local axis system. In this case GSA assumes that the uk value is the 

same as the yk  or 
zk z  – whichever of ‘y’ or ‘z’ is closest to the ‘u’ axis, and likewise for the vk  

value. 

Where the user has specified section modifiers on the I or the k  values there is no way to 

transfer these modifiers to the ‘u’ and ‘v’ directions. In these situations ‘Ignore Iyz’ must be used. 

All catalogue and standard sections except angles are symmetric. Explicit sections are assumed 

to be defined such that the principal and local axes coincide so there is no yzI . Geometric 

(perimeter and line segment) sections are assumed to be non-symmetric. 
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Spring Elements 

Spring element can one of several types.  

The general spring has 6 degrees of freedom. For a linear spring the general form of the stiffness 

matrix is  
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If non-linear spring are required these can be generated by assigning a material curve 

(force/displacement or moment rotation) to each of the degrees of freedom. 

Axial / torsional spring 

For an axial or torsional spring only the xk or xxk terms are specified, the rest are assumed to be 

zero. 

Spring matrix 

For a ground spring a full set of stiffness terms can be defined for the upper triangle. This allows 

interaction between axial and bending terms. The stiffness matrix is then of the form 
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Compression-only spring 

Compression only spring elements are uniaxial nonlinear spring elements. These elements have 

no stiffness when subjected tensile loading/displacements. Under tensile loading these elements 

will create a gap. 

 

Tension-only spring 

Tension only spring elements are also uniaxial nonlinear spring elements. These elements have 

no stiffness under compressive loading. 

 

Lock-up 

Lock-up elements are also uniaxial spring elements with specified initial gaps. Lock-up elements 

can be visualized as the combination of compression only and tension only spring with initial 

gaps. These spring elements do not offer any stiffness while the displacements are within the 

specified gap. Positive Gap will offer no resistance in the tension side and vice versa. Both 

positive and negative gaps have to be specified as positive values in GSA. 
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Connector 

Connector elements are linear elastic spring elements. These elements connects pair of nodes in 

all translations as well as rotations. The size of the stiffness matrix is 12x12 and the same will be 

automatically calculated based on the stiffness of the surrounding elements. The resulting 

stiffness is large enough to produce negligible displacements and at the same time it will avoid 

the numerical instabilities.  

Gap elements 

Gap elements are the compression only spring elements with initial gap. These elements will 

have zero stiffness in the analysis while the displacements are within the specified gap. The 

stiffness in other directions (local y and z directions) are ignored. These elements are useful in 

contact problems if frictional sliding is not concern. 

 

-ve 

Gap 

Gap 

Compression only 
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Friction elements 

Friction elements are three direction translational spring elements consisting of one axial and 

two translational directions. In axial direction, these elements works as Gap elements. In 

translational direction these elements behaves as elastic plastic elements. Plastic limit is 

calculated using coulomb friction law  

 xzyzy fukf  ,,  

 

Where xf is the force in axial direction as calculated for the gap element. 

 
 

Springs are assumed to be massless. 

Damper Elements 

Damper element are elements with no stiffness but with viscosity, so these do not form stiffness 

matrices but instead a damping matrix. The general form of the damping matrix is  
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For an axial or torsional damper only the xc or xxc terms are specified, the rest are assumed to 

be zero. 

Dampers are assumed to be massless. 

Mass Elements 

Mass elements can have only mass and inertia. In the normal case the mass matrix is 
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but if mass modifiers are included the mass matrix becomes 
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Inertia is a tensor quantity with the following terms 
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where the terms in the inertia tensor are defined as 
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where  aaa zyx ,,  are the coordinates of the centre of mass. If non-zero values are specified for 

the off-diagonal terms, it is important that these are consistent with the diagonal terms. If this is 

not done the principal inertia values can become negative. The inertia matrix is never modified 

for directions. 

2D Elements 

An irregularly shaped continuum defined by a boundary and areas of loading has to be 

subdivided into a mesh of finite elements. The size and shape of the element is chosen so that 

the approximate stiffness implied by the finite element is close enough to the actual stiffness of 

the continuum in that region. Thus the finite element size and shape will be determined by the 
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type of element being used, the shape of the boundary if in a region close to the boundary, the 

loading applied and the experience of the user. 

Element stiffness 

To generate a stiffness matrix for a curvilinear quadrilateral or triangular element a new 

approach must be used. Most finite element codes used an approach based on isoparametric or 

similar elements. 

In an isoparametric element the element displacements are interpolated in the same way as the 

geometry, eg a plane stress element. In a superparametric or degenerate isoparametric element 

the interpolation on the geometry is of a higher order than the interpolation of the 

displacements, eg a plate element. In a subparametric element the interpolation of the geometry 

is of a lower order than the interpolation of the displacements, e.g. an eight noded straight sided 

quadrilateral element, where a different geometric interpolation function is used for the 

geometry from that for the displacements. The term isoparametric is often used as a general 

term to cover all these element types. 

For a plane stress problem, we can establish a material matrix C that relates stress and strain. 

The displacements in a local coordinate system are 

  vu,u   
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the strains are 

  ,,,ε xyyyxx   

and the stresses are 

  ,,,σ xyyyxx   

For an elastic-isotropic material the material matrix is 
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where ,E are the Young’s modulus and Poisson’s ratio respectively. 

Note that there is an out of plane strain 
zz , which we can ignore as it plays no part in the 

element formulation. 

The strains are defined in terms of the displacements as 
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The simplest elements to consider are the 4 noded and 8 noded quadrilateral elements, of which 

the 4 noded element can be considered a simplification of the 8 noded element. A typical 8 

noded element is shown below. The element has an arbitrary local coordinate system based on 
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the location of the nodes and the element property axis (x, y), and a natural (curvilinear) 

coordinate system (r, s) based on the topology of the nodes. 

 

We can set up interpolation functions to interpolate the geometry as follows 

 

  
i

imis hsr ,x,x

 

where the ih are the interpolation functions defined below. 

These interpolation functions are chosen so that 
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As the elements are isoparametric we use the same interpolation function for the displacements 

so the displacement in the element is related to the nodal displacements by 

 

  
i

imis uhsru ,,

 

To evaluate the stiffness matrix we need the strain-displacement transformation matrix. The 

element displacements are obtained in terms of derivatives of the element displacements with 

respect to the local coordinate system  yx, . Because the elements displacements are in the 

natural coordinate system  sr,  we need to relate the derivatives in the local coordinate system 
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to those in the natural coordinate system. We can write an equation for the derivative with 

respect to x  in terms of derivatives with respect to  sr,  
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to establish these derivatives we use the chain rule to set up the following relationship 
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or in matrix notation 

x
J

r 







 

where J  is the Jacobian operator relating natural coordinate derivatives to local coordinate 

derivatives. Given that we know x and y in terms of the interpolation functions the Jacobian 

operator is easily found 

r
J
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


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

   

This requires that the inverse of the Jacobian exist, which requires that there is a one to one 

correspondence between natural and local coordinates. This will be the case provided the 

element is not grossly distorted from a square and that it does not fold back on itself. 

We can then evaluate 
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


,,,  

and thus we can construct the strain-displacement transformation matrix, B  

 Buε   

where u  is the vector of nodal displacements. The element stiffness corresponding to the local 

element degrees of freedom is then 

 
V

T dVBCBK  

The elements of B are functions of the natural coordinate system,  sr, . Therefore the volume 

integration extends over the natural coordinate volume so the volume differential needs to be 

written in terms of the natural coordinates 
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 dsdrdV Jdet  

The volume integral is not normally amenable to an explicit integration so normally a numerical 

integration technique is used. The integral can be written 

 
sr

dsdr
,

FK  

where 

 JdetBCBF T  

and the integral is performed in the natural coordinate system of the element. This is convenient 

as the limits of the integration are then ±1. The stiffness can then be calculated 

  ijij FK   

where the matrix F  is evaluated at the Gaussian integration points  ii sr ,  and ij  are Gaussian 

weights. 

In a similar way the mass matrix and the load vectors are established. 

 
V

T dVHHM   

 
V

b

T

b dVfHr  
S

s

T

ss dSfHr  
V

i

T

i dVBr   

where H  is a matrix of interpolation functions and ,r,r,r isb  are the body force vector, surface 

force vector and initial stress vector respectively. 

Geometric stiffness matrix of shell element 

The geometric stiffness matrix is calculated from: 
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With  xyyx NNN ,,  are the in-plane forces of the shell element in x, y and xy shear directions 

respectively. 

  nGGG 21G   

and n  is the number of nodes of the elements 
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2D Plate Elements 

The formulation of 2D plate and shell elements considers both in-plane and transverse (out-of-

plane) displacements.  Following Mindlin-Reissner plate theory, in addition to the bending strains 

we consider the effect of transverse shear strain in our complete expression for the element 

strain 
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where w  is the out-of-plane displacement and  is introduced as an independent variable to 

express the section rotations (i.e. rotations of the transverse normals about the local x and y 

axes). 

We can define separate material matrices bC  and sC that relate stress and strain for the pure 

bending and shear strains respectively and so the pure bending moments and shear forces can 

be written 
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respectively. 

In this way we can then express the local element stiffness matrix as a summation of the in-

plane and out-of-plane stiffness’s 

 

  
V

s

T

b

T
dV BCBBCBK

 

where 
B and B  represent the strain-displacement transforms for the bending and shear 

components respectively. 

While brief, this outlines the basic approach to the Mindlin-Reissner 2D element stiffness 

formulation.  In GSA we label this concisely as the Mindlin formulation. 

MITC Element Formulation 

We find that the Mindlin formulation is an effective approach for 2D parabolic elements where 

the 8-noded element accommodates sufficient terms in the stiffness matrix to sufficiently define 

the behaviour of the element numerically.  However the same formulation defined over a linear 

element becomes noticeably more problematic where the absence of available terms in our 4-

noded stiffness matrix leads to numerical difficulties in expressing the same element behaviour.  

Specifically we find a difficulty in attempting to represent the transverse shear strain terms.  

Analytically as before we can express the transverse shear strain as 
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although numerically, the difference in the order of terms for the shear strain may lead to artificial 

stiffening of the element where the shear terms are numerically constrained from approaching zero.  

See reference 1 in the bibliography for further information.  This restriction would be particularly 

noticeable where the thickness of the plate is small. 

A widely practiced remedy is to under-integrate the shear term and while effective, its use is at 

the cost of reduced accuracy and stability for the element.  The problem of stability alone is 

often of greatest concern where the phenomenon of hourglassing can become apparent in 

elements where the thickness to length ratio is large. 

An alternative formulation was put forward by Bathe and Dvorkin and has been found to be 

especially effective at resolving these difficulties.  The formulation is extendable to higher order 

elements although we find the approach is most effective when resolving the difficulties most 

apparent in linear elements. The formulation is based upon the theory of Mixed Interpolated 

Tensoral Components (MITC).  For the pure displacement-based Mindlin formulation we use the 

independent variables  
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where Bathe now introduces a separate independent variable to represent the transverse shear 

term 
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We use 
*

h i  to represent an additional set of interpolation functions for our new variable   which 

we find by a direct evaluation of the shear strain at points Pi , that is 
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For a linear 2D element we obtain direct values for the shear strain at four points A, B, C, D on 

the element and so we evaluate the displacement and section rotations at these points through 

direct interpolation.   

 

We can then construct the interpolations 
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using direct values for the shear strains obtained at the four points.  This replaces our original 

expression for the shear terms and we continue to construct the local stiffness matrix as normal 

in a similar approach as before in 2D isoparametric elements.  It is lastly worthwhile to note that 

the interpolation above assumes our element is in the isoparametric coordinate system.  Further 

transformations are necessary to interpolate the shear strains directly through an arbitrary 

element in local space.  Indeed, when this is done the element shows considerably improved 

predicative capabilities for distorted elements. 

Element shape functions 

The element shape functions for 2D elements are 
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imis uhsru ,,

 

For a tri-3 element these are  
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For a quad-4 element these are  
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For a tri-6 element these are  
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For a quad-8 element these are  
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Wall Element 

Wall element is a super element, internally it is meshed by 4x4 quad8 shell elements, and 

therefore the size of wall elements can be relatively large without losing the accuracy of analysis 

results.  Typically a wall from one floor to the next can be modelled by a single wall element 

rather than a shell element mesh.  The internal nodes of wall elements are condensed out and 

do not contribute to the number of degree of freedom in global analysis, but the middle nodes 

along the edges are considered in global analysis, but they are hidden for users, the middle 

nodes along edges do contribute to the total number of degree of freedom of the model.  

As wall elements are large, the constraints at the hidden nodes along the edges will affect wall 

element stiffness and analysis results.  The constraints of the middle nodes along the edges are 

considered in the following way, if the two corner nodes of an edge have the same nodal 

constraints, e.g. both nodes have x and zz constraints, then all the middle nodes along this edge 

will be constrained in x and zz.  However if only one of the two nodes of the edge has constraint 

in a certain direction, the middle nodes along this edge will be free, e.g. if one corner node has x 

constraint and the other corner node has zz constraint, then all the middle nodes along this edge 

will be free. 

The above constraint principle also applies to rigid constraints, link elements and joints, i.e. if 

both corner nodes of an edge are in the same rigid constraint, the same link or the same joint, all 

the hidden nodes along the edge will be also in the same rigid constraint, the same link or the 

same joint respectively.  This will guarantee there is no incompatibility between the 

displacements along the edge and the two edge node. 

2D Element Shape Checks 

A number of element checks are carried out by GSA prior to a GSS analysis. Other analysis 

programs may have different limits but the same principles apply. For GSS the following 

warnings, severe warnings and errors are produced. 

 

Triangle   

Warning Severe warning Error 

155 max  r  15max r  
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3015 min   15min    

165150 max   
 165max   

Quad   

Warning Severe warning Error 

155 max  r  15max r  
 

4525 min   25min    

155135 max   
 155max   

01.000001.0 max  h  01.0max h  
 

where 

maxr  longest side / shortest side 

min  minimum angle 

max   maximum angle 

maxh  distance out of the plane of the element of edge 1 / longest side 

Notes: 

The distance out of plane of edge 1 is calculated as max max 

 
 

max

12
max

ccn

s
h


  

Where n is the element normal, 
21,cc  are the coordinates of the first and second corner nodes 

and maxs  is the length of the longest side of the element. 

Mid-side node locations not checked but should be approximately halfway along edge. 

No check on ratio thickness/shortest side. 

Hourglassing 

When Quad 4 elements with the Mindlin formulation are used in bending it is possible to 

encounter hourglassing problems. This is a problems that arises with under-integrated elements 

where there are insufficient stiffness terms to fully represent the stiffness of the element. The 

problem is noticeable in the results by an hourglass pattern in the mesh as shown below. 
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This problem is avoided using the MITC formulation for Quad 4 elements. This formulation uses 

a separate interpolation method for the transverse shear strains and provides considerably 

greater stability than the original Mindlin method. The original Mindlin method is kept in GSA for 

compatibility with previous models although for new models the MITC formulation is 

recommended. 

Alternatively when parabolic accuracy is required Quad 8 elements are recommended. These 

also formulate elements that are still stiff in all modes of deformation, even when under-

integrated. 

3D Element 

GSA implements a 3D linear brick element. For a brick-8 element the shape functions are  
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The stiffness matrix for brick elements is obtained using selective reduced integration to alleviate 

volumetric locking. The B approach has been implemented in GSA where the strain-
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displacement matrix is split into dilatational and deviatoric parts2 and then the dilatational part 

of matrix is replaced with improved dilatational component. The strain-displacement matrix for 

brick elements is given by 
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The dilatational and deviatoric parts of the matrix can be computed using  
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dildev BBB   

B is computed using 
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2 Hughes T. J. R. The Finite Element Method – Linear Static and Dynamic Finite Element Analysis, 

Dover, 2000 
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for 2,1i and 3 , and where  d  is the volume of the element. 

