
REPORTER Manual

from Oasys Ltd

Version 18.0

LS-DYNA, LS-OPT and LS-PrePost are registered trademarks of Livermore Software Technology Corporation

For help and support from Oasys Ltd please contact:

UK
The Arup Campus
Blythe Valley Park
Solihull
United Kingdom
B90 8AE
Tel: +44 121 213 3399
Email: dyna.support@arup.com

China
Arup China
37/F & 39/F Huaihai Plaza
1045 Huaihai Road (M)
Xuhui District, Shanghai
China
200031
Tel: +86 21 3118 8875
Email: china.support@arup.com

India
Arup India Pvt Ltd
10th floor, Western Dallas Center
Plot no. 83/1, Knowledge City
Rai Durg
Hyderabad 500032
Telangana, India
Tel: +91 40 69019797 / 98
Email: india.support@arup.com

USA West
Oasys Ltd
c/o 560 Mission Street Suite 700
San Francisco
United States
CA 94105
Tel: +1 415 940 0959
Email: us.support@arup.com

Web:www.arup.com/dyna

or contact your local Oasys Ltd distributor.

0.1Preamble
0.1Introduction
0.1Development Status
0.1Systems supported
0.1Revision History

0.19Text conventions used in this manual
0.20Themes for the Graphical User Interface
0.20Setting the theme
1.11. Setting up and running REPORTER
1.11.1 Setting up REPORTER
1.21.2 Running REPORTER
1.21.3. A one-minute introduction to REPORTER
2.12. Menu Layout
2.12.1 Basic menu layout
2.52.2 Mouse and keyboard usage for the screen-menu interface
2.52.3 Using the "file filter" boxes.
2.72.4 Log file
2.92.5 View Controls

2.112.6 Running a script file
2.112.7 Preferences
3.13. Opening and closing templates and reports
3.13.1 Creating a new template
3.13.2 Reading an existing template or report
3.13.3 Reading a library template
3.33.4 Editing template properties
3.43.5 Saving a template
3.43.6 Saving a report
4.14. Inserting and editing pages
4.14.1 Adding a new page
4.14.2 Adding a new page from the library
4.24.3 Deleting pages
4.24.4 Duplicating pages
4.34.5 Reordering pages
4.34.6 Changing the current page
4.34.7 Changing the page properties
4.34.8 Inserting pages from file
4.34.9 Importing and exporting pages
4.44.10 Page masters
4.44.11 Page Setup
4.44.12 Generating a single page
5.15. Inserting and editing simple objects
5.15.1 Using the Grid and Snap options
5.15.2 Setting line style, thickness, colour, and fill colour
5.25.3 Inserting and editing shapes, images, and text
5.65.4 Editing shapes, image, and text objects
5.85.5 Copying objects and using the clipboard
5.95.6 Reordering items on the page

5.115.7 Search and replace
5.125.8 Locking items
6.16. Advanced objects
6.16.1 D3PLOT objects
6.86.2 T/HIS objects

6.116.3 PRIMER objects
6.156.4 Program objects
6.176.5 File objects
6.196.6 Library objects
6.226.7 Table objects
6.266.8 Autotable objects
6.306.9 Script objects
6.316.10 Note objects
6.326.11 Placeholder objects
7.17. REPORTER Integration
7.17.1 Linking the Programs
7.17.2 Item Tree
7.17.3 Capture
7.37.4 Reload
7.77.5 Generate
7.77.6 Variables
7.87.7 Exceptions to the Version 17 Method and Existing Templates from Version 16 and Earlier
8.18. Generating and outputting reports
8.18.1 Effect of object order on generating a report.

