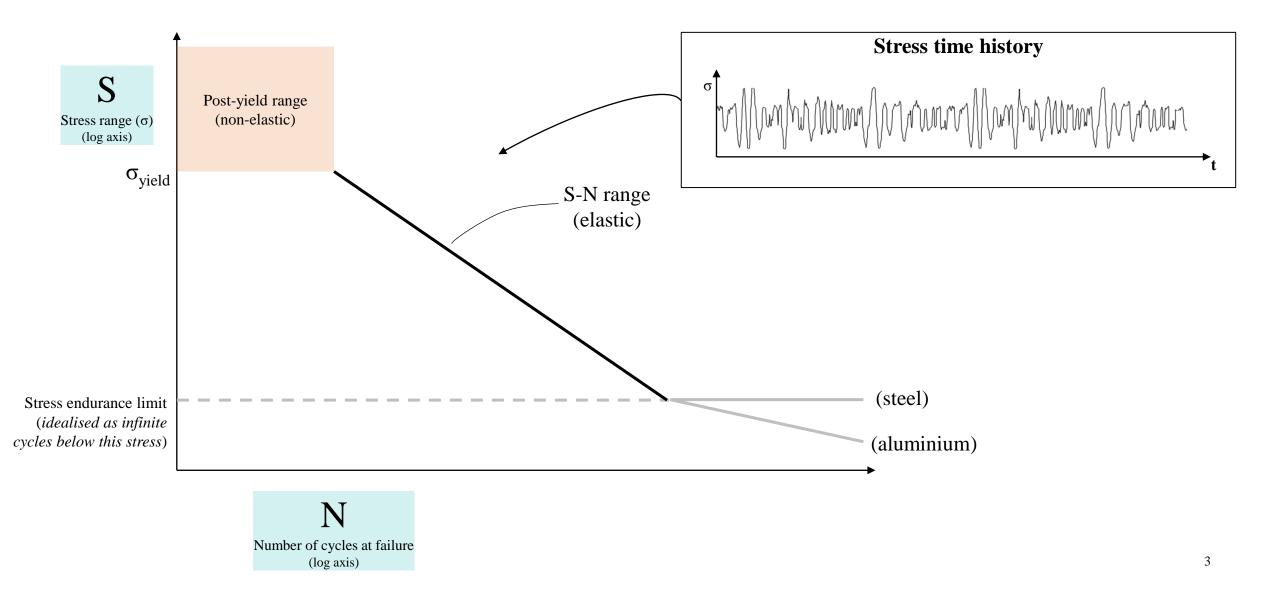

Fatigue assessment of an adhesively bonded EV battery enclosure

Using LS-DYNA implicit tools

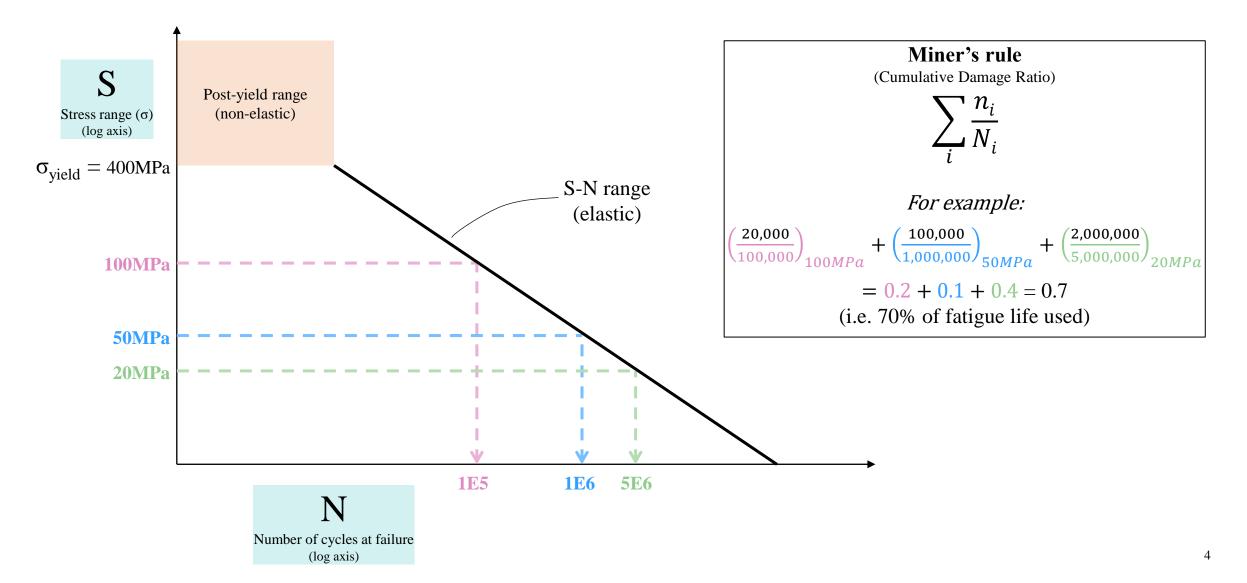
David McLennan

What is fatigue?