Link Element 

Link elements are different to the other element types in that they apply a constraint between a 

pair of nodes. The master node is the first node specified in the element topology and this is the 

node that is retained in the solution. The other node (the slave node) is related back to the 

master node. 

 ms uTu 
 

The degrees of freedom at the slaves that are linked will depend on the type of link. The link 

allows the slave node to be fixed (where the rotations at the slave node depend on the rotation 

of the master) or pinned (where the rotations at the slave node are independent of the rotation 

of the master). The master node is always has the rotations linked to the rest of the structure. 

The links can act in all directions or be restricted to act in a plane (xy, yz or zx) where the nodes 

are rigidly connected for motion in the plane but are independent for out of plane motion. 

The constraint conditions are summarised below: 

All directions 
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Plane (xy plane as example) 
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 where 0/1 if fixed / pinned 

Loads applied to link elements will be correctly transferred to the master degree of freedom as a 

force + moment so no spurious moments result. 

The inertia properties of a link element can be calculated from the masses at the nodes attached 

to the rigid element as follows. The mass is 
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and the coordinates of the centre of mass are 
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The inertia about the global origin is then 
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and relative to the centre of mass  ccc zyx ,, this is 
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The constraint equations for a link element assume small displacements. When large 

displacements are applied to a link element the constraint equations no longer apply and the 

links between slave and master get stretched. This effect can be noticeable in a dynamic analysis 

where the results are scaled to an artificially large value. When these are scaled to realistic value 

this error should be insignificant. 

Element Mass 

The mass matrix for an element can be derived as described above. This is known as a 

consistent mass matrix. In many situations it is convenient to simplify the mass matrix. One way 

of doing this is to diagonalize the mass matrix. In this case all the terms relating to rotations are 

zeroed and then a row summation is carried out on the remaining entries. 
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j

ijii mm

 

This has the effect of lumping all the mass at the nodes. The other simplification that is used is to 

ignore the mass of all elements except lumped masses. 

With both these simplifications it may be possible to diagonalize the structure mass matrix, 

however this is not possible if the inertias of lumped mass elements are non-zero or if there are 

rigid elements in the structure. (Rigid elements generate off diagonal terms when the masses are 

replaced by inertias at the master.) 
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Element Stiffness 

The element stiffness is created initially in the local axes of the element. This gives a square 

symmetric matrix.  

 eee uKf 
 

This need to be transformed before it is added to the structure stiffness matrix, however some 

degrees of freedom are ‘released’ and these are retained on the element. This is represented by 

the matrix equation 
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The structure degrees of freedom need to be transformed to global directions, using the 

direction cosine array D . 
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Offsets in global directions then relate the global structural degrees of freedom to the nodal 

degrees of freedom through a rigid transformation 
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Releases 

Releases are applied at the nodes (or pseudo nodes in the case of offset elements) so that the 

elements do not have any moment connection. This can be applied to the elements by 

recognising that any moment applied to node is not resisted by the element. This condition is 

used to partition the element stiffness matrix. 
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Where the subscripts s refer to the structure and e refer to the element. Once partitioned the 

degrees of freedom related to the structure are combined into the structure stiffness matrix 

while the element degrees of freedom are included in the structure stiffness matrix (but do not 

interact with the stiffness matrix for any other element). 

In the case of stiffnesses at the releases we add the stiffness terms for the release into the 

partitioned stiffness matrix. So in the case of a beam with releases at end 2 and stiffness 

associated with the released degrees of freedom the matrix is partitioned as below. 
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The stiffness terms at nodes where releases are applied are split, so 
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The release stiffness terms are similar to a spring stiffness matrix: 
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Offsets 

Element offsets are defined as global vectors relative to the nodes. These locate pseudo nodes 

that define the flexible part of the element. Element stiffnesses are calculated for the flexible 

part and modified to give the required nodal stiffnesses. Release conditions are applied before 

the offsets (i.e. they are applied to the pseudo nodes). The element local axes are defined with 

respect to the flexible part of the element. 

The offsets can then be considered as rigid links and a constraint equation set established 

linking pseudo nodes to actual nodes 

 nodepseudo φTφ 
  

where the transformation is based on the location of the pseudo node  zyx ,, relative to the 

actual node is 
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The displacements at the pseudo nodes can then be related to the displacements at the actual 

nodes. 

 nodepseudo uTu 
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The forces at the nodes can be related to the forces at the pseudo nodes. 

 pseudo

T

node fTf 
  

The element stiffness can then be modified on a node by node basis using 

 nodejjij

T

inodei

pseudojijpseudoi

,,

,,

uTKTf

uKf





  

Spacer Elements & Sliding Cables 

Spacer elements and cable elements are intended to be used as part of multi-noded super-

elements or chains in the dynamic relaxation solver. To define the chain, or super-element, the 

program looks for spacer or cable elements with the same property number, and joins these at 

common nodes. So all the elements in a continuous length of spacer or cable must have a 

common property number, unique to that chain. 

In other words each super-element is identified by a unique property number. A Super element 

cannot be discontinuous or bifurcated. 

With spacer elements, the order for the input of elements is important as the “ratio” feature 

adjusts the relative distances between nodes and makes the first element the control: i.e. if the 

ratio is greater than one, the first element will be the smallest. If it is less than one, the first 

element will be the largest. The nodes for a spacer element should be defined so that they can 

be joined together to form a spacer in a head-to-tail sequence. 

Generally spacers should not cross each other. If spacers are required in two directions, the 

spacers in the main direction should be carried through from one edge of a surface to the other 

and the spacers in the subsidiary direction should join nodes in adjacent main spacers. 

Cables and Sliding 

Cables are a hybrid form of cable element, intended for use in dynamic relaxation analysis of 

‘real’ (not ‘form-finding’) structural models. In this analysis the cable is free to slide at internal 

nodes where cable element are connected. The cable, composed of a number of cable elements, 

is considered as a single element in dynamic-relaxation. The cable can freely slide around the 

internal nodes of the element as if the cable moves around a pulley. As a result, the tensile 

forces of all the cable elements in a cable are the same. If a clamp is needed along the length of 

a Sliding Cable, two Sliding Cable elements should be defined, joining at the clamped node. 

The cable property is defined by a stiffness per unit length which is equal to EA  where 

 E  – elastic modulus 

 A  – cable cross section area 

The tensile force in the cable is calculated from 
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in which 

 0l is the total unstressed length of the cable 

 l is the total deformed length of the cable 

The nodal normal direction in a cable is defined by the line that is within the plane defined by the 

two legs and it evenly divides the angle composed by the two legs. Only the normal component 

of force is transferred between the nodes along a cable and the cable. 

 

For the portion of cable shown above assume the cable elements are in the x-y plane. 

  111 ,, zyxTFA   

The cable force is constant along its length. Therefore the components of the cable elements 

along X1 at node A are equal and opposite. And the resultant force in this direction is 0. 

The component along Y1 is applied to node A. 

The component along Z1 is 0 as the cable is in the x-y plane. 

  0,,0 1yTFA   

Free spacers and cables can be thought of as opposites in the way in which forces are 

transferred to their intermediate nodes. Free spacers only apply tangential forces in the plane of 

the spacer, whereas cables only apply normal forces. 

Spacer Elements 

Spacers are designed for soap-film form-finding only and it will be ignored in all other analyses 

even though it may has been defined in the model. In a soap-film, form-finding analysis, spacer 

elements are used to make up a multiple node super element called spacers. A spacer is used to 

maintain or adjust the nodal distance along the spacer element chain as desired in the form-

found structure. Spacers should lie over 2D element surface or along bar or tie elements with 

soap-film form-finding properties (i.e. elements with zero stiffness) 
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All spacers can be considered as chains of bars with initial lengths being set to about half of their 

actual lengths (to ensure that the Spacers remain in tension under reasonable conditions), the 

stiffness  AE  of spacer elements are defined in spacer propertiese. To reduce the influence of 

the spacer elements on the form-found shape of the structure, the stiffness of spacer elements 

should be as small as possible as long as it can maintain the required nodal spacing. Depending 

on the spacer type, one or two components of the spacer forces may be suppressed, so spacer 

elements will only control the nodal spacing and not affect the form-found shape. 

As some components of spacer forces are suppressed, the nodes attached to geodesic and free 

spacer elements are not be in equilibrium at the end of form-finding analysis. In this respect 

spacers differ from other elements. 

There are three types of spacer elements 

• Geodesic 

• Free 

• Bar 

The type of spacer element is defined in the spacer properties. They differ in the way that the 

force exerted by the spacer on the internal nodes is treated. For each internal node, a vector 

defines which components of the resultant spacer force on the node are taken into account. This 

force pulls the node along the spacer vector. The remaining components are ignored. 

The spacer types also differ in the way in which the spacing rules (defined as spacer leg length 

type) are applied within the program. 

Generally geodesic spacers should be used along 2D element surface. Free spacers should be 

used to control the nodal spacing along in bar or tie elements. Similar to free spacers, bar 

spacers can be used to control nodal spacing along bar or tie elements, the difference between 

free and bar elements is that no component of Bar spacer element forces will be suppressed. 

Bar and free spacers simply adjust the spacing of their nodes along the coincident bar or tie 

elements. Geodesic spacers shift their internal nodes over the surface so as to minimize the 

overall length between the end nodes (a geodesic is the shortest route over a surface between 

two points) and also maintain the spacing of their nodes. 

To understand the different spacer types, it is useful to consider a short length of spacer chain 

composed of two spacer elements jointed at the common node. 

Geodesic Spacers 

For geodesic spacers the component of each spacer node reaction which is normal to the 

surface of the adjacent soap-film triangle and quad elements is suppressed and so the spacers 

do not affect the form-found surface; they only control the position of nodes on the surface 

which is formed. The tension of the geodesic spacers ensures that the spacer nodes shift to form 

a geodesic upon the soap-film surface that is simultaneously formed by the triangle and quad 

elements. 
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The geodesic spacer normal is calculated as follows. The program searches for triangle and quad 

elements that are connected to the internal nodes of each geodesic spacer and attempts to form 

a rosette of elements around each node. Failure causes a program error. The nodes of the 

elements in the rosette are used as ‘control nodes’ to calculate the normal of the surface on 

which the spacer lies. 

Initially, the normal direction is defined from the element geometry of the surrounding 2D 

elements. This is then adjusted during analysis based on the displacements of the surrounding 

nodes. 

 

The initial normal of geodesic spacer at node 5 in the above example is equal to 

        76384327 ccccccccn   

where the 81 cc  are the coordinate of the nodes. 

Later in the form-finding analysis, the normal will be rotated based on the displacement of the 

nodes. The degree of the rotation is calculated assuming all the surrounding nodes (2, 3, 4, 6, 7 

and 8) are connected to the spacer node (5) by beams. The beams are pin-connected at the 

outer side and fixed at node 5. The EI of the beams is proportional to the sum of the angles each 

side of the beam. The fixed end moment for each beam at the end of node 5 is calculated. The 

resultant of the moment at node 5 will rotate node 5, and this rotation will be the one that 

rotates the spacer normal at node 5. 

The normals of the end nodes of a Geodesic Spacer are found (if required) by first computing the 

normal as for an internal node except that 

• The rosette of triangles and quads may be incomplete. 

• The current normal is only rotated about an x axis lying in the plane of the normal and 

the end spacer leg. 
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The normal of the next internal node is then projected onto the plane of the rotated end normal 

and the end spacer leg, and reflected about the plane normal to the end spacer leg. 

Normals are calculated every 10 cycles. 

 

For the above portion of a geodesic spacer, assume the normal of the plane of soap film 

triangles and quads joined to node A is in the 
1zz  direction. The spacer force applied at node A 

is  0,, 11 yx FF . So the spacer will move node A in the X1 & Y1 direction. 

The geodesic spacer applies the spacer leg length rules at the start of analysis. The node 

positions are adjusted at the start of the analysis to meet the rules by factoring the unstressed 

element lengths. On convergence, the node positions may not meet the leg length rules exactly. 

If this proves a problem, the use of ‘greasy pole’ restraints or bar spacers could be considered for 

a final stage form-finding analysis starting from the converged form-found shape. With both 

options, out-of-balance forces will exist when converting from the soap film to the ‘real’ model, 

and care is needed in their interpretation. 

Free Spacers 

For free spacers only the component of a nodal reaction that acts along a spacer’s tangent is 

preserved. So a free spacer only influences the spacing of nodes, along the length of a 1D form-

finding element. 

The initial tangent of free spacer at node 2 in the following example is equal to 

 

Note: tangentv  is the tangent vector at node 2 (= X1). 31 c,c are coordinates of the nodes 1 and 3. 
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Later in the form-finding analysis, the normal will be rotated according to the displacement of 

the 3 nodes. The degree of the rotation is calculated assuming nodes 1 and 3 are connected to 

the spacer node (2) by beams. The beams are pin-connected at the nodes 1 and 3 and fixed at 

node 2. The EI of the two beams are equal. The fixed end moment for the two beams at the end 

of node 2 is calculated. The resultant of the moment at node 2 will rotate node 2, and this 

rotation is the one that rotates the spacer tangent vector at node 2. The rotation will be about 

the normal of the plane of the adjacent spacer legs. 

The tangents of the end nodes of a free spacer are found (if required) by reflecting the tangent 

of the next internal node about the plane normal to the end spacer leg. Tangents are calculated 

every 10 cycles. 

 

For the above portion of free spacer, assume the normal of the plane of the three spacer nodes 

is in the 
1zz  direction. The spacer force applied at node A is  0,0,1xF . So the spacer will move 

node A in the X1 direction only. 

The free spacer applies the spacer leg length rules at the start of analysis. The node positions are 

adjusted at the start of the analysis to meet the rules by factoring the unstressed element 

lengths. On convergence, the node positions may not meet the leg length rules exactly. If this is 

proves to be a problem, consider replacing the free spacer with a bar spacer for a final stage 

form finding analysis starting from the converged form-found shape. 

Bar Spacer 

Bar spacer should run parallel to 1D tie elements with soap-film properties, and the two 

elements should have common nodes. No component of a bar spacer force is suppressed so a 

bar spacer influences the spacing of nodes, along the length of the soap-film tie, and the position 

of the soap-film tie. The soap-film tie has zero stiffness, but the bar spacer has a small stiffness. 

Therefore forces may vary along the bar spacer. To maintain equilibrium post form-finding, bar 

spacer forces should be added to the tie pre-stress in the final model as spacer elements are 

only considered during form-finding analysis. The effect of the bar spacer on the final form-

found shape increases with the bar spacer stiffness. 

The bar spacer is, in effect, a multi-noded bar super-element, or chain, with a low stiffness that 

complies with spacing rules for the nodes along its length (defined by the spacer leg length type) 
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For the above portion of Bar SPACER, assume the normal of the plane of the three spacer nodes 

is in the 
1zz  direction. The spacer force applied at node A is  0,, 11 yx FF . So the spacer will 

move node A in the X1 and Y1 direction. 

The bar spacer applies the spacer leg length rules by repeated analysis. The node positions are 

adjusted at the start of the analysis to meet the rules. On convergence, the node positions are 

adjusted along the length of the bar spacer, and the analysis repeated. This continues until the 

spacing rules are met. 

The position of the nodes is adjusted by factoring the unstressed element lengths. 

Spacer leg length type 

There are three rules, or options, to control nodal spacing along a spacer, which can be selected 

when defining the spacer properties. These spacing rules are proportional, ratio, and projected 

ratio. Free and Geodesic spacers apply these rules to the initial leg length at the start of analysis 

but do not recheck on convergence. For spacers included in soap film structures, the ratio of the 

final leg length to the initial leg length will be approximately constant and the spacing rules will 

be met approximately. However if varying point loads or other constraints are applied along the 

length of the spacer the final spacing may be too approximate to be satisfactory. In this case the 

use of a Bar Spacer may be considered. For Bar Spacers, the spacing rules are checked on 

convergence, and the analysis is repeated until the leg length rules are met exactly. 