User manual Version 18.0, April 2021 REPORTER

Page i

8.28.2 Generating reports
8.48.3 Outputting a generated report
8.88.4 Combining output from multiple reports
8.88.5 Animation support for output file formats
9.19. Working with Variables
9.19.1 User defined variables
9.29.2 Predefined variables
9.39.3 Formatting TIME and DATE variables
9.49.4 Creating and editing variables
9.69.5 Creating a variable using D3PLOT
9.79.6 Creating a variable using T/HIS
9.89.7 Creating a variable using an external program/script
9.99.8 Creating a variable using a FAST-TCF script

9.109.9 Creating a variable from the command line
9.109.10 Creating a variable from javascript
9.109.11 Deleting variables
9.119.12 Inserting a variable
9.139.13 Using variables in D3PLOT and T/HIS command files and FAST-TCF scripts.
9.159.14 Saving all the variables to a file after generating a report
9.159.15 Variable expressions
10.110. Hyperlinks
10.110.1 Adding basic hyperlinks
10.110.2 Adding hyperlinks in D3PLOT external data (blob) plots
11.111. Conditional formatting
11.111.1. Adding a condition
11.211.2. Condition types
12.112. Fonts
12.112.1 Supported Fonts
12.112.2 Legacy Fonts
12.212.3 Font Mapping
12.312.4 Fonts in report output
13.113. Scripting
13.113.1 Example scripts
A.1A. Command line arguments and oa_pref options
A.1A.1 Command line arguments
A.3A.2 oa_pref options
B.1B. Library objects
B.1B.1. Standard library programs
B.4B.2. Standard library pages
B.5B.3. Standard library images
B.6B.4 Adding pages to the library
B.7B.5 Adding scripts to the library
B.8B.6 Adding images to the library
B.9B.7 User defined library directories

B.10B.8 Standard library templates
C.1C. FAQ
C.1C.1 Running REPORTER
C.1C.2 Generating output
C.1C.3 Extending REPORTER
C.1C.4 Other questions
C.1Answers
D.1D. JavaScript class reference
D.2global class
D.8Colour class

D.16File class
D.28Image class
D.36Item class
D.56Page class
D.61Reporter class
D.66Template class
D.76Window class
D.83Variable class

E.1E. Writing external programs/scripts
E.1Returning variables from programs
E.1Accessing existing variables in REPORTER
E.3Example program: Extracting the smallest timesteps (Text output)
F.1F. Unicode support
F.1F.1 Output formats that support unicode
G.1Installation organisation
G.1Version18.0 Installation structure
H.1Licences used in software

REPORTER User manual Version 18.0, April 2021

Page ii

H.1Apple Public Source
H.1Draco
H.1Expat
H.1FreeType
H.3FFmpeg
H.4Jpeg
H.4Libcurl
H.4Libfame
H.5Libgif
H.5Libpng
H.6Libxlsxwriter
H.7MPEG-LA
H.7Openssl
H.9PCRE

H.10PDFHummus
H.10POV-Ray
H.10SmoothSort
H.10Spidermonkey
H.14Treeview
H.15Win-iconv
H.15x264
H.15Zlib

User manual Version 18.0, April 2021 REPORTER

Page iii

REPORTER User manual Version 18.0, April 2021

Page iv

Preamble

Introduction

REPORTER is a tool to automate the post processing of LS-DYNA models. It allows you to create a standard template
for a report. With command files and scripts it links with D3PLOT, PRIMER, and T/HIS, and other programs to create
the necessary images and graphs when you come to generate an actual report from this template. It can also be run in
batch mode so that when a model has finished being analyzed a report can be automatically generated according to a
pre-built template.

Development Status

This manual documents REPORTER18.0 (part of Oasys Ltd LS-DYNA Environment18.0). The code is still being
developed.

Systems supported

REPORTER is available for Windows (64 bit) and Linux (64 bit).

Revision History

Version 18.0
• Support for the playback of MP4 movies and animated GIFs has been added to REPORTER. These can be

captured directly from D3PLOT for use with a D3PLOT Item, or be added to a template through an Image or
Image File Item. Playback can be controlled by hovering over the Item or using the buttons in the new animation
toolbar.

User manual Version 18.0, April 2021 REPORTER

Page 0.1

Fixes enhancements 3485, 9337, 13491, 29174, and 36334.
• The "LS-DYNA Version and Revision" version.js Library Program script has been updated so that it works with

newer d3hsp/OTF files that can include (1) An Ansys legal notices header above the LSTC header (2)
LS-DYNA revision names incorporating the newer Git revision hashes instead of the older SVN revision
numbers.
Fixes bug 45562.