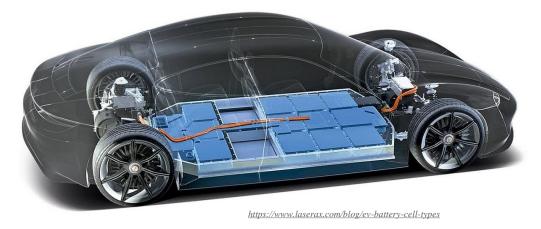

• Eurocode 9 definition:

"weakening of a structural part, through crack initiation and propagation, caused by repeated stress fluctuations"

• Fatigue failure occurs from stress cycles *lower* than the component's yield stress

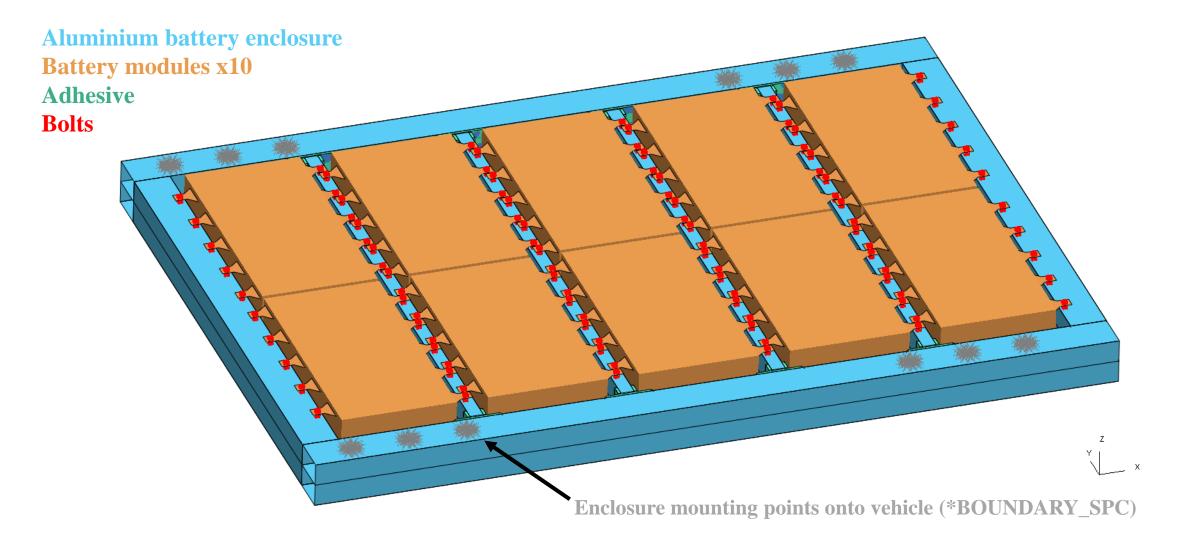


Fatigue assessments – S-N curves


Fatigue assessments – S-N curves

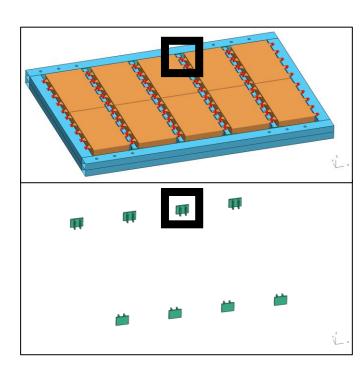
Fatigue risks for EV battery enclosures

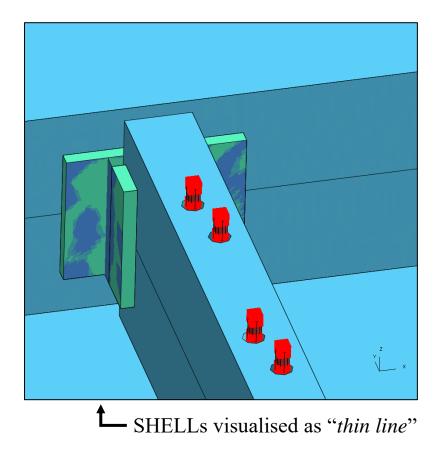
- The battery enclosure must have sufficient strength/stiffness to:
 - Protect the batteries during a vehicle crash event
 - Contribute to overall stiffness of the vehicle
 - Provide containment in the event of thermal runaway
 - Withstand inertial loads from the mass of the batteries
- Total mass of "battery modules + enclosure" can be ~0.5-1.0 tonnes

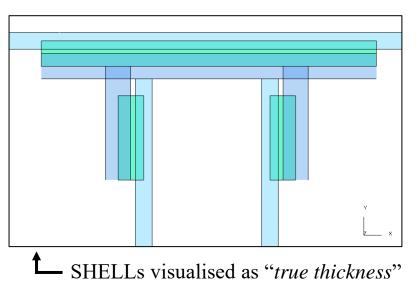


The rise of adhesively bonded designs

	Adhesive bonding	Spotwelds					
Connection type	Continuous (large area) connections	Discrete (small area) connections					
Most common for	Aluminium structures	Steel structures					
Material properties	Overall lightweight solution, and does not affect strength of parent aluminium material	Typically not suitable for aluminium, due to heat weakened zone around the weld					
Fatigue assessment	Emerging area of study	Established methods					