The three options offered as leg length type are: 

• Proportional – the final length of the spacer legs will be proportional to their original 

length. To achieve this, the initial length of each spacer leg is set to half the initial 

distance between end nodes. 

• Ratio – the spacer leg length ratio will be equal to that specified, e.g. if the ratio is 

specified as 2, the final leg length of the 2nd element will be twice as long as the leg length 

of the 1st and so on. If a ratio of 1 is specified, the initial length of all the spacer legs will 

be made equal. 

• Projected-ratio – Specify an axis set in the spacer property table. If a user defined axis set 

is not specified, the global axis set will be used. The spacer legs are projected onto the x-

y plane of the specified axis set. The program adjusts the initial length of the spacer such 



 Oasys GSA 
 

 

© Oasys Ltd 2019 86 

 

 

that the projected length of each spacer leg on the x-y plane follows the specified ratio 

rule. If a ratio of 1 is specified, the projected length of all legs will be equal. If a ratio of 2 

is specified, the projected leg length of the 2nd element will be twice as long as the 

projected leg length of the 1st and so on.  
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Error Norms 

When using GSA it is important that the user can be confident in the accuracy of the results. 

There are a number of checks that the user can carry out to check accuracy, however GSA 

provides some measure of the accuracy of the displacement solution. This is reported in the 

Analysis Details output. The definition of the error norm is different for static and modal 

dynamic or buckling results. 

Statics 

In static analysis the error norm is not calculated unless the model shows signs of being ill-

conditioned. The calculation is as follows 

1. Calculate the residual. 

2. Solve for the displacements resulting from the residual and compare these with the 

actual displacements. 

3. Calculate the error norm. 

Thus 
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Dynamics and buckling 

In a dynamic analysis the error norm is always calculated as follows 
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and in the case of buckling 
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Explicit Time Integration 

The explicit time integration scheme can be written as 
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The force vector at time t is the sum of all the forces acting on the nodes (degrees of freedom).  

 intiappii fff ,, 
 

For an element the internal force vector for linear and geometrically non-linear problems is 

calculated from 

 
    tint uKf 

 

and if Rayleigh damping is included 
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2D Element Stresses and Forces 

Stress in 2D Elements 

Strain Definitions 

The normal definitions of strain used are as follows 
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An alternative definition which fits more neatly in tensor form is 
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with the strain tensor defined as 
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The calculation of principal strains 321 ,,   follows from 
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The maximum shear strain is calculated from the principal strain as 
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or 
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In a similar way to the definitions of average and von Mises stress a volumetric and effective 

strain can be calculated as 
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Stress Definitions 

Stress can be considered as a tensor quantity whose components can be represented in matrix 

form as 
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where each term corresponds to a force per unit area. The following notation for the stress 

components is common 
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The principal stresses 321 ,,   are calculated as the roots  S  of the cubic 
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Alternatively the principal stress equation can be written 
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The maximum shear stress is calculated from the principal stress as 

  31max
2

1
   

Two other stress measures that are used are the average or hydrostatic stress and the von Mises 

stress; these are defined as 
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 

        222222
6

2

1

3

1

zxyzxyxzzyyxvM

zyxav









 

Stress in 2D elements 

The stress in 2D elements is calculated via the strains. The strains are calculated from the 

displacements using the strain displacement relationship B (see 2D elements). Using the 

interpolation functions these can be calculated at any point in the element. Once the strains are 

calculated the stress can be calculated using the material elastic matrix C  for example for and 

elastic isotropic material the material matrix is 

 






















2

1

1

1

1
C

2 






E

 

Thus the strains are 

 Buε   

and the stresses are 

 CBuCεσ   

This can be used to evaluate the stress at any point in the element. However the stress is based 

on the strain which in turn is based on the displacement gradients in the element. Thus some of 

the strain terms in an element that has a parabolic displacement field are linear. It has been 

found that the best stress results are obtained by evaluating the stress at particular points (the 

points used for the element integration) and extrapolating the results to the nodes. 

In order to have good stress results the mesh will have to be finer that the mesh required for the 

displacement solution and the stress results are likely to be influenced by high displacement 

gradients in the element. 

Direct extrapolation of results 

In the case of direct extrapolation a function is chosen to represent the variation of stress over 

the element based on the number of Gauss points. In practice this is used when there are 1, 3 or 

4 Gauss points. The corresponding polynomial functions are 

 dxycybxaf

cybxaf

af







 

For 1 Gauss point the values are assumed to be constant over the whole element so the Gauss 

point values are simply copied to the nodes. 
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For 3 Gauss points the values are the Gauss points are known so the following set of equations 

can be set up 

 222

111

000

cybxaf

cybxaf

cybxaf







 

This can then be used to calculate the coefficients cba ,,  

 

     
     

   
 

000

10

1010

10202010

10202010

cybxfa

xx

xycff
b

xxyyxxyy

xxffxxff
c













 

For 4 Gauss points a similar approach can be used, but in this case the locations of the Gauss 

points are at 

 3

1
, sr

 

so the equations can be written in the form 

 
dxycybxaf

dxycybxaf

dxycybxaf

dxycybxaf









3

2

1

0

 

This can then be solved for the coefficients dcba ,,,  

 
xy

ffff
a

y

ffff
c

x

ffff
b

ffff
a

4

3

4

3

4

3

4

3

4210

4210

4210

4210













 

Once these are established the polynomial functions can be used to establish the values at any 

position on the element. 

Least squares extrapolation of results 

In this case a function chosen to fit through the points would imply a higher order polynomial 

than the one used to interpolate the geometry, so a least squares approach is used to find the 
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polynomial to map the stresses from the Gauss points to the nodes. The interpolation functions 

used for 6 node and 8 node elements are respectively 

 
2

7

2

6

2

5

2

43210

2

5

2

43210

xyayxayaxaxyayaxaaf

yaxaxyayaxaaf





 

The square of the error for any point is then 

 
  

2

2 , fyxpe 
 

This is summed over all the Gauss points and then the derivatives with respect to the coefficients 

are set to zero (selecting the coefficients that minimise the error). This leads to the matrix 

equation for 8 node elements 

 





























































































































2

2

2

2

7

6

5

4

3

2

1

0

42

3324

4324

234224

32233322

3223222

2232322

2222

fxy

yfx

fy

fx

fxy

yf

xf

f

a

a

a

a

a

a

a

a

yx

yxyx

xyyxy

yxyxyxx

yxyxxyyxyx

xyyxyyxxyy

yxyxxyxyxxyx

xyyxyxxyyxn

 

The 6 node version is the same except that the 6a and 7a terms are ignored. This can then be 

solved for the coefficients.  

Stress-strain Relationships 

The relationship between stress and strain depends on the type of problem 

Problem Displacements Strain Stress 

Plane stress vu,  
xyyyxx  ,,  xyyyxx  ,,  

Plane strain vu,  
xyyyxx  ,,  xyyyxx  ,,  

Axisymmetric vu,  
xyyyxx  ,,  xyyyxx  ,,  

Plate Bending w  xyyyxx  ,,  xyyyxx MMM ,,  

General  wvu ,,  
zxyzxyzzyyxx  ,,,,,  zxyzxyzzyyxx  ,,,,,  

Where for beam and plate bending problems the relationship is between moment and curvature 

 yx

w

y

w

x

w
xxxxxx
















2

2

2

2

2


 

The stress-strain matrices for isotropic materials are 
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Problem Stress-strain matrix 

Plane stress 





















2

1
00

01

01

1 2








E
 

Plane strain 
 

  

 














































12

21
00

01
1

0
1

1

211

1E
 

Axisymmetric 
 

  

 




































































12

21
000

01
11

0
1

1
1

0
11

1

211

1E
 

Plate bending  




















2

1
00

01

01

112 2

3








Et
 

General 
 

  
 

 

 



























































































12

21
00000

0
12

21
0000

00
12

21
000

0001
11

000
1

1
1

000
11

1

211

1E
 

The stress-strain matrices for orthotropic materials: 

Problem Stress-strain matrix 

Plane stress 


















xy

y

yxyx

yxxy
Gsymmetric

E

EE

0

0

1

1



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Plane strain 

   

 



























xy

zxxzx

xzzyxyyzyyzx

Gsymmetric
D

E
D

E

D

E

0
1

0
1





 
Where 

   yzyxxzzyxzyzxyzxyxxyD  1  

Axisymmetric 

1

1

0
1

0
1

0
1





































xy

z

z
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y

z
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y
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x

G
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E
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
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Plate bending 


























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y
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yxxy

x
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E
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1

0
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
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General 
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
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


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


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z

z
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y
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y
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x

G
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G

G

E
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



 

Force in 2D Elements 

The Timoshenko convention is used for forces in 2D elements. This means that a moment xM is 

based on the stress in the x direction. With the Timoshenko convention if a slab is in 

compression on the top face in both the x and y directions the moments are both negative. 
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Consequently starting from the assumption that tensile stress is positive, we have the following 

relationships for the forces 

 





2

2

2

2

2

2

t

t

xyxy

t

t

yyy

t

t

xxx dzNdzNdzN 

 

 





2

2

2

2

t

t

yzy

t

t

xzx dzQdzQ 

 

and moments 

 





2

2

2

2

2

2

t

t

xyxy

t

t

yyy

t

t

xxx dzzMdzzMdzzM 

 

Following from this a plate that has a positive in-plane stress in x/y will have a positive force 

resultant and a positive bending stress in x/y (i.e. positive stress at the top surface relative to the 

bottom surface) will have a positive moment. 

When the structure is linear these simplify to: 

 
tNtNtN xypxyyypyxxpx ,,,  

 

 
tQtQ yzyxzx  

 

and 

 666

2

,

2

,

2

,

t
M

t
M

t
M xybxyyybyxxbx  

 

where the superscripts p and b refer to in-plane and bending stress terms. 

When in-plane and bending thickness modifiers are user the in-plane forces are based on the in-

plane thickness and the moments and shear forces are based on the bending thickness. Stresses 

are always based on the actual thickness of the element. 
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Ill Conditioning 

In the vast majority of cases the solver will give a correct solution to the problem. However, some 

problems are by nature ill-conditioned in which case small changes in the input data can lead to 

more significant changes in the results. 

Taking a simple example to look at ill-conditioning; consider a simple two spring system, where 

the springs are connected in series. The stiffness of the first spring is 
1k and that of the second is 

2k and we assume that 
2k  is much greater than 

1k  12 kk  . 

 

In this case the equations describing the system is 

 




























2

1

22

221

2

0

u

u

kk

kkk

f
 

As in a solver based on a Gaussian elimination technique, we use these equations to arrive at a 

relationship between 
2u and 

1u  

 2

122
2

k

ukf
u




 

which when substituted in the other equation gives: 

 

  0
2

122
2121 







 


k

ukf
kukk

 

or 

    21221 fukkk   

With exact arithmetic the term  22 kk  would be zero, however, if 
2k  is large compared with 

1k  and due to limited precision, some error will be introduced in the calculation. If this error is 

denoted by e , then the equation we have is 

   211 fuek   

We have then a system as shown below where the error is like adding a third spring, which acts 

in parallel with 
1k . 
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The expected reaction is 
2f , but the reaction that is calculated is 

 
ek

fk
ukr




1

21
11

 

Thus the reaction is in error by a factor 

 
ek

k

1

1

 

Interpolation on a Triangular/Quad Facet 

The r,s coordinates of a triangular facet can be determined from the use of interpolation (shape) 

functions. Let 

 

  321

321

1

1

svrvvsrv

suruusru

i

i





 

These can be rewritten as 

     
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and then 
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

 

Then 

  3211 sfrffsrf i 
 

On a quadrilateral facet using the interpolation functions gives 

           
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these can be rewritten 
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rsvsvrvvv

rsusuruuu

dcbai

dcbai





 

Using the first of these gives 

  
 ruu

ruuu
s

dc

bai






 

which can be substituted into the second to give 

 
  
 ruu

ruuu
rvvrvvv

dc

bai

dcbai





 

This can then be solved for r & s and then the interpolation function used as for the triangular 

facet. 
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Loading 

Beam Loads 

The reference mechanical load is the point load; all the other mechanical load types can be 

established by integrating the results for a point load over the loaded part of the beam. 

The basic approach to calculating the load on the beam for a force at position a  is to consider 

the beam split at a  into two separate beams. Flexibility matrices can be established for axial, 

torsional and flexural loading 

 





















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EIlll
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f
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l
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l
f

126

441
, 32

2

 

There must be continuity of displacement and rotation between the two beams and the forces 

and moment must balance the applied load. This allows a set of equations to be set up for the 

sub-beams a  and b which can be solved for the shear force and bending moment at the loaded 

point. 

 bbaa wfwf 
 

Where the vector w is respectively for unit force and unit moment 

 

















1

0
w

0

1
w mf

 

Once the force and moment at the loaded point have been established the end forces and 

moments (and hence the equivalent nodal forces) result from equilibrium of the two sub-beams. 

The general distributed loading in the patch load, varying in linearly in intensity from position a  

to position b . The nodal forces and moments are then given by integrating the results for a point 

load 

 

   dxxxww p

b

a

ff 21 

 

where  xpf  is the force due to a point load at x  and 

 ab

ww
w

ab

awbw
w abba









 21

 

The tri-linear load option is simply a repeated set of patch loads. 
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Beam Thermal Loads 

The thermal loads allow for the introduction of load due to temperature variations in the beam 

elements. For an axial thermal loading the expansion of the element leads to axial forces, for 

thermal gradients through the thickness of the element both axial forces and end moments are 

induced. 
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where  is the temperature coefficient of expansion, T  is temperature and the subscript NA 

refers to the neutral axis. 

Beam Pre-stress Loads and Lack-of-fit 

Pre-stress and lack of fit loads are similar, but the definition differs. A pre-stress is considered as 

a force applied to the element at some position in the section relative to the neutral axis. A lack 

of fit is assumed to affect only the axial terms relating to the element. For a pre-stress of force 

and offsets of y and z the resulting nodal forces and moments are 
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For the lack of fit and the initial strain the nodal forces are respectively 
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Loads on pin-ended beams 

When the ends of beam are not fully fixed, some adjustment has to be made to the forces and 

moments that are applied at the nodes and the pinned end cannot sustain any moment. The 

simplest case is when both ends are pinned so 

 021  mm  

The forces and moments are then modified to maintain equilibrium as follows 
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for y/z. 

When the element is pinned at one end only the corrections depend on the material properties 

in the general case 
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For a simple beam this reduces to 
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Projected Loads 

When the load on a beam is distributed the total load can be based on the actual length of the 

element or on the projected length of the element. Thus a load normal to the x axis of the 

element would have a projected length equal to the beam length while a load parallel to the x 

axis of the beam would have a projected length of zero. In the general case of a load in the a 

direction defined by a unit vector w  and where the beam load x axis is denoted x the factor that 

has to be applied to the load intensity, defined in terms of the angle between the two vectors, is 

 
 2wx1sin  fff 

 

2D Body Loads 

The most common form of body loads are gravity loads. The general expression for body loads is 

given by 
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 
b

b

T

b dVfhr  

where integration is over the volume of the element. Using Gaussian integration this can be 

expressed as 

 iib

T

i

i

ib Jdet,fhr    

Where  are the Gaussian weights and Jdet is the determinant of the Jacobian. 

2D Face Loads 

Face loads can be constant or varying across the face of an element. For a point load on the face 

the load vector is 

 s

T

s fhr   

This can be generalised for the distributed case giving the load vector as 

 
s

s

T

s dSfhr  

where integration is over the surface of the element. Using Gaussian integration this can be 

expressed as 

 isis

T

i

i

is J ,, detfhr    

Where  are the Gaussian weights and Jdet is the determinant of the Jacobian. 