• The Legacy GUI theme has been deprecated and is no longer accessible from the Preferences dialog. If you
wish, you can still select Legacy theme via reporter*guit_theme in your oa_pref file.
Fixes enhancement 45506.

• If you open a template created in REPORTER 16.1 or earlier in REPORTER 18.0 or later, any D3PLOT and
T/HIS items will continue to be captured and generated using the old pre-version-17 method (in versions 17.0
and 17.1, they were automatically converted to the new method, but this caused problems for some users’
templates).
Fixes bug 45224.

• Along with the rest of the Oasys Suite, REPORTER has transitioned to LM-X licensing for version 18.0, so the
FLEXlm licence is no longer supported.
Fixes enhancement 44733.

• The first sixteen colours saved in PRIMER, D3PLOT or T/HIS are now read into REPORTER via the
user_colours.xml file and are accessible via the ’Custom colors’ panel (select ’More colours...’). Any user colours
added in REPORTER via ’Add to Custom Colors’ can be saved to user_colours.xml via the new ’Fonts and
Colours’ tab in the Preferences dialog and will thereafter be accessible in PRIMER, D3PLOT and T/HIS.
Fixes enhancement 44540.

• Font and user colour settings can now be saved directly from REPORTER via the new ’Fonts and Colours’ tab in
the Preferences dialog. There is also a new ’Startup’ tab with preferences for maximising the main window, and
also to specify the starting directory for REPORTER (previously these preferences could only be modified via
the preferences editor in the other programs).
Fixes enhancement 39537.

• The ’LS-DYNA’ tab in the Preferences dialog has been renamed ’Oasys Items’. All of the settings in the Program
Locations dialog have been moved to this tab, and they can now be saved from REPORTER along with the other
preferences.
Fixes enhancement 42966.

• You can now use the -pptx command line argument to trigger PowerPoint output. Both -pptx and -ppt
arguments have the same behaviour (they output .pptx files).
Similarly, the JavaScript API method Template.Ppt has been deprecated in favour of Template.Pptx (both
continue to output .pptx files).
Fixes enhancement 44261.

• REPORTER has been able to write PowerPoint (.pptx) files since version 11. As of version 18, support for the
old .ppt VBA output has been removed.
Fixes enhancement 44259.

• All Dialogs accessed via the Menu bar (or created via JavaScript) should now appear on the same display screen
as the Main Window. If manually repositioned, these Dialogs should remember their previous position when
being reopened. When moving the Main Window to a new display screen, all of these Dialogs should follow to
the new screen (excluding an open Logfile or a maximised Dialog).
Fixes bug 14096.

• All MainWindow keyboard shortcuts can now be used while the Logfile has focus.
Fixes bug 43423.

• You can now specify a font mapping table CSV file in a location other than the installation location, to make
customised font mapping more convenient.
Fixes enhancement 44127.

• The JavaScript function Template.EditVariables now accepts an optional bool argument to determine whether
selected Variables should be displayed alphabetically (true) or in the list order in which they were passed to the
function (false).
Fixes bug 44362.

• The page number listed in the page navigation box will now correctly correspond to the current page (usually the
last in the Template) after writing a PDF, Pptx, or HTML file.
Fixes bug 45394.

• The page number in the MainWindow title bar will now correctly display the current page (usually the last in the
Template) after report generation.
Fixes bug 45632.

• Filename in the MainWindow title bar will now correctly have an asterisk appended to it to indicate the file has
been modified when Variables are edited or updated.
Fixes bug 43422.

• D3PLOT Items will no longer sometimes fail to load the image when conducting a fresh ’old method’ Capture.
Fixes bug 45056.

Version 17.1
• Fixed an issue where D3PLOT and T/HIS sessions launched by REPORTER as part of a batch process would

sometimes fail to terminate when REPORTER closed, if the batch process included the command line argument
-exit.
Fixes bug 44451.

REPORTER User manual Version 18.0, April 2021

Page 0.2

• When using the drag feature to resize multiple Items simultaneously using a handle type that is not present on
both Items (e.g. the non-corner handles specific to ’rectangular’ Items), using this handle will no longer resize
the Item that would not normally have this handle.
Fixes bug 44279.