Fatigue assessment: LS-DYNA model





Fatigue assessment: LS-DYNA model

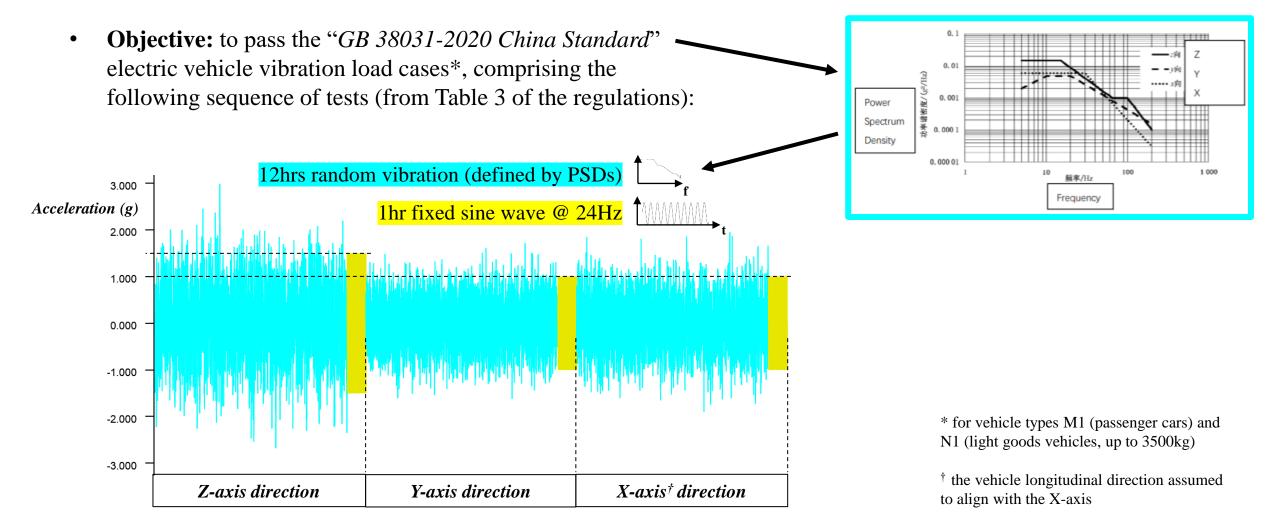
Aluminium battery enclosure Battery modules x10 Adhesive Bolts

Adhesive SOLIDs using ***MAT ARUP ADHESIVE**

mid-surface to mid-surface defined with 0.3mm bond thickness

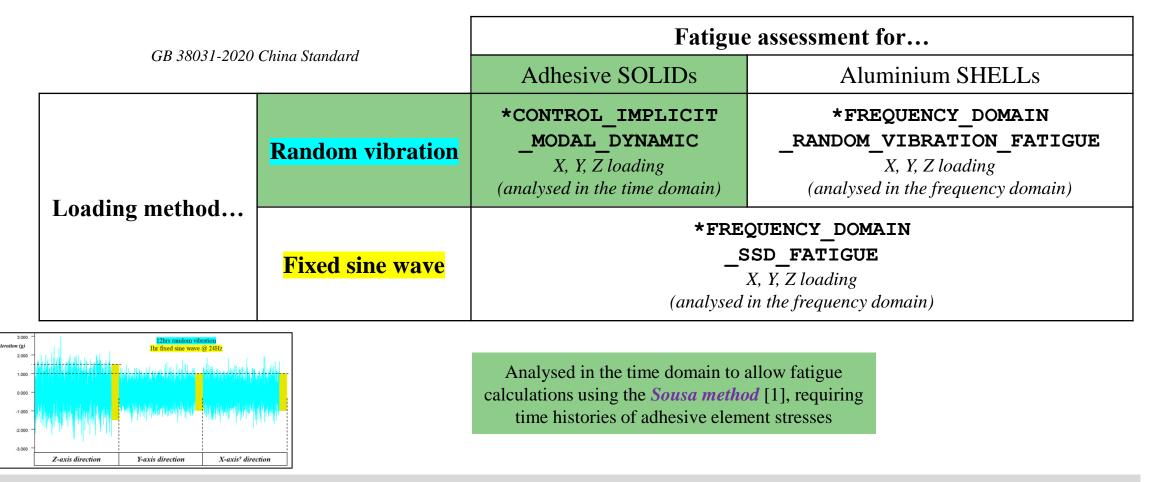
LS-DYNA implicit solvers

Keyword	Comment						
*CONTROL_IMPLICIT_GENERAL	Activates implicit mode and defines timestep						
*CONTROL_IMPLICIT_AUTO	Activates automatic timestep control						
*CONTROL_IMPLICIT_SOLVER	Defines linear equation solver						
*CONTROL_IMPLICIT_SOLUTION	Defines equilibrium search and convergence tolerances						
*CONTROL_IMPLICIT_EIGENVALUE	Normal modal analysis Equivalent to NASTRAN SOL103						
*FREQUENCY_DOMAIN_FRF	Direct freq-domain response analysis Equivalent to NASTRAN SOL108						
*CONTROL_IMPLICIT_DYNAMICS	Direct time-domain response analysis Equivalent to NASTRAN SOL109						
*FREQUENCY_DOMAIN_RANDOM_VIBRATION (_FATIGUE)	Modal freq-domain response analysis to random vibration Equivalent to NASTRAN SOL111						
*FREQUENCY_DOMAIN_SSD (_FATIGUE)	Modal freq-domain response analysis to steady state dynamics Equivalent to NASTRAN SOL111						
*CONTROL_IMPLICIT_MODAL_DYNAMIC	Modal time-domain response analysis Equivalent to NASTRAN SOL112						
and many more							