2D Element Thermal Loads 

Thermal loads can be either a constant temperature rise in the whole element or a temperature 

gradient, varying over the surface element. To evaluate the equivalent nodal forces the 

temperatures have to be converted to strains, using the temperature coefficient of expansion. 

The strains are then related to the stress through the material matrix and then the internal 

stresses are integrated over the element. The thermal effects are the same in all directions so 

there are no shear strains introduced. 

For in-plane effects (constant temperature) the strain is 

 
   0ε TTxyyyxxp  

 

For bending effects (temperature gradients) the strain and stress are 
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t
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These are converted to stresses through the material matrix 
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 bbbppp κCσεCσ 
 

2D In-plane Loads 

In-plane loads break down into two categories, pre-stress loads and initial strains. Pre-stress 

loads are defined as a force per unit width in either x, y or both x and y directions, along with an 

offset from the neutral axis. Initial strains are defined in either x, y or both x and y directions, but 

no offsets are permitted. The pre-stress loads can be converted directly to a set of element 

stresses, which are integrated over the element to get the nodal forces. The offset force gives 

rise to a moment on the element so 
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The initial strains can be converted to stresses in a manner analogous to that used for thermal 

loads. 

Grid Loads 

Grid loading is loading applied in space by means of a grid plane. There are three basic types of 

grid loading: point loads, line loads and area loads. The area loads can be subdivided into loads 

on the whole grid plane and those on a defined area bounded by a polyline defining a closed 

polygon. The panels to which the loads are applied can be one-way spanning or two-way 

spanning or multi-way spanning.  

Grid Cells 

A loading grid is used to integrate area loads and for distribution of grid point loads on to beam 

elements around the panel. The grid used needs to be fine enough to give an adequate 

representation of the load, so it needs to be based on the size of the panels that are loaded. The 

size and shape of the panels can vary significantly, so a robust way of determining the grid size is 

required. 

For a square panel the load can probably be represented adequately by a 4 × 4 grid, but for a 

long thin panel the same grid would be unsuitable. The grid size is established as follows: 

Calculate the area of the panel and set a representative panel dimension to be the square root 

of this. Then the grid size is this value divided by the grid refinement factor. This defaults to give 

typically 4 cells along the edge of a square panel. The user can adjust the grid refinement factor 

to a lower or higher value if required. 

For a series of aspect ratios with a refinement factor of 4 the mesh densities are as follows. 

Aspect ratio Cell density 

1 : 1 4 × 4 

1 : 2 2.83 × 5.65 

1 : 4 2 × 8 
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1 : 10 1.265 × 12.65 

1 : 16 1 × 16 

The calculation of the loading grid size can then be calculated on a panel by panel basis and the 

final size selected to give adequate representation on the smaller panels, with not being skewed 

unduly by a few very small panels. To ensure that this is the case the average,  , and standard 

deviation,  , of the individual panel loading grid sizes can be calculated and the loading grid 

size set to   . 

Grid Point Loads 

The way in which the loads are applied depends on the type of structure as represented by the 

span type. 

One way spanning loads are calculated by assuming the load applied to a ‘plank’ spanning from 

one side of the panel to the other in the span direction. In the case of loading over the whole 

panel this means that the load per ‘plank’ is the product of the load intensity and the plank 

length, split evenly between each end. The algorithm replaces the plane by a line with a load 

intensity applied to each end of the line. 

The starting point for the two way distribution of load is to consider a circle of unit radius 

centred on the load point. The actual intensity at the edges is calculated by extrapolating from 

this point using a r1  function where r  is the distance from the load point to the edge of the 

panel. 

We can satisfy these requirements with a distribution of the form 

    2cos1 Af  

We require that there is force and moment equilibrium. The form of these functions satisfies the 

moment equilibrium requirement and we can look for a solution for an arbitrary load. The term 

   2cos  

takes account of the aspect ratio of the panel in determining the split between the long and 

short directions. If the panel is square we expect the A  coefficient to be 0 and 1 for an infinitely 

long panel. To define the coefficient and phase angle we define a length direction for the panel 

and a width direction. The length is chosen to be in the direction of the sum or difference of the 

longest diagonals, whichever has the greater magnitude. The width direction is normal to the 

length direction. For a rectangular panel this accords with the normal definition of length and 

width. 

We then define values as follows: 

maxl ,
minl  – maximum and minimum dimension from point to panel edge in length 

direction 

 maxw ,
minw  – maximum and minimum dimension from point to panel edge in width 

direction 
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   – the angle of the width direction from the grid x axis 

then we can calculate the coefficients from 
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The load intensity at the edge of the panel is then calculated from the distance of the point on 

the edge from the load point. 

 
r

f
p   

If we consider a circle at unit radius from the grid point load we have a load intensity function of 

the form 

    2cos1 Af  

This must be mapped on to the surrounding elements. We can use the grid cell size, c , when 

establishing the size of the loaded patches on elements around the panel boundary. 

The distribution of point loads can then be determined at a series of point that are a distance c 

apart along the elements on the boundary with a minimum of a start and end point on each 

boundary element. The number of segments for the load distribution can then be determined 

from the grid cell size and element length, l  

 









c

l
n ceil  

For the default value of grid load refinement and uniform sized square panels this will give four 

load patches along each side of the panel. The length of the patches is then 

 
n

l
l   

Consider two lines from the load point to the start and finish of the element segment. These will 

be at angles 0  and 
1 . The load carried by this segment must then be 

 
1

0




dfWFi  

where W  is the load intensity. The angle at which this applies is determined from 

 
1

0




 dfWM i  
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i

i

F

M
  

If the vectors 0v  and 
1v  are vectors from the load point to the ends of the beam segment then 

the grid load iF  can be thought of as a point load along the vector 
Fv , at an angle 

F  from 0v . 

The loading function contains terms of the form 

    dn cos  

 

which integrates to give 
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The load iF  
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and load moment iM  
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This point load must then be adjusted to allow for the distance of the beam from the load point. 

This can use a r1  factor to preserve moment equilibrium. This ‘point’ load can then be 

represented as a linearly varying patch load along the segment length. If the projection of the 

Load point on to the element is at position a  along the segment and the ends are i and j then the 

equilibrium conditions require that 
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Knowing a  these equations can be solved for if  and jf . 
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Grid Area Loads 

When a grid area load is applied in a multi-spanning panel the approach is to consider the 

loading to be represented as a grid of “point loads” distributed over the loaded area. The 

distributed load is then accounted for by summing all the “point loads”. 

Having established the loading grid size then we can then work through the grid and determine 

if a cell is loaded or not. 

Where a cell is bisected by the load boundary then the load intensity is reduced in proportion to 

the loaded area and adjustment is made for the position of the load. Where a cell is bisected by 

the structure boundary the point of application of the load must be moved so that the load is 

applied to the “structure” and not in “space”. In these case the centroid of the trimmed loading 

grid cell is calculated and the (reduced) load on the whole cell applied at the recalculated 

centroid. 

Where a cell is bisected by a panel edge the load is applied to the panel at the centroid of the 

grid cell. 

For the cases where this is too coarse the grid refinement factor can be increased. 
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Grid area loads can be projected. When this is the case the load intensity is reduced depending 

on the projected area of the panel to the loading axis. If the normal direction of the load is ln

and the normal direction to the panel is pn . Then the load intensity is adjusted by 

 pl nn   

When the load is not projected then the intensity depend on the panel area relative to the panel 

area projected on to the grid plane (normal gn ) so the intensity has to be modified by 

 
pg nn

1


 

When the panels lie in the grid plane this factor is unity. 

Note: If a polygon which results in a loaded cell being split into two regions, the whole cell is 

assumed to be loaded. This results in a (slight) overall increase in the applied load. This 

restriction is in order to keep the load distribution as fast as possible. 

Grid Line Loads 

Grid line loads are treated in a similar manner to grid area loads in that they are broken down 

into a series of grid point loads along the length of the line. The same grid cell size is used to 

determine the number of segments along the line and thereafter the procedure is the same as 

for area loads. 

Lagrange Interpolation 

Lagrange interpolation3 gives a way of fitting a polynomial through at set of points. The basic 

polynomial is 
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In order to generate a curve in space it is convenient to consider this as a four dimensional 

problem with parameter t as the independent variable. This ensures that t is monotonic avoid 

singularities. The resulting modified equations are  

                                                        

 

3 Archer, Branden and Weisstein, Eric W. "Lagrange Interpolating Polynomial." From MathWorld--

A Wolfram Web Resource. http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html 
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For convenience the t values are assumed to be in the range [0:1] 

Mass Distribution 

The calculation of the mass and inertia of the structure are as follows 
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where the summations are over all the nodes and zyx ,, are the coordinates of the node relative 

to the centre of mass. 

If the mass option is set to ignore the element mass, this calculation is only carried out over the 

mass elements. If an additional mass due to load is set the load vector resulting from the load 

description is calculated and the required component is extracted scaled and converted to mass 
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where s is the scale factor, j is the specified component and g is the gravity value.  
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Material Models 

Isotropic material 

The material properties are 

E  – Young’s modulus 

G – shear modulus 

  – Poisson’s ratio 

The general elasticity matrix is 
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The shear modulus is related to the Young’s modulus and Poisson’s ratio through 
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Orthotropic material 

 

The material properties are 

 

xE  – Young’s modulus in the x direction 

yE  – Young’s modulus in the y direction 

zE  – Young’s modulus in the z direction 

xyG  – shear modulus in the xy plane 

yzG  – shear modulus in the yz plane 
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zxG  – shear modulus in the zx plane 

xy  – Poisson’s ratio, y direction strain generated by unit strain in the x direction 

yz  – Poisson’s ratio, z direction strain generated by unit strain in the y direction 

zx  – Poisson’s ratio, x direction strain generated by unit strain in the z direction 

The other three Poisson's ratios  xzzyyx  ,,  can be obtained from the following relationships. 
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The general elasticity matrix is 
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The von Mises stress is 
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Yield occurs when 

 yieldVM  
 

The yield and ultimate stress and the hardening parameters are not used in linear analysis. For 

non-linear analysis in GSA, only the yield stress is used and ultimate stress and hardening 

parameters are ignored.  

In general, material yielding follows the line defined by the hardening modulus. Either isotropic 

hardening  1  or kinematic hardening  0  can be defined. 
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If the hardening parameter,  is 1 (isotropic hardening as shown above) the yield stress retains 

its maximum value on reversal of stress. A value of 0 corresponds to kinematic hardening, where 

the diameter of the yield surface remains constant so on reversal of stress the material yield 

when the stress reversal is twice the original yield stress. 

Missing Mass & Residual Rigid Response 

A modal analysis takes account of how the mass is mobilised in a dynamic analysis. However 

only a relatively small number of modes are calculated, so not all of the mass if mobilised. 

Provided the modes up to a high enough frequency are calculated the remaining response can 

be considered as an essentially static response. There are procedures for establish the missing 

mass and taking this into account through a static analysis. On is given by the U.S Nuclear 

Regulatory Commission4. 

For a given excitation direction j the mass associated with the modes can be calculated for each 

degree of freedom from  
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4 U.S Nuclear Regulatory Commission, Regulatory Guide 1.92 Combining Modal responses and 

Spatial Components in Seismic Response Analysis, Revision 2, July 2006 
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The missing mass is then 

 ii mm ˆ
 

Given the ground zero period acceleration (ZPA) The missing response can be treated as a static 

load case 

 
  ZPAiii ammf ˆ

 

A set of static loads corresponding to the different directions can then be established/ 

Gupta Method 

The Gupta method is a way of including the residual rigid response along with the response 

spectrum analysis. This defines a rigid response coefficient, αi so that the periodic response is 

 
  iipi rr 2
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The coefficient α is defined by Gupta as 
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Participation Factor and Effective Mass 

The modal mass for mode i is defined as 

i

T

iim Mφφˆ 
 

The direction information can be extracted using the participation factor. The participation factor 

for mode i in the j  direction is given by 

i

j

T

i

ij
m̂

Mrφ


 

where the jr vector is a rigid body vector in the j  direction. The effective mass is similar but 

defined as 
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The rigid body vectors are defined as 
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So a rigid body vector for a rotation of  about global z can be defined as 
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The effective mass in a rotated axis system can be calculated from the participation factors and 

effective masses. 
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So  
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The sum of the effective mass in any given direction over all the modes is the total mass. Staring 

with the definition of effective mass 
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The rigid body vector can be written as 

 jj Φar 
 

So the term in the numerator of the effective mass becomes j

T

i aMΦφ so 
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Also the total mass j

TT

jj

T

j aMΦΦaMrr  and  i

T mdiag ~MΦΦ   so 
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j am
 

So the sum of the effective masses over all the modes is the total mass. 

Patterned Load Analysis 

By the principle of superposition for linear elastic structural systems, the internal force in a 

section can be calculated as 

 
A

A dydxIwf  

where, A  is the floor area domain across the x-y plane, I is the influence surface function 

across 

the x-y plane, and w  is an un-factored distributed load function varying across the x-y plane. 
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For the maximum internal force in a section 
Af  max resulted under a range of distributed load 

maxw and 
minw can be calculated as 

   
A

A dydxwpwpIf minmax 1  

where, p is a binary function related to the influence surface I  as 
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And thus the equation can further be rewritten as 
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The floor area domain A can always be separated into a series of smaller and non-overlapping 

area ia , which exclusively covers the entire area. Assume the sign of I in each individually 

separated area ia  does not change, i.e. I is always positive or negative across the x-y plane 

within an area ia , then the equation can be expanded as 
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which can be further simplified as an absolute sum function  

  
i

imeanA fff max  

where by definition 
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And similarly, the minimum internal force in a section min,Af fAmin can be derived as  

  
i

imeanA fff min  

In most situations, maxw and 
minw differ only by a scalar factor, which is related to the load factor 

of 

safety in ultimate limit state design. Putting 
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the equations can be simplified as 
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By comparing these equations to first equation, it can be seen that meanf can be evaluated 

directly from the analysis with all area fully loaded, and if can be evaluated directly from the 

analysis with load being only applied to the area ia , which means the equations can be further 

simplified as  

 

Ai

Amean

f
ss

f

f
ss

f

2

2

minmax

minmax







 

This item was written by Ir. Dr. Don Y.B. Ho of Ove Arup & Partners, Hong Kong Ltd and is reproduced here with 

permission 
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Raft Analysis 

Raft analysis is a soil-structure interaction analysis, iterating between a solution of the structural 

analysis using Gss and the soil analysis using Pdisp until convergence of nodal displacements is 

achieved. 

Iteration 

For the soil interaction nodes on raft, the analysis iterates through the following steps until 

convergence is reached: 

1. For each soil interaction node, a spring support will be generated with default support 

stiffness it does not exist.  If the support spring exists, it will be used and its stiffness will 

be modified during the analysis.  After analysis, its stiffness will be restored. 

2. Run Gss linear static analysis to obtain the displacements raftu  and spring-support forces 

if  for each of the interaction nodes 

3. Calculate soil pressure ip under each of the soil interaction nodes using 

  

),min(

),max(

max

min

ppp

ppp

A

f
p

ii

ii

i

i
i







 

 Where iA  is the area associated with interaction node and the contact pressure is 

subject to lower and upper limits  maxmin : pp . 

4. Run Pdisp analysis to obtain the settlements of soil, soilu  under the applied pressure 

loads 

5. Check the differences between raft displacements and soil settlements, if they are 

smaller than the residual limit, save the results and stop the analysis, otherwise go to 

step 6 

6. Re-calculate the support spring stiffnesses according to the support spring forces and 

the soil settlements using the following equation and go to step 2. 

  
soil

i
i

u

f
k   

A damping coefficient    that can be used to modify the stiffness update, i.e. reserve some 

percentage of the previous stiffness. The value of damping coefficient is between 0 and 1. If 

damping coefficient is specified, the new stiffness will be calculated from: 
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  
soil

i
previi

u

f
kk   1,  

Piles 

For the soil interaction nodes on the piles, the analysis iterates through the following steps until 

convergence is reached: 

1. For each soil interaction node, generate a spring support in X, Y & Z direction with 

support stiffness calculated from soil settlement under unit point load. 