• If an image file for an Image Item cannot be located when opening a Template, a ’missing image’ icon is now
printed on the page in its place.
Fixes bug 44278.

• The erroneous ’Cannot crop image’ warning will no longer appear in the Logfile when first creating an Image
Item (prior to choosing an image file).
Fixes bug 44276.

• If the reporter_font_cache file became corrupted, this could cause REPORTER to crash upon opening. Now
fixed.
Fixes bug 44257.

• Report Page should no longer appear to change size (without any change in zoom percentage) after generating a
thumbnail (e.g. by saving the Template or opening the Template Properties window).
Fixes bug 44049.

• Warning messages for missing fonts when loading a Template are now displayed only once for each font. The
same is true for an incompatible Font + Style combination.
Fixes bug 43639.

• Characters like ’<’ no longer interfere with the formatting of certain messages in the Logfile.
Fixes bug 43903.

• REPORTER now correctly reads the CURRENT directory oa_pref file from the directory pointed to by the
start_in preference when this is used in the OA_ADMIN, OA_INSTALL, or OA_HOME oa_prefs.
Fixes bug 43902.

• A warning message is now printed to the Logfile if any of PRIMER, T/HIS, or D3PLOT can’t be located on
starting REPORTER.
Fixes bug 43189.

• Edit windows are now mapped to appear above the selected Item in all cases.
Fixes bug 43201.

• Edit D3PLOT Dialog no longer maps to the top-left of screen 1.
Fixes bug 43579.

• All MainWindow keyboard shortcuts can now be used while the Logfile has focus.
Fixes bug 43423.

• It is no longer possible for the first click using the Select tool after saving a Template to select the wrong Item or
coordinates on the page.
Fixes bug 43462.

• Item outlines set to none using lineStyle=Reporter.LINE_NONE in the javascript API are no longer printed
when writing to pdf or pptx.
Fixes bug 43975.

• Selection box now updates correctly when moving invisible Items with no outline, fill, or text colour.
Fixes bug 43231.

• Recent Files list is now limited to 50 files and no longer deleted when opening Reporter while skipping the
Choose Template window (e.g. by opening a Template from File Explorer by double-clicking on the .ort file).
Fixes bug 43609.

• When a D3PLOT item created with the old (v16) capture method was updated using the new (v17.0) method, it
remained flagged as using the old method. Now fixed. Also, it was possible to update the parent of an old
multi-capture D3PLOT item using the new method, leading to orphaned children. Now, a warning is shown to
prompt you to convert the item to the new method first.
Fixes bug 43613.

Version 17.0
• REPORTER can now be linked to both D3PLOT and T/HIS, or the D3PLOT->T/HIS link, by opening one

program from another. This allows reports to be created and edited interactively. Windows and graphs can be
captured into REPORTER easily and reloaded back from REPORTER, all in the same session. When generating
reports, D3PLOT and T/HIS items will be generated in the same session of their respective programs without
loading the same model more than once.
Fixes enhancement 40886.

• Custom cell borders in Tables are no longer displayed if the table line colour is set to ’none’. The Cell Borders
window now starts with the custom border width set to the current line width setting for the table rather than
’none’. Non-custom border widths no longer revert to the original line width of the table when adding new
custom borders.
Fixes bug 43091.

• In the JavaScript API, a new constructor has been added for the Page class, with an options Object argument
allowing page name, colour and index to be specified. The original constructor is now deprecated.
Fixes enhancement 41733.

• REPORTER’s user interface has been upgraded, with new Light and Dark themes, new icon and cursor designs,
and improved toolbars.
Fixes enhancement 37477.

• The cursors for the different Tools have been updated to make it clearer when you need to drag a box, or just
click somewhere on the page.

User manual Version 18.0, April 2021 REPORTER

Page 0.3

Fixes enhancement 35877.
• A range of standard template layouts is now provided with REPORTER to provide creative inspiration, and to

help you quickly create reports for a variety of applications.
Fixes enhancement 13490.

• A recent files list has been added to the library template selection dialog and can be accessed from the File menu.
Fixes enhancement 8820.

• The close button (’X’) has been enabled for all dialog windows.
Fixes enhancement 42660.