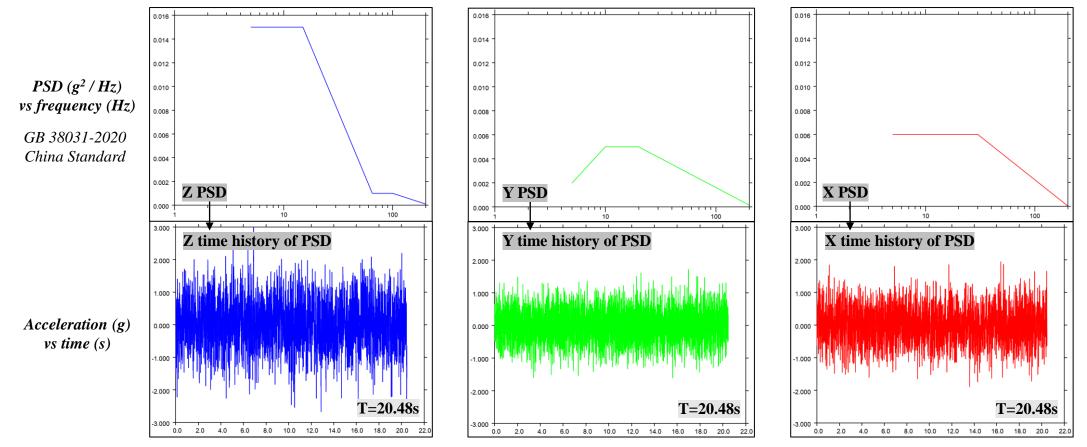


Predicting fatigue performance of structures

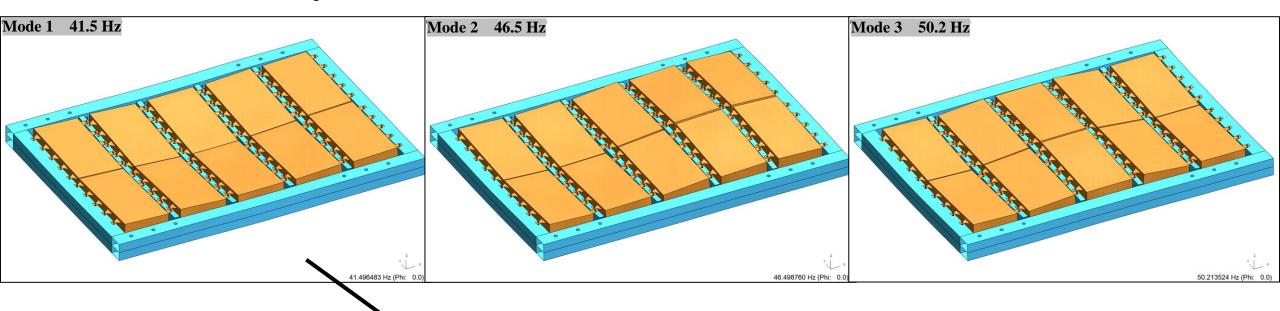
	Random vibration fatig	gue assessment using					
	Time domain	Frequency domain					
Physical tests	With random cyclic loading, until test specimen fails $ \underbrace{f_{\text{MMMMMMMMMMMMM}}}_{t} $	n/a					
FEA analysis	Using random transient input loading $\underbrace{f_{t}}_{t}$ Slower analysis than frequency domain, producing more data More flexibility with fatigue assessment methodology	Using input loading from a defined PSD [†] f Fast analysis method, outputs element stress PSDs [†] Using PSD [†] statistics to obtain cycles at each stress range					
1 12/1 unury 515	Element stress time histories to count cycles at each stress range Fatigue damage calculated via comparison to failure cycles (S-N curve, Miner's rule)						
	*CONTROL_IMPLICIT_MODAL_DYNAMIC	*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE *FREQUENCY_DOMAIN_SSD_FATIGUE					


Fatigue assessment: vibration load cases

Fatigue assessment: vibration load cases


• Method: implementing with LS-DYNA implicit solvers, using keywords:

[1] F. Castro Sousa, A. Akhavan-Safar, G. Rakesh & L.F.M da Silva (2022) Fatigue life estimation of adhesive joints at different mode mixities, The Journal of Adhesion, 98:1, 1-23



Fatigue assessment: vibration load cases

- Script has generated random time signals from each PSD
- A good check is then to create a PSD from the generated time signal, to compare to the original
- Time signal must be long enough to accurately capture the contents of the PSD