2. Run Gss linear static analysis to obtain the displacements raftu and spring-support forces 

if  for each of the interaction nodes 

3. Calculate the soil reaction forces to the interaction nodes from 

  zszyyyxxx AfAfAf    

 where the interaction areas for the interaction node are 

  zszxyzyx PHAHBAHBA   

 

Pile interaction node and relevant dimensions 

 

with P  the perimeter of the pile and where 

  max,max,max, zzxyyyxxx CCC    

and zyx CCC ,, are the pile soil interaction coefficients and derived from the Pile Soil 

Interaction Coefficient (PSIC) curves defined by the users as shown below.  
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Pile Soil Interaction Coefficient Curve 

 

 where   is the differences of the pile displacements and the soil settlements at the 

corresponding points and b is the pile dimension yx BB , in x and y directions or D

diameter. 

4. Calculate the pressure loads on soil due to the soil reaction forces  zyx fff ,,  and the 

interaction areas  syx AAA ,,  

5. Run a soil settlement analysis using the embedded Pdisp program 

6. Calculate the compensation forces to counter balance the support spring forces due to 

the use of constant support spring stiffness. 

7. Check convergence, if satisfied, stop, otherwise, goto Step 2. 

Convergence 

The solution is converged if the difference of raft/pile displacements and soil settlements are 

smaller than the predefined acceptable residual.  The residual can be defined in two ways. 

• Absolute residual - the residual is defined directly such 0.1 mm, 1.0 mm or 5.0 mm. 

• Relative residual - a percentage is defined that is used to calculate the actual residual 

based on the largest soil settlement.  The actual residual is equal to the defined 

percentage of the largest soil settlement. 

 

Rayleigh Damping 

Rayleigh damping considers damping to be related to both the mass and stiffness 
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For a critical damping ratio 
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For two distinct damping ratios 
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This can be solved to determine the coefficients  , . In the case of the same damping at both 

frequencies this simplifies to  
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Modal Damping 

Modal damping is a global damping for each of the modes from modal analysis, modal damping 

can be defined when doing modal superposition dynamic response analysis such as harmonic 

analysis and footfall analysis etc.  When a model has different materials that have different 

damping ratios, it is a bit difficult to evaluate/estimate the modal damping.  In this case, GSA 

gives an option in modal analysis to calculate the modal damping from the material damping 

defined for each of the material used in the model.  The modal damping is calculated from the 

formula below. 
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where the factor k is in the range 0:1 and m = 1.0 - k 

 

RC Slab 

Introduction 

RCSlab is a design postprocessor within GSA for reinforced concrete two-dimensional elements 

of uniform thickness subject to any combination of in-plane axial or shear force and out-of-plane 

bending moment and torsion. The calculations can be made following the principles of most of 
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the codes used within Arup. RCSlab is unable to allow for out-of-plane shear and through-

thickness forces. 5 

The input to the postprocessor comprises applied forces and moments, section depth, 

reinforcement positions, and material properties. The reinforcement orientations can be in 

general directions, referred to as 1 and 2, which need not be orthogonal. The results comprise 

either areas of reinforcement for each face of the section in the two specified directions, or else 

an indicator to the effect that RCSlab is unable to find a solution for the current data. Early 

versions of the program were known as RC2D.  

Data Requirements 

Each run of RCSlab obtains the following data in any consistent set of units from the GSA analysis 

or RCSlab design data as appropriate: 

Nxx  ultimate applied axial force per unit width in the x-direction 

Nyy  ultimate applied axial force per unit width in the y-direction 

Mxx  ultimate applied bending moment per unit width about the x-axis 

Myy  ultimate applied bending moment per unit width about the y-axis 

Nxy  ultimate applied in-plane shear force per unit width 

Mxy  ultimate applied torsion moment per unit width 

eadd additional eccentricity (eadd > 0) – considered as acting in both senses 

emin minimum eccentricity (emin > 0) – considered as acting in both senses 

h section thickness (h > 0) 

zt1  position of top reinforcement centroid in direction 1 (0 < zt1 < h/2) 

zt2  position of top reinforcement centroid in direction 2 (0 < zt2 < h/2) 

zb1  position of bottom reinforcement centroid in direction 1(-h/2 < zb1 < 0) 

zb2  position of bottom reinforcement centroid in direction 2 (-h/2 < zb2 < 0) 

1  angle of reinforcement in direction 1, anticlockwise with respect to x-axis 

2  angle of reinforcement in direction 2, anticlockwise with respect to x-axis 

Ast1,min minimum top reinforcement to be provided in direction 1(0 < Ast1,min) 

                                                        

 

5 This item is based on a Notes n Structures written by Ian Feltham [an Arup internal publication] (2007) and is 

reproduced here with permission 
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Ast2,min minimum top reinforcement to be provided in direction 2 (0 < Ast2,min) 

Asb1,min minimum bottom reinforcement to be provided in direction 1 (0 < Asb1,min) 

Asb2,min minimum bottom reinforcement to be provided in direction 2 (0 < Asb2,min) 

fcd  compressive design strength of concrete (fcd > 0) 

fcd,t compressive design strength of top layer of concrete (fcd > 0) 

fcd,b compressive design strength of bottom layer of concrete (fcd > 0) 

fcdc  cracked compressive design strength of concrete (fcdc > 0) 

fcdu  uncracked compressive design strength of concrete (fcdu > 0) 

fcdt  tensile design strength of concrete (fcdt > 0) 

ctrans  compressive plateau concrete strain (ctrans  0) 

cax  maximum axial compressive concrete strain (cax  ctrans) 

cu  maximum flexural compressive concrete strain (cu  cax) 

 proportion of depth to neutral axis over which rectangular stress block acts (  1) 

(x/d)max maximum value of x/d, the ratio of neutral axis to effective depth, for flexure: (x/d)min < 

(x/d)max  0.5/[ (0.5 + min{zt1, zt2, -zb1, -zb2}/h)] 

Es   elastic modulus of reinforcement  

fyd  design strength of reinforcement in tension (fyd > 0) 

fydc  design strength of reinforcement in compression, (fydc > 0) 

flim maximum linear steel stress of reinforcement (flim > 0) 

εplas  yield strain of reinforcement in tension ( plas > 0) 

εplasc yield strain of reinforcement in compression ( plasc > 0) 

εsu design value of maximum strain in reinforcement 

ϕΔ maximum permitted angle between applied and resulting principal stress 

In addition, the program needs to know whether to use, where appropriate, the faster approach 

and, if so, what the maximum area of reinforcement so calculated should be before the rigorous 

approach is used. 

Within RCSlab the reinforcement positions are measured with respect to the mid-height of the 

section, the positions being measured positively upwards. The reinforcement angles are 

specified with respect to the x-axis and measured positively in an anticlockwise direction looking 

from above. It should be noted that the concrete is assumed to have zero tensile strength in the 

analysis; the tensile strength, fcdt, is only used to calculate the compressive strength when tensile 

strains are present. 
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The results of each run consist of the required area of reinforcement, negative if tensile, in each 

direction in the top and bottom faces or an error flag indicating that a solution could not be 

found. 

Other Symbols Used in Theory 

stress 

α proportion of total thickness comprising each outer layer 

ε strain 

φ angle of principal compressive stress and strain, measured anticlockwise with respect to 

x axis  

Suffices 

A relating to pass A 

B relating to pass B 

C relating to pass C or compression-only reinforcement 

T relating to tension-only reinforcement 

a applied 

b bottom layer or face 

c concrete 

e effective 

m middle layer 

n general direction = 1 or 2 

s steel 

t top layer or face 

z at level of reinforcement 

1 direction 1 

2 direction 2 

> principal direction with greater compression or lesser tension 

< principal direction with greater tension or lesser compression 
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RC Slab Sign Convention 

Within RCSlab the sign convention is as shown below; note that although it is different from that 

used by GSA, the interface converts as necessary: 

Compression and sagging moment are positive. 

RC Slab Analysis Procedure 

The following summarizes the procedure followed by RCSlab: 

1. Adjust, where necessary, the applied moments for minimum eccentricities. 

2. Split the section into three layers with the central layer unstressed and the outer 

layers taking in-plane stresses, the thicknesses corresponding to an acceptable 

neutral axis depth; calculate the stresses applied to each layer. 

3. Calculate the stress to be taken by the concrete in each layer and the stress from each 

layer to be taken by reinforcement. 

4. Calculate the force to be taken by each of the four sets of reinforcement (two faces, 

two directions) taking into account their positions relative to the layers. 

5. Determine section strains compatible with the neutral axis depths implied by the layer 

thicknesses in 5.0.2 and the concrete strains in the outer layers from 5.0.3 for top and 

bottom layers. 

6. Determine reinforcement strains compatible with the section strains. 
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7. From the strains, calculate the stress in each of the four sets of reinforcement. 

8. Knowing the force to be taken by each of the four sets of reinforcement and the 

stress in each set of reinforcement, calculate the reinforcement areas required; these 

should not be less than the specified minimum values. 

9. Repeat as necessary from 5.0.2, adjusting the layer thicknesses to achieve the 

minimum total area of reinforcement. 

10. Where in-plane effects dominate, repeat from 5.0.2 adopting a model with the central 

layer stressed. 

11. The design reinforcement areas correspond to the layer arrangement giving the 

minimum total area of reinforcement. 

12. To speed up the calculation, an option is available to adopt a non-iterative technique 

where the loading is primarily either in-plane or out-of-plane. 

Inclusion of moments resulting from additional and minimum eccentricities 

The applied moments are adjusted to take into account the additional and minimum 

eccentricities of applied axial forces. The additional eccentricity, which can be used to model 

tolerances and second-order effects, is determined by the user; applied bending moments are 

increased by compressive principal axial forces but are not adjusted for tensile principal axial 

forces. The components of in-plane force in the orthogonal directions for use with the additional 

eccentricity, Nxx,add, Nyy,add and Nxy,add, are calculated assuming the angle between the principal 

direction and the x-axis is unchanged. 

 

The default value of the minimum eccentricity, which can be overwritten, is taken from the 

chosen design code; this value, and all other code-dependent values, are given in Appendix 3. If 

the absolute value of the applied moment exceeds the sum of the additional and minimum 

eccentricity moments for Mxx, Myy and Mxy, then the applied moments are increased in 

magnitude by their respective additional moments. Otherwise two sets of applied moments are 

calculated, corresponding to eccentricities applied in the two senses.  

2θ 2θ

(Nxx, Nxy)

(Nyy, -Nxy)

(Nxx,add, Nxy,add)

(Nyy,add, -Nxy,add)
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where j takes the value of -1 for the first set and +1 for the second set. 

 

For example, if the applied, additional and minimum eccentricity moments were 75kNm, 50kNm 

and 60kNm respectively, the design moments for the two sets would be 75-50-60 = -35kNm and 

75+50 = 125kNm respectively. It should be noted that no specific allowance is made for 

slenderness.   

Division of section into layers 

The section is divided into three layers, each with constant in-plane stress. The outer layers both 

have a thickness of αh, where α is the proportion of the total section thickness, h; the inner layer 

is therefore of thickness (1-2α)h. In-plane forces are resisted either by the outer layers alone or, 

if there is sufficient in-plane compression, by all three layers. The outer layers also resist the 

moments resulting from out-of-plane forces. 

 

 

(In this figure, N represents Nxx, Nyy or Nxy and M represents Myy, Mxx or Mxy respectively.) 

 The program determines iteratively the value of α that gives the lowest total area of 

reinforcement, αopt. Calculations are first performed for the condition with the central layer 

unstressed, and then repeated for the condition with it stressed, although the latter results are 

only valid if there is no tension reinforcement, or if tension reinforcement is required in both 

faces, in a particular direction. 
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h

N M

Stress with central layer stressed

h       N/[2h] + M/[(1-)h2]

h

N Mh       N/[2h] - M/[(1-)h2]

Stress with central layer unstressed
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Stress with central layer stressed

(1-)h       N/h+2M/[(1-)h2]
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h
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Stress with central layer unstressed
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h
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Stress with central layer unstressed
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The minimum valid value for α is zero; any code-specified maximum lever arm is converted into 

an equivalent maximum strain in the reinforcement, which is explicitly checked. Where the 

central layer is unstressed, and the axial compression in the reinforcement direction with the 

larger force eccentricity is less than 0.1fcdu.h, the maximum valid value α is given by 

αmax =  β(x/d)max.(0.5 + min{zt1, zt2, -zb1, -zb2}/h); where the axial compression in this direction 

exceeds 0.5βfcdu.h, αβmax  =  0.5; for intermediate values of axial compression, the value of  αmax is 

linearly interpolated between these two extremes. Where all three layers are stressed, the 

maximum valid value for α is given by αmax= 0.5. 

The initial value of α is taken as αmax/2. If this value does not give a valid result, calculations are 

performed for α = αmax/4 and α = 3αmax/4. If neither of these values results in a valid result, the 

additional four values at the eighth points of the range are calculated. This process is repeated, 

using sixteenth points etc, until there is at least one valid result or the interval between adjacent 

values of α falls below a limiting value of 0.02. 

Once a valid value of α has been determined, only the values lying between this value and the 

previously calculated values of α on either side are considered, halving the interval. This is 

repeated, halving the interval for each turn, until it falls below a limiting value of 0.005. 

In the following example, it has been assumed that αmin =0, αmax =0.5, valid results are obtained 

for 0.40 ≤ α ≤ 0.45, αopt = 0.4321, and, for simplicity, the area of reinforcement increases linearly 

with the difference between α and αopt. The optimisation process stops when the interval is less 

than 0.005. The program would calculate areas of reinforcement for the following values of α. 

Values of α in italics indicate no valid solution; values in bold indicate this is a revised optimum 

value. 

Values of α for which reinforcement areas 

calculated 

Current value of 

αopt 

Current value of 

interval 

0.25 - 0.25 

0.125  

0.2 

0.375 

0.4 

- 0.125 

0.0625 0.1875 0.3125 0.4375 0.4375 0.0625 

0.40625 

0.112 

0.46875 

0.144 

0.4375 0.03125 

0.421875 0.453125 0.4375 0.015625 

0.4296875 0.4453125 0.4296875 0.0078125 

 The following procedure must be completed for each trial value of α  

Calculation of stress to be taken by reinforcement in a layer 

The design strength of the concrete, fcd, depends on the extent of cracking and needs not be the 

same in different layers. For each layer, the principal applied stresses, fa< and fa> with fa< being 

more tensile, are calculated from the orthogonal stresses. If fa< is compressive, the uncracked 

concrete strength, fcdu, is used. Otherwise the design strength depends on the ratio of fa< to the 

tensile strength of the concrete, fcdt; the strength is calculated as fcdu  [1 - (fa</fcdt)²], but not less 

than the cracked concrete strength, fcdc. The concrete strengths are code dependent. 
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If fa< is not tensile and fa> is not greater than fcd, then reinforcement is not required to take any 

stress from this layer. Otherwise, the reinforcement must take sufficient stress to achieve 

equilibrium without either overstressing the concrete or requiring it to take tension. The general 

expressions are given in Appendix 1. 

The following diagrams illustrate the situation within a layer where the reinforcement is aligned 

with the x and y directions.  

 

The angle at which the cracks form under the design loads, , is not generally equal to the angle 

of the initial cracks, which depends on the direction of principal tensile stress. As reinforcement 

yields, the angle of cracking rotates, and this angle may be limited by a design code or the user.  