• It is now possible to deselect individual items using Ctrl + Click or Shift + Click when the user has multiple
items selected.
Fixes enhancement 42457.

• A splash screen showing new features in now displayed when REPORTER opens.
Fixes enhancement 42683.

• Formatting control for the DATE variable has been added using %DATE(format)%.
Fixes enhancement 42117.

• It is now possible to select all items on the current page with the shortcut Ctrl+A and to deselect all items in the
current template with the shortcut Ctrl+Shift+A or the Esc key.
Fixes enhancement 42659.

• Reporter could occasionally write error messages ’QFont::setPixelSize: Pixel size <= 0’ to the terminal window
on Linux. This has now been fixed.
Fixes bug 41639.

• If REPORTER was launched on a server running a virtual display using Xvfb versions 1.18 or later,
REPORTER would abort with the message ’Floating point exception(core dumped)’. Now fixed.
Fixes bug 42402.

• The Logfile now displays more licensing information when REPORTER starts.
Fixes enhancement 42196.

• It is now possible to save preferences directly from REPORTER via the ’Save preferences’ button on the
preferences dialog (accessed from File -> Preferences). Various new preferences have been added to improve
customisation of REPORTER. The Template Generation preferences have been moved to the new Template ->
Properties menu.
Fixes enhancement 42116.

• You can now File -> Save As... Template, Report, PDF, PowerPoint and HTML. You can still write PDF,
PowerPoint and HTML from File -> Write PDF etc.
Fixes enhancement 42030.

• The Automotive library templates now support a range of dummy models from different suppliers. The default
entity IDs/labels are now provided to make setup easier.
Fixes enhancement 27000.

• New GUI themes (Light and Dark) have been added to give REPORTER a modernised look and feel. The
Legacy theme will continue to be supported for now, but support may be removed in future versions.
Fixes enhancement 37479.

• A ’Generate’ toolbar has been added to the top of the main window as another way of generating templates, pages
and selected items.
Fixes enhancement 17290.

• A ’Page’ toolbar has been added to the top of the main window to improve access to page creation, deletion,
duplication, and page navigation controls.
Fixes enhancement 42466.

• With ’Snap to grid’ enabled, items on the page no longer snap when selected (only when moved). Changed
behaviour of snapping such that items snap to grid based on chosen reference corner defined in preferences.
When snap size exceeds nudge size, nudge now uses snap size instead to ensure nudging always possible.
Fixes bug 42328.

• Sizes of rows/columns in tables no longer automatically reset unless the ’Reset heights’ or ’Reset widths’ buttons
are explicitly pressed. A new checkbox has been added to the Edit Table Dialog: ’Fix overall table size while
adding/deleting/resizing rows and columns’. When unticked, row/column operations are able to adjust overall
table size. When ticked, rows/columns scale proportionally after each operation to fit original table size. A
similar checkbox has been added to Edit Autotable Dialog, applied only to columns.
Fixes bug 41773.

• Trying to close a session with modified files prompts the user to save changes. REPORTER would close anyway
even if the user cancelled the save dialog. Now fixed.
Fixes bug 41935.

• When reading a T/HIS item containing a FAST-TCF script, REPORTER would remove any semicolons (e.g.
found in entity names). Semicolons are now preserved.
Fixes bug 41735.

• In the JavaScript API Image class, it is now possible to set an alternative background colour (including ’none’)
via a new third argument in the Image constructor. Also, previously, setting lineColour to ’none’ had no effect,
and setting lineWidth equal to zero resulted in a line width of 1. Now fixed so that either setting will result in no
line being drawn.
Fixes enhancement 41602.

• Problems encountered when modifying individual Table cell border widths via the JavaScript API, especially
when reducing the existing border width, have been fixed.
Fixes bug 42600.

• The page orientation now automatically changes to landscape when you select a PowerPoint page size in File ->

REPORTER User manual Version 18.0, April 2021

Page 0.4

Page setup.
Fixes enhancement 41651.

• Image size can now be controlled for ’Blank’ PRIMER, D3PLOT and T/HIS items (so that any images created
via scripts or command files can have image size control).
Fixes enhancement 41674.