Modal analysis results

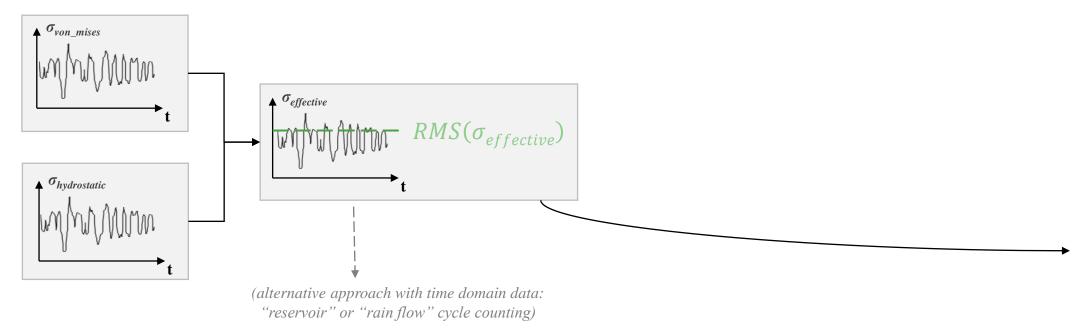
From the modal analysis results...

Estimate the number of cycles within the load case $(n_{load case})$:

 $n_{load \ case} = (12*60*60) \text{ sec} * 41.5 \text{ Hz} = 1,792,800 \text{ cycles}$

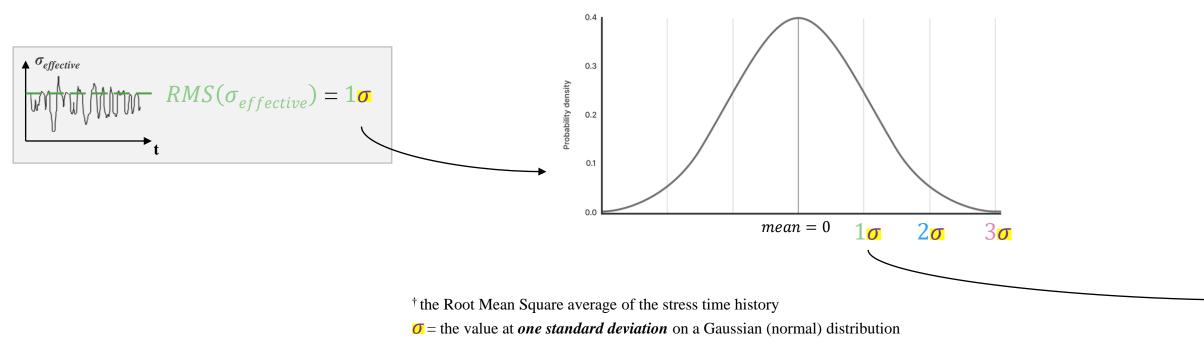
Noting that the load case duration is 12 hours, and assuming vibration purely at the dominant modal frequency of the structure (41.5 Hz) †

15

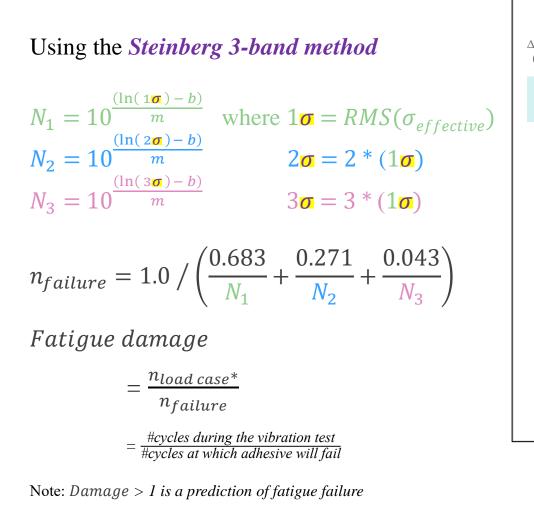

Fatigue assessment: adhesive

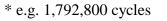
The number of cycles to failure $(n_{failure})$ for the adhesive:

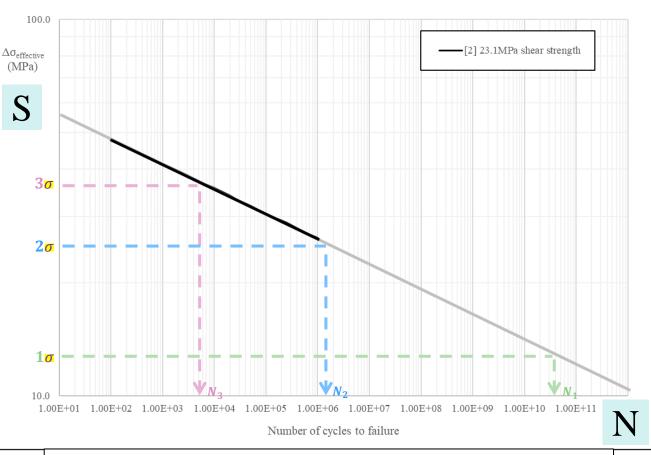
- Requires appropriate values of stress range to be mapped onto the adhesive S-N curve
- *Sousa method*: using an "effective stress", defined in a paper by *Sousa et al* [1]:


$$\sigma_{effective} = \sigma_{von_mises} + \sigma_{hydrostatic}^2 / \sigma_{von_mises}$$