RCSlab selects the angle, complying with any limitation, which results in the lowest total area of 

reinforcement. This often corresponds to the angle that also gives rise to the minimum stress in 

the concrete. 

 

fx fx

fy

fy

fxy

fxy

fxy

fxy



Consider a 2D element of uniform 

thickness with applied in-plane 

normal stresses fx and fy and shear 

stress fxy. Assume that the section 

cracks in a plane at angle  to the x 

plane, measured anticlockwise. 

The applied forces are resisted by 

the concrete, acting in 

compression, and reinforcement in 

the orthogonal directions taking 

tension or compression as 

necessary.

fx fx

fy

fy

fxy

fxy

fxy

fxy

fx fxfx fx

fy

fy

fy

fy

fxy

fxy

fxy

fxy

fxy

fxy

fxy

fxy



Consider a 2D element of uniform 

thickness with applied in-plane 

normal stresses fx and fy and shear 

stress fxy. Assume that the section 

cracks in a plane at angle  to the x 

plane, measured anticlockwise. 

The applied forces are resisted by 

the concrete, acting in 

compression, and reinforcement in 

the orthogonal directions taking 

tension or compression as 

necessary.

 

fx px

fy

py

pv

fxy

fxy

pv

fsx

fsy

s

s/tan

Consider equilibrium of the triangle below 

the crack; fsx and fsy are the stresses 

taken by reinforcement:

•Resolving horizontally

s/tan.(fx+fsx) = s.fxy

 fsx = fxy .tan - fx

•Resolving vertically

s.(fy+fsy) = s/tan.fxy

 fsy = fxy /tan - fy

 
s/tan

py

fy

fx px

fxy

fxy

pv

pv

fsx

fsy fc>

s/
si
n

Consider equilibrium of the triangle with a 

face normal to the crack; fc> is the stress in 

the concrete:

•Resolving horizontally

s.(fx+fsx) + s/tan.fxy = (s/sin.fc>).sin

 fc> = fx+fsx + fxy/tan

= fxy.tan + fxy/tan

fc> = 2fxy/sin2

s


s/tans/tan

py

fy

fx px
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py
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fsx

fsy fc>fc>

s/
si
n

s/
si
n

Consider equilibrium of the triangle with a 

face normal to the crack; fc> is the stress in 

the concrete:

•Resolving horizontally

s.(fx+fsx) + s/tan.fxy = (s/sin.fc>).sin

 fc> = fx+fsx + fxy/tan

= fxy.tan + fxy/tan

fc> = 2fxy/sin2

s


ss

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If both fsx and fsy are positive, tensile stress must be taken by reinforcement in both x and y 

directions. The lowest total stress is required when  equals 45, for which angle fsx = fxy - fx, 

fsy = fxy - fy and fc> = 2fxy. 

Mohr’s circles provide a useful tool for determining the stress to be taken by the reinforcement 

and the maximum stress in the concrete. The circle representing the compressive strength of 

concrete has principal values of the origin and the concrete design strength. If this circle does 

not encompass the circle representing the applied stress, reinforcement is required. 

The stress taken by the reinforcement is subtracted from the applied stress to give a residual 

stress in the concrete, which must always fall within the circle representing its compressive 

strength. If this is not achievable, then it is not possible to reinforce for the applied stress with 

reinforcement in the directions chosen; the reinforcement must be orientated closer to the 

principal directions, or else stronger concrete should be used. If the reinforcement is aligned 

 shear stress

compressive stress

compressive strength 

of concrete (fcd)

principal 

tensile 

stress   

(fa<)

applied stress

X (fx,fxy)

Y (fy,-fxy)

principal compressive stress (fa>)

Reinforcement is required because the applied stress circle does not lie 

within the circle representing the strength of cracked concrete
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Reinforcement is required because the applied stress circle does not lie 

within the circle representing the strength of cracked concrete
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Note that for =45, the stress taken by x-direction reinforcement is equal to (fxy- fx) 

and that taken by the y-direction reinforcement is equal to (fxy- fy)
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with the x and y axes, then the offsets representing the stress taken by the reinforcement are 

horizontal; otherwise the offsets are at an angle with the vertical offsets equal in magnitude but 

of opposite sign.  

Calculation of forces to be taken by reinforcement  

Having determined the stresses to be taken by reinforcement in all three layers, the forces in the 

four sets of reinforcement must be determined considering equilibrium. The differences 

between the centroids of the stressed layers and the positions of the reinforcement must be 

taken into account. 

If this calculation is undertaken in one stage, anomalies could occur such as tension 

reinforcement being required where the surrounding concrete is in biaxial compression. To 

avoid this, the calculation is made in three stages. 

The procedure works better if the larger moment results in tension on the bottom. If the larger 

moment results in tension at the top, the section and applied forces are inverted before the 

calculation is undertaken, and the results inverted at the end. 

In stage A, the forces required in the top steel, NstA, are calculated assuming that the stresses to 

be taken by the bottom reinforcement are distributed uniformly across the bottom layer, fsbA. 

This is shown diagrammatically below; there would of course be an equivalent diagram for the 

second steel direction. The overall distribution of concrete and steel stresses in the bottom layer 

is then rechecked to see whether any of fsbA can in fact be resisted by the concrete; this 

calculation results in stresses of fsbB to be taken by the bottom reinforcement. 

 

In stage B, the forces required in the bottom steel, NsbB, are calculated returning the top 

reinforcement forces to stresses distributed uniformly across the top layer, fstB. The overall 

distribution of concrete and steel stresses in the top layer is then rechecked to see whether any 

of fstB can be resisted by the concrete; this calculation results in stresses of fstC to be taken by the 

top reinforcement. 
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zt

h(1-)/2

fstB

NsbB

zb
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In the final stage, C, any reinforcement, top and bottom, required to take the modified stresses 

in the top layer is calculated. By considering the top layer last, there will be places where no top 

steel is required. Although stage C could result in bottom steel in locations where it would be 

unnecessary with further rationalisation, the reinforcement areas would be small and usually 

less than nominal bottom steel. 

 

Although this three stage approach calculates reinforcement forces reasonably economically, it 

may result in small differences in the areas of top and bottom reinforcement for pure axial load. 

Determination of section strains compatible with concrete strains in outer layers 

To determine the four sets of reinforcement areas 

required to take these sets of forces, a design strain, 

compatible with the concrete stress blocks, is needed for 

each set. The first stage of calculating these strains is to 

determine the compressive strains at the outer or inner 

boundaries of the concrete stress blocks. The calculation 

of the principal compressive strains at the top is described 

below; a corresponding procedure is used to estimate the 

principal compressive strains at the bottom. 

Although at this point in the procedure, principal 

compressive stresses in the concrete have been 

determined for the top, fc>t, and bottom, fc>b, layers, the 

directions of these two principal axes, t and b, will not 

generally be aligned. In order to estimate the strain profile 

for the top layer, fc>tb, the stress in the bottom layer in the same direction as fc>t, is calculated. 

Knowing fc>tb enables the compressive principal strains in the top layer to be calculated.   

If fc>t/fcd,t equals fc>tb/fcd,b, then the more 

compressive strain, c>t, is at the top of the 

section and taken as the axial limiting 

strain, cax. 
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h fc>t
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cax

strain

h
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h
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fc>bfc<b

fc>tb

2(t-b)

fc<b.sin2(t-b) + fc>b.cos2(t-b)

Calculation of stress fc>tb in bottom

layer at the angle of principal strain 

in the top layer

fc>bfc<b

fc>tb

2(t-b)

fc<b.sin2(t-b) + fc>b.cos2(t-b)

Calculation of stress fc>tb in bottom

layer at the angle of principal strain 

in the top layer
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If fc>t/fcd,t is less than fc>tb/fcd,b, c>t is at the 

centre of the top block and calculated as 

the compressive plateau strain of 

concrete, ctrans, factored by fc>t/fc>tb. 

 

 

If fc>t/fcd,t is more than fc>tb/fcd,b, c>t is at 

the top of the section and calculated so 

that it does not exceed the limiting strain, 

cu, and that the axial limiting strain, cax, is 

not exceeded at a position (1-cax/cu)h 

from the face, assuming a strain at the 

centre of the bottom block of ctrans 

factored by fc>tb/fc>t. 

 

 

 

 

The maximum compressive strain on the more 

compressed face can exceed ctrans even if the 

maximum compressive stress is less than the 

concrete strength fcd since the ultimate strain 

could be obtained with a smaller stress block, 

h, but more favourable lever arm 

 

For all conditions, the less compressive principal strain, c<t, is taken at the same level as c>t. If 

the less compressive principal stress, fc<t, is compressive, then c<t, is taken as ctrans factored by 

fc<t/fc>t, where fc<t is the less compressive principal stress in the top block. The key concrete 

strains are code-dependent. 

Determination of compatible reinforcement strains 

Having estimated the concrete strains, the next stage is to determine compatible reinforcement 

strains. There are three different procedures for calculating the reinforcement strains, the choice 

of which depends on the relations between the reinforcement forces, summarized in the 

following table. Different procedures may be appropriate for each face and direction.  

For directions with flexure, the neutral axis is taken as αh/  from the compression edge, where  

is the ratio of the depth of the rectangular stress block to the depth of the neutral axis, which is 

code-dependent. 
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
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Assumed stress-strain relation for concrete
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Assumed stress-strain relation for concrete
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Reinforcement 

requirements: 

C = compression 

N = none 

T = tension 

U = none; concrete unstressed 

 

Procedure 

 

Principles in 

determining 

reinforcement strain 
Face considered Opposite face 

Direction 

considered 

Other 

direction 

Direction 

considered 

Other 

direction 

C 

T 

T 

C 

Any 

T/U 

T/U 

Any 
A 

Principal tensile strain 

chosen to give 

minimum area of 

reinforcement; 

calculations made at 

level of compression 

reinforcement. 

Of the remainder: 

T 

T 

T/U 

C/N 

T/U 

T/U 

T/U 

C/N 
B 

Strain compatibility not 

required since both 

faces in tension and no 

neutral axis in other 

direction. 

All others C 

If concrete cracked, 

boundary strain 

calculated to be 

compatible with 

principal compressive 

strain on opposite face 

and neutral axis depth 

consistent with depth 

of stress block. Strain 

at reinforcement level 

interpolated from 

boundary strains. 

The procedures are described below in detail. 
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Procedure A 

The principal tensile strain is calculated so that the total area of reinforcement in this layer is at a 

minimum. Note that if the tensile strain is not large enough, the tensile reinforcement will be 

working at a low stress, or even be in compression, but if the tensile strain is too large, the 

compressive reinforcement will be working at a low stress, or even be in tension. 

The formulae to calculate the optimum value of the tensile strain are given in Appendix 2. The 

calculation is made at the level of the compression reinforcement. Although the tension 

reinforcement will be at a slightly different level, it is assumed that the strain in it is 

approximately equal to the strain in its direction at this level; since the reinforcement in the 

opposite face in the same direction will always be in tension, this should be a reasonable 

assumption. 

 

To estimate the principal compressive strain at the level of the compression reinforcement, the 

variation in magnitude and direction of the principal compression between the top and bottom 

layers must be considered. For these preliminary calculations, the magnitude of the principal 

tensile strain is taken as equal to that of the principal compressive strain. The strains in the 

reinforcement directions are calculated using the procedure in the figure below for both top and 

bottom layers at their appropriate block boundary; from these strains, the value at the level of 

the compression reinforcement is linearly interpolated. From the normal and the shear strains at 

the level of the compression reinforcement, the magnitude and orientation of the principal 

strain at this level can be estimated. 

22

21
2

shear stress

compressive 

stress

X

Y

fc>t
fc<t

2

1

stress in concrete

22

21
2

shear strain / 2

compressive 

strain

X

Y

>t1
<t1

2

1

strain in reinforcement & concrete

compressive strain in 

reinforcement direction 1

tensile strain in 

reinforcement direction 2

maximum 

compressive 

strain in concrete

Note that principal stresses and strains are aligned
The notation assumes that this is the top layer with compression reinforcement in direction 1

Relations between stresses and strains at the level of the top reinforcement, 

direction 1, with procedure A 
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The final stage of calculating reinforcement stresses makes allowance for the area of concrete 

displaced by compression bars by subtracting the concrete stress at the level of the 

reinforcement from the steel stress. To compensate for this when determining the optimum 

tensile strain with procedure A, a force, estimated to equal the force in displaced concrete, is 

added to compressions. This is achieved by factoring the compression by: 

 

 

 

 

Procedure B 

This procedure is adopted when strain compatibility is not required for tension reinforcement; 

the full design strength of the reinforcement is used. 

Procedure C 

The first stage of this procedure is to calculate the tensile strain in the compression block at 

either its surface or inner boundary, as appropriate, in the directions of the reinforcement. If the 

Estimating magnitude and orientation of principal strain in concrete at level 

of compression reinforcement with procedure A
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Minimum strain, <t, assumed to be

->t for this calculation 

>t.sin2(n-t)

From εztn and the corresponding shear strain, 

the magnitude and orientation of the principal 

strain at the level of the compression 

reinforcement, ε>zt, can be estimated

N

2(θn-ϕ)fc>t
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is always zero 

since tensile 

reinforcement 

required

stress in concrete
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stress block is in biaxial compression, the strain is determined from the concrete stress, but if it 

is cracked, the strain compatible with the principal compressive strain on the opposite face and 

the depth of the neutral axis is determined. 

 

Having obtained the strains in the reinforcement directions at the boundaries of the stress 

blocks, the strains at the levels of the reinforcement can be calculated. 

 

Determination of stress in reinforcement 

The stress in the reinforcement is calculated from the strain; a tri-linear stress-strain relation is 

used for the reinforcing steel in both tension and compression, for which the salient points are 

Calculating strain in reinforcement directions, ctn, for cracked top 

stress block with procedure C

>b

>bt

h/

where >t > trans

h/2

>b

>bt

h/

where >t < trans
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>t<t

2(b-t)

Strain at boundary of top stress block

2t

X

2θn

ctn

<t = [>bt - >tcos2(b-t)] / sin2(b-t)

ctn =   <tsin2(θn-t)+ >tcos2(θn-t)

N

Calculating reinforcement strains, tn and bn, with procedure C
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code-dependent. If the bar is to take compression, the calculated stress in the reinforcement is 

reduced by the layer’s concrete stress in the reinforcement direction to allow for the displaced 

concrete. 

Calculation of area of reinforcement 

If the force and stress are of opposite signs then the calculation for this particular value of α is 

unsuccessful. If the force required to be taken by the reinforcement is of the same sign as the 

stress calculated in that steel, the area is calculated by dividing the forces by the stress; the area 

is limited to half the section thickness. The specified minimum area is used as appropriate. 

Finally, the four reinforcement areas are summed to give a total that is compared with the totals 

resulting from other iterations: the reinforcement areas with the smallest total are output by the 

program, with compressive reinforcement identified by negating its area, following GSA’s sign 

convention. 

Non-iterative technique 

To speed up the calculation, an option is available, where the loading is primarily either in-plane 

or out-of-plane, to adopt a non-iterative technique. This approach is likely to lead to slightly more 

conservative results. The user can choose to use this approach in appropriate situations and can 

specify a total area of reinforcement, as a percentage of the cross-sectional area, above which a 

rigorous, iterative solution is used. 

Primarily in-plane 

The applied loads are taken as primarily in-plane if the eccentricities of the moments equal the 

minimum eccentricity for each component for which there is a corresponding force.  

Where loads are primarily in-plane, α is taken as 0.5. If the maximum compressive stress in the 

layers exceeds its strength, the section is unreinforceable; otherwise, reinforcement areas are 

calculated.  

 Primarily out-of-plane 

The applied loads are taken as primarily out-of-plane if the more compressive principal is less 

than 0.1fcdu. Tensile normal stresses do not prevent use of this technique. 