• Templates containing the text "%CURRENT_PAGE%/%TOTAL_PAGES%" would result in an error message
when written to PowerPoint. Now fixed.
Fixes bug 41676.

• The Tools have been grouped into categories, and it is now possible to switch on labels for the tool buttons.
Fixes enhancement 41603.

• Improved access to the page master view: a page master view toggle button (shortcut key ’m’) has been added to
the View toolbar, and corresponding toggles have been added to the View and Page menus. The old Master dock
widget has been removed.
Fixes enhancement 41604.

• Newly-created items now remain selected, so that they can more conveniently be moved, resized or deleted.
Keyboard shortcuts have been added for the Select tool (’s’) and the Hand tool (’h’).
Fixes enhancement 40700.

• Images drawn using the JavaScript API Image class are now drawn with antialiasing to improve image quality.
Fixes enhancement 41022.

• The attributes (geometry, style, font, paragraph, alignment) of all selected items can now be controlled via new
toolbars in the main window.
Fixes enhancement 7764.

• It is now possible to set the line width and line colour of Autotable items. It is now also possible to set the fill
and text colour for all cells/columns in Table/Autotable items via the Style toolbar.
Fixes enhancement 40106.

Version 16.1
• When opening a template was aborted, it could sometimes cause REPORTER to crash. Now fixed.

Fixes bug 41717.
• When a Table or Autotable item was created or resized, it would actually be given 0.99 times the requested

width and height. Now fixed.
Fixes bug 40697.

• Page hyperlinks did not work for Table items in HTML output, and they did not work for Table or Autotable
items in PDF output. Now fixed.
Fixes bug 39208.

• Page hyperlinks were not given the underlined magenta style for Table items in Presentation view. Now fixed.
Fixes bug 39207.

• It was not possible to get/set the lineColour property for Table items via the JavaScript API. Now fixed.
Fixes bug 40105.

• If items are moved or resized using the mouse, or if items are aligned, distributed or rearranged from the context
menu, the changes are now recorded as changes to the template, and a save prompt appears when the template is
closed.
Fixes bug 39981.

• If captures were deleted from a D3PLOT item that had already been edited, REPORTER would crash. Now
fixed.
Fixes bugs 38195 and 40531.

• In Presentation view, if the location of a Script item was clicked with the Hand tool, the script would run, even if
the Script item was not a button script. Now fixed so that only button scripts can be run by clicking on them.
Fixes bug 40016.

• For non-legacy fonts in Tables and Autotables, cell text was aligned incorrectly in PDF output if ’middle’ text
alignment was selected. Now fixed.
Fixes bug 40065.

• Setting the output of an Autotable Library Program to a variable and clicking OK would cause REPORTER to
crash. Fixed by hiding this Library Program feature for Autotables, since it was inapplicable in the first place.
Fixes bug 40602.

• If an item containing a Program or Library Program was generated via the Item.Generate method in a Script
item, the Program or Library Program output would not be returned. Now fixed.
Fixes bug 40384.

• In the JavaScript API, some of the properties in the objects returned by Item.GetCellProperties and
Item.GetColumnProperties were incorrect for Program and Library Program cells. These have been fixed. A new
<output> property has been added for Item.GetCellProperties, and a new <programArgs> property has been
added for Item.GetColumnProperties. Also, the <program> and <programArgs> properties were not set correctly
by Item.SetCellProperties and Item.SetColumnProperties. Now fixed.
Fixes bugs 40223 and 40528.

• The intrusion plot in the General LS-DYNA Vehicle template now supports parts of any element type, rather
than only shell parts.
Fixes bug 40351.

• If an *INCLUDE or *INCLUDE_PATH card contained valid white space at the beginning of a continuation line,
it was incorrectly eliminated when read by certain Library Program scripts. Now fixed.
Fixes bug 40293.

User manual Version 18.0, April 2021 REPORTER

Page 0.5

• The *INCLUDE_PATH card was not supported by Library Programs that recursively searched a keyword file
and its include files. Support for *INCLUDE_PATH now added.
Fixes bug 40291.

• Standard templates now support results files with the newer LSTC naming conventions "<name>.d3plot" and
"<name>.d3hsp" as well as older "d3plot" and "d3hsp" filenames. In addition, the templates will now search the
results directory for any "*.ptf" or "*.d3plot" file if one matching the keyword filename cannot be found.
Fixes bug 40229.