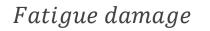
• This "effective stress" was found to correlate best to overall adhesive fatigue damage

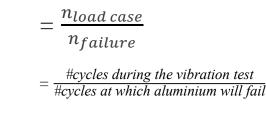

Fatigue assessment: adhesive

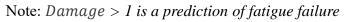

- One of many methods for fatigue damage assessment
- Using the *Steinberg 3-band method*, which assumes a Gaussian distribution of stress
- The stress range is at:
 - the one standard deviation value ($1\sigma = RMS^{\dagger}$) of mean for 68.3% of the time
 - 2 σ for 27.1% of the time
 - 3 σ for 4.3% of the time

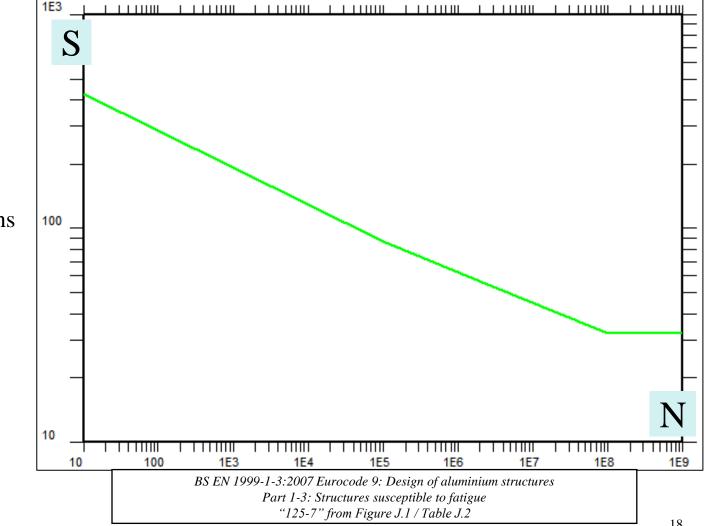


Fatigue assessment: adhesive


Castra Sousa, F, Akhavan-Safar, A, Goyal, R, da Silva, L.F.M. Fatigue life estimation of single lap adhesive joints using a critical distance criterion: An equivalent notch approach. Mechanics of Materials 2021;153




Fatigue assessment: aluminium


Using the *Dirlik method*

- Embedded within LS-DYNA ٠
- Converts the PSD into a PDF (probability density function)[†] to create stress ranges
- Using input exposure time (12*60*60 sec).
- Performs $n_{failure}$ and $n_{load case}$ calculations

[†] the Dirlik method PDF expression was originally derived from empirical simulations, using Monte Carlo sampling

¹⁸

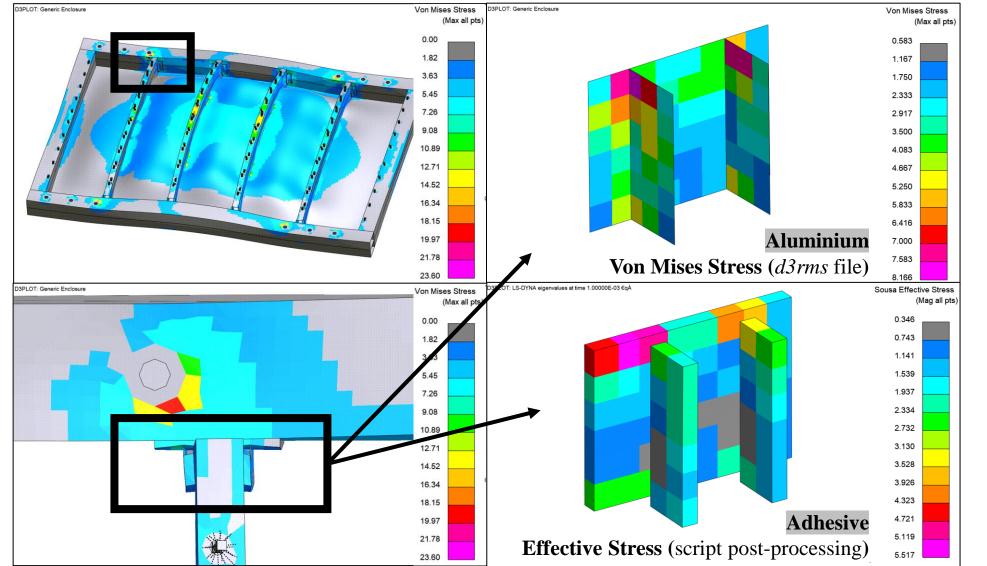
*CONTROL IMPLICIT MODAL DYNAMIC

- Implicit <u>time-domain analysis</u> using modal superposition
- First computes a modal analysis (***CONTROL_IMPLICIT_EIGENVALUE**)
- Applies the transient loading (using ***LOAD_BODY**, for X, Y, and Z separately)
- ZETA = modal damping ratio = $0.01 (1\%_{critical})$
- INTEG = computed with implicit time integration
- Uses modal superposition to obtain an overall response (a linear combination of the transient results), using all modes from ***CONTROL_IMP_EIGENVALUE** (NEIG)