Where loads are primarily out-of-plane, the central layer is unstressed and the value of α is 

initially set to αlim. If the maximum compressive stress in the compressive outer layers exceeds 

the strength, the section is unreinforceable. If compression reinforcement is required, the 

iterative solution is used. Otherwise, a reduced value of α is calculated so that the relatively more 

highly stressed of the top and bottom layers is just below its compressive strength, while 

remaining in equilibrium with the applied moments; limits on the change in α are imposed. The 

stresses are recalculated for this value of α, and a further revised value of α calculated. If the 

change in α exceeds 0.01, the stresses are recalculated again. Reinforcement areas are 

calculated for the final value of α. 

Distribution of reinforcement 

RCSlab calculates the area of reinforcement required at each node. Since the reinforcement 

distribution corresponds to the force and moment distributions with their concentrations and 

peaks, there may be locations where no satisfactory reinforcement arrangement can be 
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determined because the concrete is overstressed in shear. If these points, which are left black 

when contouring, are isolated, they can probably be ignored but larger areas will require 

changes to the geometry or material properties.  

It is also usually appropriate to average values of reinforcement in areas of great change. For 

example, reinforcement requirements in flat slabs can be averaged over the central half of the 

column strips, the outer portions of the column strips and the middle strips, as when following 

code methods. It is hoped that future developments within GSA will help automate this averaging 

process.  
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Reduced stiffness & P-delta 

The element stiffness can be partitioned into structure (s) and retained (r) degrees of freedom 

 
























r

s

rrrs

srss

r

s

u

u

KK

KK

f

f

 

So 

 srsrrrrrr uKKfKu
11 


 

Giving the reduced equation 

 
    srsrrsrssrrrsrs uKKKKfKKf

11 


 

or 

 
 ssssss K
~

uK
~

f
~


 

When creating the structure stiffness matrix the element matrix can be assembled and then 

reduced as above before being included in the structure equations. 

 SSSS uKf 
 

Once the structure displacements are calculated the element displacements can be established 

from 

 








 

srsrrrrr

s

e
uKKfK

u
u 11

 

And the element forces as  

 eeee uKf 
 

For a P-delta analysis the global solution is modified to 

 
 

SSSSgSSSSS uK̂uKKf 
 

but the element force calculation is unchanged. This means that once the structure 

displacements are calculated the element displacements and forces are calculated from 

 








 

srsrrrrr

s

e
uK̂K̂fK̂

u
u 11

 

 eeee uKf 
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Seismic Calculation 

Response Spectrum Analysis 

Response Spectrum 

The response of a single degree of freedom system mode (frequency f , spectral acceleration 

spectrala ) is  

 
2)2( f

a
q

spectral

i




 

Modal analysis reduces a complex structure to an equivalent system of single degree of freedom 

oscillators so this can be applied to the structure as a whole for any selected mode. The 

response in a given mode i in direction j is 

 
i

i

spectral

ijji
f

a


 2)2(
x 

 

Where ij is he participation factor to account for the direction of excitation. The term  

 
2)2( i

spectral

ji
f

a




 

is the modal multiplier. 

For global x & y we use x  & y . So for excitation at an angle α we want to use  α. Going back 

to the definition of the participation factor in x and y directions: 

m

m
T

y

T

x

ˆ

ˆ

My

Mx









 

Where x & y corresponds to a rigid body displacement in the x & y directions. So the rigid body 

vector at α is 

 
 sinycosxr 

 

And the orthogonal direction α’ would have a rigid body vector 

 
 cosysinxr ' 

 

This means that for a rotated excitation direction we just need to rotate the participation factors 

and we don’t need to transform the displacements, etc.  
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















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ˆ

My
sin

ˆ

Mx

sin
ˆ

My
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ˆ
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'
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TT

TT





 

or 

 








cossin

sincos

' yx

yx





 

That leaves the only transformation we need being the transformation of global displacements 

to local for nodes in constraint axes. For these we want to transform modal results from global 

to local, do the combination and transform combined value from local to global.  

The modal responses are then combined using one of several combination methods. 

Combinations 

The main combination methods are: 

ABSSUM 

 


i

ixx

 

SRSS 


i

ixx 2

 

CQC6 

 
 

i j

jiji xxx 

 

where 

 

 

      222222

2
3

4141

8

ijjiijijjiij

ijjijiji

ij











 

where ζi and ζi is the damping associated with frequencies fi and fj.  

 

ij

j

i

ij ff
f

f


 

                                                        

 

6 Wilson, der Kiureghian & Bayo, 'Earthquake Engineering and Structural Dynamics', Vol 9, pp 

187-194 (1981), 
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If the damping is constant this simplifies to 

 

 

   222

2
3

141

18

ijijij

ijij

ij











 

Rosenbluth7 

 
 

i j

jiji xxx 

 

where 

 

 
    21

2

jjiiji

jiji

ij
ffff 









 

CQC3 

In SRSS method, the spectra yx ss ,  are applied to 100% on the principle directions. The 

responses obtained from SRSS combination has equal contributions from all the directions. 

However, in practice the same ground motion will not occurs in both the direction. Therefore, 

SRSS yields conservative results. 

Menun and Der Kiureghian8 (1998) presented the CQC3 combination method for combination of 

the orthogonal spectrum. Let assume yx ss , are the major and minor spectra applied at an 

arbitrary angle   from the structural axis. To simplify the analysis further assume the ys   

spectra is some fraction of xs  spectra. 

 xy sas   

                                                        

 

7 ASCE 4-09 Seismic analysis of safety related nuclear structures and commentary', Chapter 4.0 

Analysis of Structures (2009) 
8 Menun, C., and A. Der Kiureghian. 1998. “A Replacement for the 30 % Rule for 

Multicomponent Excitation,” Earthquake Spectra. Vol. 13, Number 1. February. 
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The peak response value can be estimated using the fundamental CQC3 equation 

      2
1

2222222

2

2
cossin12sin1 zxyyxyx QQaQQaQaQQ    

where 

  

















i j

zjijziz

i j

yjijxixy

i j

yjijyiy

i j

xjijxix

qqQ

qqQ

qqQ

qqQ









2

2

2

 

and yixi qq ,  are the modal quantities produced by spectrums applied at x and y directions, ziq  is 

the modal value produced by the vertical spectrum and   is the arbitrary angle at which the 

lateral spectra is applied. 

Normally, the value of   is not known. The critical angle that produces maximum response can 

be calculated using 

 















 

22

1
2

tan
2

1

yx

xy

cr
QQ

Q
  

And the critical response becomes 

      2
1

2222222

2

2
cossin12sin1 zcrcrxycryxyx QQaQQaQaQQ    

If the value of 1a , CQC3 combination reduces to SRSS combination. The peak response value 

is not dependent on the   and the peak response can be estimated using. 

𝜃  X 

Y 

X Spectra (Sx) 

Y Spectra (Sy) 

Epicenter 
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 222

max zyx QQQQ   

There is no specific guidelines available to choose the value of a . Menun and Der Kiureghian 

presented an example for CQC3 combination with a value ranging from 0.50 to 0.85. 

Storey Inertia Forces 

The storey inertia forces can be calculated from the storey mass, m and inertia, Izz, response 

spectrum and the modal results.  The storey modal translations (ux,uy)and rotations (θz) are 

calculated (see below) 

The force and moment for excitation in the ith direction are then determined from  

 

 

 











CQC

zspecicodezzz

CQC

yspecicodey

CQC

xspecicodex

asIM

uasmf

uasmf

.

.

.

 

Where codes  is the code scaling factor, speca is the spectral acceleration and i  the participation 

factor. 

Equivalent Static and Accidental Torsion Load 

Many seismic codes have procedures for calculation of equivalent static or accidental torsion 

loads. 

GSA provides a method of calculating these loads. 

The first stage in the calculation is to establish the nodal masses. This includes the mass of 

elements plus the additional mass derived from any loads. If a modal analysis has previously 

been carried out this information is picked up from that analysis task. For each storey we can 

calculate the storey mass sM  by summing the mass of all nodes in that storey. 

If a response spectrum case has been selected the base shear, V , is extracted from that 

calculation, otherwise the base shear is calculated using the code equations (e.g. UBC, IBC or 

FEMA). 

At this point different codes have different requirements. In UBC 1997, depending on the period, 

an additional force, tF , is added to the top storey. 

 

VTF

sTVF

sTF

t

t

t

07.0

25.007.025.0

7.00







 

For IBC and FEMA an exponent K on the distribution function is required 
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 
2

5.0
1

5.22

5.01








T
K

sTK

sTK

 

For other codes K is set to 1. 

Equivalent Static 

We then calculate the force to be applied to each storey, s , at height, h  

  tK

ss

K

ss
s FV

HM

HM
F 


 

And for the top storey 

   ttK

ss

K

ss
s FFV

HM

HM
F 


 

This storey force is then distributed to the nodes, n , in proportion to their mass  

 s

s

n
n F

M

M
F   

Accidental Torsion 

For the accidental torsion we calculate the storey masses as for the equivalent static and we 

calculate the centre of mass of each storey. Storey calculations are relative to the centre of mass.  

We also need the width of the storey which is calculated by the difference in the extreme 

coordinates in the direction of interest. 

We have an offset, o , which is based on the width of the storey. The accidental torsion moment 

for the storey szzM , is then 

 oFM sszz ,  

This is then applied as forces to the nodes in the storeys  

 oF
M

M
F s

s

n
n ˆ  

As well as a resulting torsion on the storey this may lead to a force 


nodes

nFF ˆˆ  

So we correct for this by adjusting these forces by 
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s

s

n
nn F

M

M
FF ˆˆ~

  

And sum the moment on the storey is  

  
nodes

nnszz oFM ,

~
 

Finally we adjust these force values so that we have the correct moment on the storey  

 

szz

szz

nn
M

M
FF

,

,

~
~

  
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Rotation at the end of a bar (beam) 

Force 

Point load W at position a  

From Roark9, the end rotations for a point load are  

 
  alal

l

a

EI

W
 2

6
0

 

 
 22

1
6

al
l

a

EI

W


 

Letting the distance from end 1 be b  these equations can be rewritten  

 
l

blab

EI

W 


6
0  

 

 
l

blab

EI

W 


6
1

 

Varying load from  ba : with intensity aw  and bw . 

Using the equations above from Roark the end rotations for a point load at x are  

 
  xlxl

l
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W
 2

6
0

 

 
 22

1
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W
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Using these and integrating over the element gives 

 

     

b

a

dxxlxl
l

x
xw

EI
2

6

1
0

 (1) 

 

    

b

a

dxxl
l

x
xw

EI

22

1
6

1


 (2) 

The load intensity is a linear function in the range  ba :  

                                                        

 

9 Roark Formulas for Stress and Strain, Table 3 (1.e) 
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Or 

 
  xwwxw qp 

 (3) 

where 
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Substituting equation 3 in 1 for end 0 

 

    

     

   

   















b

a

q
b

a

p

b

a

q
b

a

p

b

a

q
b

a

p

b

a

qp

dxxlxxl
EIl

w
dxxlxxl

EIl

w

dxxlxlx
EIl

w
dxxlxlx

EIl

w

dxxlxl
l

x

EI

w
dxxlxl

l

x

EI

w

dxxlxl
l

x
xww

EI

4322322

22222

2

0

32
6

32
6

32
6

32
6

2
6

2
6

2
6

1


 

so 
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Substituting equation 3 in 2 for end 1 
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so 
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Moment 

Point moment M at position a 

From Roark10, the end rotations for a point load at a  are  
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Letting the distance from end 1 be b  these equations can be rewritten 
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Varying load from  ba :  with intensity am and bm . 

Using the equations above from Roark the end rotations for a point moment at x are  
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10 Roark Formulas for Stress and Strain, Table 3 (3.e) 
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Using these and integrating over the element gives 
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As with the forces the moment intensity can be written as 
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Substituting equation 6 in 4 for end 0 
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EIl

m
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q
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b

a
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a

p


 

Substituting equation 6 in 5 for end 1 

 

  

   







b

a

q
b

a

p

b

a
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dxxxl
EI

m
dxxl

EI

m

dxxlxmm
EI

3222
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1

3
6

3
6

3
6

1

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so 

 

 

    

   







 

















4

3

26

6

4

3

266

44222
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422
32

1

ababl

EIl

m

ababl
EIl

m

xxl

EIl

m
xxl

EIl

m

q

p

b

a

qb

a

p


 

 

Thermal 

For a thermal gradient  applied to a beam the curvature is 

    

So the radius of curvature is 

 

1
r

 

Assuming a circular arc the rotation at the end is perpendicular to the radial lien of the arc. This 

means that the angle of the radial line to the beam original configuration is 

 















2
cos

2
cos

1 




l

r

l

 

And  

 









 

2
cos

2

1 


l

 

 









 

2
cos

2

1 


l

 

Pre-stress 

Only the tendon per-stress P with an offset o will give rise to a rotation. The effect of this is a 

uniform moment over the length of the element of 

 Pom   

This case can then be treated as above for a patch moment. 
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Beam distortion 

A beam distortion can be a displacement discontinuity or a rotation discontinuity. For a 

displacement discontinuity of v at x the rotation is then  

 l

v
 10 

 

For a rotational discontinuity of  at a  the rotation is calculated by defining a displacement of h

at a then the angle and end 0 and  at end 1 gives the set of equations 

 alb   

    

 a

h







cos

sin
tan

 

 
b

h







cos

sin
tan

 

Substituting for  in the last equation gives 

      cossin hb  

     sinsincoscossincoscossin  hb  

 






























cos

sin
sincos

cos

sin
cossin hb

 

Substituting for terms in   

     sincoscossin hahhab   

 
   sincossin 2 abhbah 

 

Then the rotation angles at end 0 and 1 are 

 

























b

h

a

h

1

1

tan

tan





  

 

Second Moments of Area & Bending 

The second moments of area are defined as 
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











A

yz

A

zz

A

yy

dAyzI

dAyI

dAzI

2

2

 

For symmetric sections Ixy is zero.  

For uniaxial bending or bending about principal axes 

 zzzz

yyyy

EIM

EIM









 

When there is biaxial bending these have to be modified to 

 




























z

y

zzyz

yzyy

z

y

II

II
E

M

M





 

As the second moments of area form a tensor these can be rotated to different axes using a 

rotation matrix 

 






























 





















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
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~~

~~

zzyz

yzyy

zzyz

yzyy

II

II

II

II

 

Or 

 





22

22

22

sincoscossincossin
~

cossin2cossin
~

cossin2sincos
~







yzzzyyyz

yzzzyyzz

yzzzyyyy

IIII

IIII

IIII

 

Or in terms of double angles 







2cos2sin
2

~

2sin2cos
22

~

2sin2cos
22

~

yz

zzyy

yz

yz

zzyyzzyy

zz

yz

zzyyzzyy
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I
II

I

I
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I
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I





















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Shear Areas 

Thin-walled Sections 

The effect of shear deformation on the results of a structural analysis is usually negligible. Where 

it is more significant, it will usually suffice to make a simple approximation to the shear 

deformation area of members with a cross-section such as those shown in Fig 1. The usual 

approximation is, by analogy with a simple rectangular beam, to take 5⁄6 or 11⁄12 of the total web 

area (overall depth × web thickness). 

For those rare structures where the shear deformation is very important it may be necessary to 

use a more exact value for the area. This Note gives formulae for F for the cross-sections of Fig.1 

where 

 
6

dt
FAs   
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These were derived from the virtual work formula, shear deflection per unit length =  ds
Gt

q2

. 

Here q is the shear flow at any point at the middle of the wall thickness, the shear stress tq is 

assumed constant across the wall thickness t , and the integration extends over the whole cross-

section. 