• When generating a PRIMER object the MENU_AUTO_CONFIRM environment variable is no longer set by
default. This is because when creating/updating the capture it was not set and the mismatch meant that some
macros did not play correctly. If a specific template needs this for some reason it can be set by using the option
in the templates preference.
Fixes bug 40591.

Version 16.0
• Previously, REPORTER only supported four fonts (Courier, Helvetica, Times, Symbol). REPORTER now

supports many more fonts (TrueType, OpenType, and certain Type1 fonts), giving you greater control over the
look of your reports, and allowing you to create templates that match your organisation’s branding. Support for
Chinese, Japanese, Korean and other non-Latin fonts is much improved.
Fixes enhancements 9008 and 15826, and bug 16376.

• Table and Autotable items can now be exported in Microsoft Excel format, complete with formatting (cell size,
text alignment, font style, borders, colours, merged cells).
Fixes enhancement 38249.

• Various new functions have been added to the Item class of the JavaScript API to enable control over Table and
Autotable items. It is now possible to: insert/delete/resize rows/columns, merge/unmerge cells, get/set cell
properties (e.g. text, alignment, font, colour, border width) and get/set cell conditions.
Fixes enhancements 38250 and 38251.

• PNG images with transparency would appear white in PDF output. Now fixed.
Fixes bug 38792.

• After a PRIMER, D3PLOT or T/HIS capture, the special readonly variables (e.g. REPORTER_TEMP) were
being set as writeable, meaning that they would be mistakenly written to the template/report file if it was
subsequently saved. Furthermore, after a capture, all variables were being changed to temporary variables. Both
now fixed.
Fixes bug 38791.

• When editing a variable of type ’Directory’, if "Browse..." was clicked to browse for a directory with a UNC path
(e.g. "\\example.com\data\analysis\001"), the value returned would contain forward slashes
("//example.com/data/analysis/001"). Backslashes are now preserved.
Fixes bug 39303.

• When running on Linux a warning "libpng warning: iCCP: known incorrect sRGB profile" would be written to
stdout. Now fixed.
Fixes bug 38711.

• The red, green, blue and name properties in the Colour class did not work. When getting the property null would
be returned instead of the correct value. Now fixed.
Fixes bug 38772.

Version 15.1
• Various library scripts would terminate with an error if include files in keyword files could not be found. They

now print a warning instead.
Fixes bug 38400.

• Table cells with fill colour ’none’ were being saved correctly, but would be interpreted as ’black’ during
copy/paste. Now fixed.
Fixes bug 38334.

• If the border width of Table items was set to 0.75, it was not saved correctly. Also, cell borders were not
preserved when a Table item was copied. Both fixed.
Fixes bug 37666.

• Lock symbols for some items remained visible in Presentation view. Now fixed.
Fixes bug 37524.

• The getter for the JavaScript Image class font property did not work correctly. Now fixed.
Fixes bug 38019.

• If a report (.orr file) was opened by double-clicking on it, scripts set to automatically run on opening would run.
This is the intended behaviour for templates (.ort files), but not for reports. Now fixed.
Fixes bug 36531.

• After aligning selected items, their positions were not redrawn immediately. Now fixed.
Fixes bug 37803.

• It was possibly to nudge and delete locked items. It was also possible to move them via the alignment options in
the context menu. These are now disabled for locked items.
Fixes bug 37393.

• With the exception of the Logfile dialog, all dialogs are now modal, to prevent instability and unexpected
behaviour.

REPORTER User manual Version 18.0, April 2021

Page 0.6

Fixes bugs 36484, 36660 and 36661.
• A warning message would appear when an empty page was duplicated. Now fixed.

Fixes bug 36304.
• Script buttons were highlighted incorrectly on hover in Presentation view. Now fixed.

Fixes bug 37188.

Version 15.0
• The shortcut (Ctrl+W) for File -> Close didn’t work. Now fixed.

Fixes bug 37062.
• When inserting variables into a text field (Ctrl+I), you can now double-click to select the variable (increases

speed of use).
Fixes enhancement 36640.