IMPLICIT_MODAL_DYNAMIC			Set V	Сору	(1) CONTR			
	MDFLAG	ZETA	MD_STRS	DTOUT	INTEG	NSID		
1	1 🔻	0.01	1	0.0	2 🔻	0	•	
	FILENAME							
2								
	FILENAME2							
3								

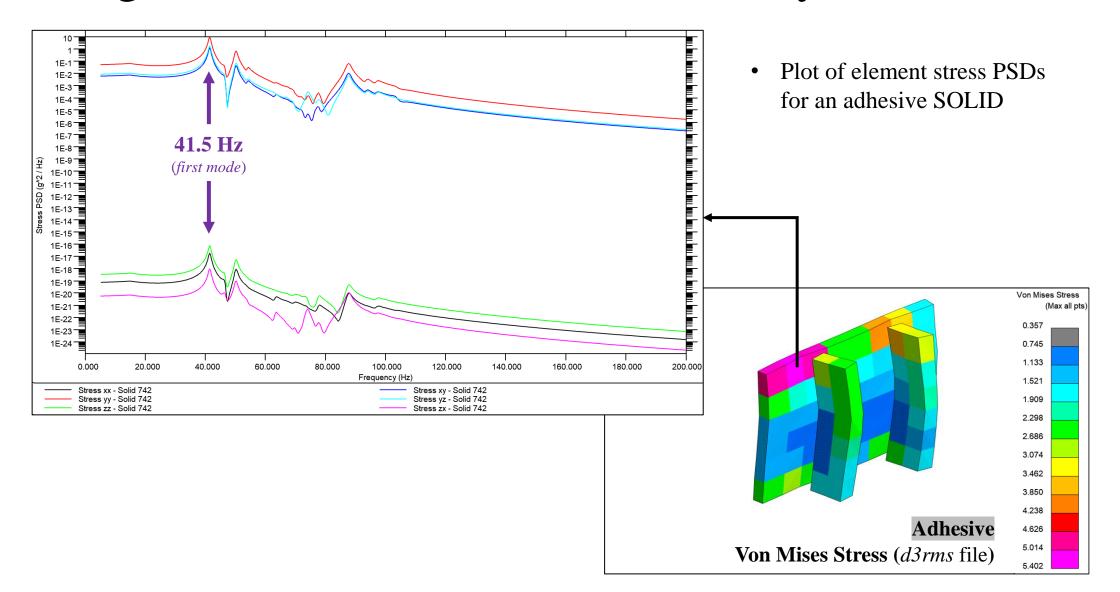
- This modal transient approach is more efficient than a direct transient analysis
- Fatigue damage is calculated separately during post-processing, therefore an S-N curve is not given as input to LS-DYNA (refer back to the explanation of the *Steinberg 3-band method* and *Sousa method* for assessing the adhesive)

*FREQUENCY DOMAIN RANDOM VIBRATION FATIGUE

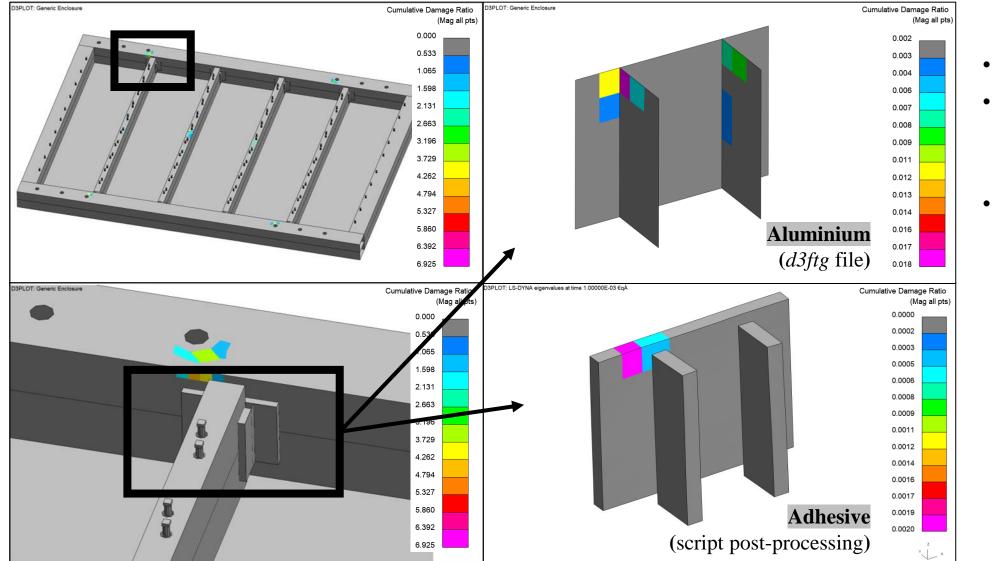

- Implicit frequency-domain analysis using modal superposition
- First computes a modal analysis (***CONTROL_IMP_EIG**)
- Range of modes used for modal superposition
- DAMPF = modal damping ratio = $0.01 (1\%_{critical})$
- STRTYP, STRSF = using Von Mises stress, stress range
- TEXPOS = exposure time to the PSD (i.e. length of vibration test) = 12*60*60 = 43200 sec
- Using PSDs (g^2/Hz), with separate analyses for X, Y, Z
- **FATIGUE** option computes cumulative damage
- Fatigue analysis method (2 = *Dirlik method*)
- S-N curve to be applied to all aluminium parts