To see what the formulae mean in practice, they were applied to steel sections taken from the 

handbook with the results shown in the table below. In a web or flange with varying thickness, t  

was assumed constant at its average value. The smaller values of F in a range correspond to 

cross-sections with squarer aspect ratios. Samples only of UBs, UCs and channels were taken. 

It can be seen that, for sections with top and bottom flanges bending, as nature intended, in 

their strong direction, the usual approximation is satisfactory (although it should be noted that d 

is the distance between flange centres, not overall depth). For the more bizarre sections used in 

bending, values of F  are seen to be lower than expected, especially when they are perversely 

bent in their weakest direction. 

Section F 

Bending in strong direction 

UB 5.72 to 5.81 

Joist 5.17 to 5.78 

UBP 5.25 to 5.28 

UC 5.28 to 5.53 

SHS 5.0 

RHS 5.0 to 5.49    2:1bd  

Channel 5.06 to 5.60 

Angle 3.68 to 4.62   2:1bd  

Tee from UB 4.78 to 4.97 

Tee from UC 4.11 to 4.35 

Cruciform 5 

Bending in weak direction 

Channel 2.12 to 3.78 

RHS 4.02 to 5.0   2:1bd ) 

Angle 2.55 to 3.68  (for d⁄b = 0.5 to 1) 

I’s, T’s, & cruciform 5.0 
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With regard to calculating shear stresses, the exact distribution is not normally required, or even 

usable, because Codes of Practice base the shear strength on an allowable average shear stress 

calculated on the total net area Dt . However, the shear distribution is sometimes required to 

design welds or concrete stitches, and, since it was found in the process of deriving the formulae 

for F , formulae for the stress factors ik and mk  are given. Here, 

 
d

V
kq ii   

is the shear flow in the web at the junction with the flange, and 

 
d

V
kq mmi   

is the maximum shear flow in the web, in which V  is the shear force at the section. 

For circular annuli, assuming that the stress is constant across the wall thickness t , both the 

deflection and maximum stress can be obtained using a shear area of half the actual area, that is 

rt  where r is the mean radius. 

Formulae 

 
b

d

dT

bt

bT

dt
   

Shear deformation area 

 
6

dt
FAs   

Type A1 

 
 

2

2

2.0264

6








F  

Types A2 & A3 

 
 

2

2

2.026

6








F  

Special case of A3 with constant wall thickness so that  2,2,  tT  

 
 

3

2

2

210155

310








F  

Type B1 

 
 

2

2

2.04.12.32

4








F  
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Special case of B1 with constant  1,,  tT  

 
 

  2

2

6101

45








F  

Types B2 & B3 

 
 

2

2

2.04.12.35.0

4








F  

Special case of B3 with constant thickness  2,2,2  tT  

 
 

32

2

414165

220








F  

Type C 

 5F  

 

Stress Factors 

Type A1, A2 & A3 

 




















 6

4

2

3

6

6
mj kk  

Type B1, B2 & B3 

 
 

  



















 41

2

2

3

4

6
2

mj kk  

Solid Sections 

For rectangular beams it is usually sufficiently accurate to take the shear area for deflection as 

bd6
5

 where b  is the breadth and d  the depth of the section. The corresponding maximum 

shear stress is bdV2
3

. It should be noted however that for wide beams the maximum shear 

stress is underestimated by this formula: for a beam with an aspect ratio of 1 the maximum 

stress is 12.6% higher. (For a beam with an aspect ratio of 50 (for example a slab) the maximum 

stress is about 2000% higher but, as this is a Poisson’s ratio effect, it is difficult to believe that this 

has any practical significance!11) 

                                                        

 

11 Timoshenko, S.P. and Goodier, J.N. Theory of elasticity. 3rd edition. McGraw-Hill, 1970. 
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For circular sections the shear area for deflections is 

 

 2
2

2

1
7

6










r
 

where  is Poisson’s ratio and r  the radius. The expression is very insensitive to the value of  . 

The maximum shear stress is given by 

 
21

5.1

r

V
















 

which varies from  

 2
5.1

r

V


  for 0  

to 

 2
33.1

r

V


  for 5.0  

with 

 2
38.1

r

V


  for 3.0  

This item was written by John Blanchard and Ian Feltham for Feedback Notes [an Ove Arup & Partners internal 

publication] (1992 NST/21) originally published in October 1992. Incorporates 1996NST/10 and is reproduced 

here with permission. 

 

Storey Displacements 

Storey displacement are calculated from 


i

is u
n

u
1

 

Where i are the nodes in the storey and n is the number of nodes in the storey. The rotations are 

the calculated relative to the centre of mass, cm.  

The position of node i relative to the centre of mass is 

 mi ccc 
 

the distance from the centre of mass is 

 
22

yx ccr 
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and the component of displacement giving rise to rotation is 

 si uuu 
 

The rotation of the storey is then defined as 

 
 









 


i

yxxy

r

cucu

n 2

1

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Sub-model Extraction 

This feature allows a sub-model to be extracted from GSA, so that the sub-model can be 

investigated in more detail. There are two aspects to the sub-model: the elements that form the 

sub-model and the tasks that are to be associated with the sub-model. 

The nodes that form the sub-model and the nodes that form the boundary between the sub-

model and the remainder of the model are identified. A new model is then created for the sub-

model. Nodes on the boundary are fully restrained. Properties are copied directly. Constraints 

and loading are updated to include only those associated with the sub-model. Tasks are updated 

based on the tasks selected for the sub-model. 

Static analysis tasks 

For static analysis tasks the displacements at the boundary nodes are extracted for each analysis 

case. These are then applied in a new load case as settlements, and the analysis cases updated 

to include these settlements. 

Modal dynamic and Ritz analysis cases 

For dynamic tasks there is the option of Local or Global response. 

Local 

If the mode is predominantly local it may be more appropriate to consider the boundary of the 

sub model as fixed and to carry out a modal analysis of the sub-model. In this case the model 

extraction is straightforward. In this case the analysis task is copied directly 

Global 

It is not possible to carry out a sub-model model analysis when the mode is global. In this case 

the modal results are used to create a set of static loads 

The modal analysis of the full model gives us eigenvalues and eigenvectors which satisfy 

 
0 iii MK 

 

This can be rearranged in the form  

 iii MK  
 

Which we can consider as a static (pseudo modal) analysis of 

 ii pK 
 

where 

 iii Mp 
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When extracting the sub-model the frequency (eigenvalue) and mode shape (eigenvector) can be 

used to create a set of node loads: 

 
  i

nn

ii

n

i

nn

ii

n

Mfp

Mp





.2
2





 

The modal task in the full model is mapped to a static task in the sub-model. As for the static 

analysis the displacements at the boundary nodes are used to determine settlements at the 

boundary nodes and the inertia loads are saved as node loads. The static analysis of these loads 

will then recover the mode shapes of the original model. 

Response spectrum analysis 

Response spectrum analysis is a combination of modal results scaled to match a given response 

spectrum. Extracting the modal results are static load cases means that the dynamic details are 

lost to the sub-model. To overcome this problem the response spectrum tasks are mapped to 

pseudo response spectrum tasks. A pseudo response spectrum task assumes that a static 

analysis case represents a mode shape. The dynamic details are supplied directly to the task in 

the form of frequency, modal mass and effective masses. When a response spectrum task is 

extracted from the full model these details are recovered from the modal analysis and included 

in the pseudo response spectrum analysis task. 

Given a shape from a pseudo modal analysis the scaling for each mode i, for excitation in the j 

direction is: 

 
  i

i

spectral

jii
f

a
u 


2

,
2



 

Where 

 m

ji

ji ~
,

,




 

If the pseudo modal analysis is carried out using the static procedure above, and the frequency 

and participation factor are known from the master model, then the modal contribution to the 

response spectrum analysis can be estimated. Thereafter the combination is just as for any 

normal modal analysis.  
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Torce Lines 

GSA gives the option of plotting ‘Torce lines’, which are similar to thrust lines but include the 

effects of torsion. They are equal for plane frames. 

Good structural design requires a clear thinking head, well-presented information and some 

creative flair. At the detailed level designs progress by iterative evolution and the quality of the 

design depends on the effectiveness of the interaction between the designer and the 

information which describes the behaviour of the structure in the current cycle. In today’s world 

this information is almost always presented by a computer. Graphical plots of the parameters 

used in the numerical analyses are often ergonomically inefficient, meaning that although they 

contain the information they fail to transmit insight or understanding into the head of the 

designer. Better representations are needed. 

For many applications thrust lines meet this need. They are useful where members are 

subjected to combined axial load and bending, particularly for compression members made of a 

material that takes no tension. In these cases the adequacy of the member can often be 

reasonably described by a limit on the eccentricity of the thrust line. Thrust lines are frequently 

used by the designers of masonry arches. 

A thrust line is the locus along a member of points drawn at an eccentricity of 

 
xF

M
 

from the centroidal axis of the member, where M is the moment and xF the axial force. It 

follows the line of action of the force carried by the member and two related points follow from 

this: 

• No scale is needed when drawing a thrust line. It is not a diagram superimposed on a 

view of a structure. It occupies the position where it is shown. 

• It is not subject to any sign conventions. 

However the key feature of the thrust line which makes it so useful is that it is a complete 

description of the forces carried by the member. Because of this completeness property a 

designer can, with no loss of accuracy, substitute a thrust line, which he or she can visualise, for 

the combination of the three numbers representing the axial force, moment and shear, which 

remains stubbornly abstract. 

In a computer model of a structure the thrust line is derived from the forces in a member but 

because it occupies the actual position of the force transmitted through the structure being 

modelled it follows that its position remains fixed in space even if the member which ‘supports’ it 

is moved, providing the movement of the member does not change the force being transmitted. 

This can be referred to as the invariance property of thrust lines. 

The above statements refer to thrust lines in two dimensions, as in a plane frame model. Thrust 

lines can also be drawn in three dimensions but unfortunately in shifting up a dimension they 

lose both their completeness and invariance properties and so they lose their usefulness to the 

designer. 
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The general state of force in a section of a member in three dimensions cannot be reduced to a 

single force, but it can be reduced to a combination of a force and a torque or, more completely, 

to any one of an infinite number of force/torque pairs. There is just one force/torque pair, 

hereafter referred to as the torce, for which the force axis and the torque axis are parallel. In 

three dimensions it is torce lines that have the completeness and invariance properties and so it 

is torce line which can be used by designers to visualise structural actions. 

The position of a torce line is derived from the forces in a section of a member as follows 

The resultant shear force, Q , and its angle to the z axis,  , are given by 

 



















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zy
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22

tan
 

The angle  between the member axis and the thrust line is given by 

 










 

xF

Q1tan  

The torque, T , of the torce is resolved into moments about the three member axes. The 

component about the x axis is the torque xM in the member. The other two components 

modify the bending components yM  and 
zM . 

Because the force components of the torce (as opposed to the moment components) are the 

same as those on the member, the thrust line and the torce are parallel. 

Hence 

 xMT cos  

Therefore 

 secxMT   

Eccentricities of the torce, yt   and
zt , are given by 
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hence 
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How do torces behave? A torce is a unique representation of the force state in a section of 

structure. Torces can be added or subtracted. There is always a unique result. Note that if two 

torces lie in the same plane their addition or subtraction is not necessarily in that plane. In three 

dimensions four forces on a body in equilibrium are necessarily coincident. The same is not true 

for torces. Consider four coincident torces in equilibrium. If one of the torces is translated 

without changing its direction then the body is subjected to a moment. Equilibrium can be 

restored by adjusting the torques in the other three torces. Hence equilibrium is achieved with 

four non-coincident torces. 

Often it will be known that one or more of the torces have zero torque. For example gravity 

imposes zero torque on a body. How many torqueless torces are needed to restore the 

coincidence rule? The answer is four. This is the same as the four forces on a body rule. If just 

one of the four carries a torque it can be resisted by a combination of lateral shifts of the other 

three forces and coincidence is lost. The usefulness of the concept of coincidence is limited to 

statements such as: The sum of two coincident torces, one of which is torqueless, is coincident 

with its components. 

For the designer the lesson from this is that, unless a structure is conceived as being truly three 

dimensional, it is often better to analyse it as a two dimensional plane frame during the design 

evolution phase so the coincidence rule can be used to understand what is driving the 

magnitudes of the forces. 

This item was written by Angus Low for Feedback Notes [an Arup  internal publication] (1999 NST/7) and is 

reproduced here with permission 

 

Torsion Constant 

In structural elements capable of sustaining torsional moments it is necessary to define a 

constant to specify the ‘twisting stiffness’. 

This term is referred to as the Torsion Constant. The following notes offer guidance on how to 

calculate the Torsion Constant. More detailed information may be found in the standard texts. 

In the literature there is some confusion over the symbol used to represent the Torsion 

Constant. In many texts it is referred to as J . Elsewhere the symbol C is used in an effort to 

distinguish the Torsion Constant from the polar moment of inertia. In GSA and in these notes the 

symbol J  is adopted. 

If a circular bar of constant cross section and of length l  is subjected to a constant torqueT , 

the angle of twist   between the ends is 
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where G  is the shear modulus and I the polar moment of inertia. 

When the cross section of the bar is non-circular, plane cross sections do not remain plane after 

deformation and warping will occur. Nevertheless the above equation can still be used with good 

accuracy, but I should be taken as the appropriate Torsion Constant J  as defined below. 

Saint Venant’s Approximation 

Saint Venant represented the torsion constant (J) of a solid section by a function relating the 

already known characteristic values of a cross section thus 
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For narrow rectangles  bb max  (i.e. thin plates): 

 
I

A
J

4

36

1
  

which reduces to 
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For circular sections 

 
2

4r
J


  

which is the polar moment of inertia. 

It can be shown that for members composed of thin rectangles, the torsion constant is equal to 

the sum of the J-values of component rectangles, except when the section is closed or ‘hollow’. 

Rectangular Sections 

The torsion constant J is given by 

 max

3bbKJ   

where K  is a constant depending on the ratio of bbmax , which can be read either from the 

table below. Linear interpolation may be used for intermediate values. 
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or from the graph 

 

Note that K converges to 1⁄3 for narrow rectangles. 

Alternatively 
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generally, or if bb 2max  then 
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and so 
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Other Sections 

The following table from Ghali and Neville (1978) gives values of the torsion constant (J) for 

various cross-sectional shapes. 

bbmax  K  bbmax  K  bbmax  K  bbmax  K  

 1.0 0.141 1.5 0.196 2.8 0.258 10.0 0.312 

 1.1 0.154 1.8 0.216 3.0 0.263 ∞ 0.333 

 1.2 0.166 2.0 0.229 4.0 0.281    

1.3 0.175 2.3 0.242 5.0 0.291   

 1.4 0.186 2.5 0.249 7.5 0.305   
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where a is the area enclosed by a line through the centre of 

the thickness and the integral is carried out over the 

circumference 
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All the above assumes that the material is linear elastic. 

Factored Values for Concrete 

In the case of concrete the Torsion Constant (J) needs to be modified for the following reasons: 

• The above formulae do not consider cracking of the concrete. 

• There is the practical difficulty of reinforcing for torsion. 

For concrete, the actual value ranges from 0.15 to 0.5 of the theoretical (linear elastic) value. 

BS8110 Part 2 Clause 2.4.3 recommends that half the linear elastic value (calculated above) is 

used in an analysis. 

Transformations 

There are two type of transformation in GSA: transformation of coordinates from global to local 

axes and vice versa, and the transformation of results such as displacements, forces and 

stresses. The coordinate transformation requires a rotation + translation while the displacement 

transformation requires only a rotation. 

The rotation can be defined by a 3 × 3 direction cosine matrix, so the transformation is 
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Or 
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 xCx~   

And the reverse transformation is then 

 
x~Cx~Cx 1 T 

 

The axis transformation can be considered as  

  oxCx~   

And the reverse transformation as 

 
ox~Cx  T

 

 

 