nclude: (1) FREQ_DOM	IAIN_RAND_\	/IB_FAT_Z_C	004				
Modify	y FREQUENC	Y_DOMAIN_R	ANDOM_VIB	RATION 1 (m	odel 1)			
< _OP	FION >							
⊖ <blan< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></blan<>								
MDMIN	MDMAX	FMIN	FMAX	RESTRT		RESTRM		
1	50	0.0	0.0	0 🔻		0		
DAMPF	LCDAM	LCTYP	DMPMAS	DMPSTF	DMPTYP			
0.01	0 🔻	0 🔻	0.0	0.0	0 🔻			
VAFLAG	METHOD	UNIT	UMLT	VAPSD	VARMS	NAPSD	NCPSD	
1 ▼	0 🔻	4 ▼	0.0	1 ▼	1 ▼	1	0	
LDTYP	IPANELU	IPANELV	TEMPER		LDFLAG	ICOARSE	TCOARSE	
0 🔻	0	0	0.0		0 🔻	0 🔻	0.0	
MFTG	NFTG	STRTYP	TEXPOS	STRSF	INFTG			
2 🔻	1	0 🔻	43200.0	1.0 ▼	0			
SID	STYPE	DOF	LDPSD	LDVEL	LDFLW	LDSPN	CID	
0	0 1	3 1	64	0	0 1	0 1	▼ 0 ▼	Ð
								2
								5
		1010.1			100004		00000	
LOAI	2	LOAD_J	LC	TYP2	LDPSD1		LDPSD2	5
								5
								5
								2
PID	LCID	PTYPE	LTYPE	A	В	STHRES	SNLIMT	
50	61	1 1		0.0	0.0	0.0	0 🔻	Ð
								2
								2
								2
			FILE	NAME				
								1.
								2

20


Fatigue assessment: results summary

- Element stresses
- From Z PSD random vibration
- Aluminium peak $3\sigma = 24*3 = 72MPa$, compared to yield 360MPa
- Adhesive peak
 3
 a = 5*3 = 15MPa, compared to bond shear failure 25MPa



Fatigue assessment: results summary

Fatigue assessment: results summary

- Fatigue damage
- From Z PSD random vibration
- In this example, the aluminium is predicted to fail locally due to fatigue *before* the adhesive bond

Fatigue assessment: overall workflow

		Adhesive SOLIDs							Aluminium SHELLs					
Turnuta	Ra	Random vibration			Fixed sine wave				Random vibration					
Inputs	Z PSD	Y PSD	X PSD	Z PSD	Y PSD	X PSD	Z PSD	Y PSD	X PSD	Z PSD	Y PSD	X PSD		
Solver	*co	(analysed in the time domain) *CONTROL_IMPLICIT _MODAL_DYNAMIC (analysed in the fr *FREQUENCY_DOMA												
	Sousa	Sousa	Sousa		v	<i>h load case,</i> s, Von Mise Sousa		•						
	Effective Stress	Effective Stress	Effective Stress	Effective Stress	Effective Stress	Effective Stress								
Outputs	Fatigue Damage	Fatigue Damage	Fatigue Damage	Fatigue Damage	Fatigue Damage	Fatigue Damage	Fatigue Damage	Fatigue Damage	Fatigue Damage	Fatigue Damage	Fatigue Damage	Fatigue Damag		
	ł			ge (summat		ł	ł		igue Damaş r each alum			ł		

Fatigue assessment: design iteration studies

X If there are **local fatigue failures**:

- Local structural modifications to increase stiffness
- Increasing the adhesive bond area
- Redistributing the adhesive bond region
- ✓ If fatigue performance is not an issue (i.e. Damage << 1)
 - Optimise design e.g. by removing mass (less aluminium and/or less adhesive)
 - In combination with other load cases (also needs to meet other requirements; crash, NVH, etc...)
- **?** Analysis verification with sensitivity studies
 - Modal damping -e.g. 1% vs 2% vs 3%
 - Number of modes used in modal superposition e.g. 25 vs 50 vs 100
 - Mesh resolution (number of elements) and mesh quality

Benefits of LS-DYNA implicit fatigue workflow

For adhesive fatigue assessment:

The time-domain approach (***CONTROL_IMPLICIT_MODAL_DYNAMIC**) allows for Sousa's method of predicting damage via "effective stress" to be used

<u>General:</u>

Allows for the same LS-DYNA model to be used for implicit load cases (fatigue, NVH etc) as for the explicit load cases (crash, pedestrian etc)

- Eliminates the need to convert the model to use with other FEA packages
- ✓ Therefore, a more streamlined CAE workflow, quicker and cheaper
- Easier to QA the model if engineers only need familiarity with LS-DYNA

Contact

David McLennan

Engineer, Arup

Thanks! Any questions?