• Reporter could crash if the File->Open library template menu was entered before the list of library templates
had been read. Now fixed.
Fixes bug 36642.

• On Linux, if REPORTER was started from the command line with a file argument (e.g. reporter14_x64.exe
example.ort) then the REPORTER window would be shown too high so the window title bar was not visible.
Now fixed.
Fixes bug 36503.

• Depending on the relative aspect ratio between template and display, Zoom -> Fit width and Zoom -> Fit height
would not fit correctly (scroll bars would persist). Now fixed.
Fixes bug 36438.

• On Windows, if REPORTER was started from the command line with both maximise and file arguments (e.g.
reporter14_x64.exe -maximise example.ort) then the REPORTER window would not maximise. Now fixed.
Also, the active template now resizes in synchrony with the main window.
Fixes bug 36017.

• A special readonly TEMPLATE_DIR variable has been added to REPORTER. The variable value contains the
directory path of the current template (for a new template created using File -> New, TEMPLATE_DIR will
contain an empty string until it has been saved). The TEMPLATE_DIR variable should be useful when you want
to refer to files (e.g. images or scripts) stored relative to the template.
Fixes enhancement 35693.

• Oasys REPORTER executables weren’t always being digitally signed. Now fixed.
Fixes bug 35004.

• It is now possible to embed Image items into a template (.ort file). By checking the box in the Image item dialog,
the image data is embedded directly into the template rather than relying on the link to an external image file.
Fixes enhancement 33088.

• A checkbox has been added in the Script item dialog to skip the generation of button scripts when a template or
page is generated. This means that button scripts can now be configured to run only when clicked.
Fixes enhancement 34966.

• The Variables dialog now expands to fit variables with long names, values or descriptions, rather than pushing
them to the right of the visible pane in the scrollable area.
Fixes enhancement 34965.

• In PowerPoint files written by REPORTER, Text, Textbox, Table and Autotable items now use ’Exactly’ rather
than ’Single’ line spacing in order to improve visual compatibility with REPORTER.
Fixes bug 35338.

• Read-only properties ’filename’ and ’path’ have been added to the Template Class in the JavaScript API. These
replace the ’name’ property, which has been deprecated (and made read-only) from this version onwards.
Fixes enhancement 35186.

• Variable value replacement could previously fail for nested variables at the beginning of a string. Now fixed.
Fixes bug 35152.

• Improvements have been made to the keyboard focus in all REPORTER dialog windows. Tab focus is now
consistent and the enter key now has the expected effect.
Fixes bug 35225.

• Editing margins and vertical text justification were not possible in Autotables. They are now possible.
Fixes bug 30631.

• If the Window.Information Class function was used in a Script object, an ’Error’ icon was displayed instead of an
’Information’ icon. Now fixed.
Fixes bug 34971.

• When in Presentation view, if an object was created by dragging out a rectangle to define its size, the rectangle
would continue to change size after the mouse button was released. Now fixed.
Fixes bug 35036.

• Toggling of the ’View page item generation order’ button was not synchronised with the checkbox on the View
menu. Now fixed.
Fixes bug 35130.

• If the Design view button was clicked when already in Design view, it would toggle to the Presentation view,
and vice versa. Toggling now removed.
Fixes bug 35098.

Version 14.1

User manual Version 18.0, April 2021 REPORTER

Page 0.7

• If a variable was saved with a floating format precision of 0 the precision was not read correctly when reading a
template file. Now fixed.
Fixes bug 34590.

• If a table cell background colour was set to ’none’ it was not read correctly when reading a template file. Now
fixed.
Fixes bug 34588.

• If a variable contained an expression then the expression would be overwritten by the evaluated value after
D3PLOT or T-HIS objects were run. Now fixed.
Fixes bug 34566.

• If a variable contained a format precision then the precision would be overwritten with the default after D3PLOT
or T-HIS objects were run. Now fixed.
Fixes bug 34556.

• If REPORTER was started by right clicking on a template file and using ’Open with...’ the current directory was
set to C:/Windows/System32 on Windows. The current directory is now set to the directory that the template file
is read from.
Fixes bug 34555.

• The title library script would not extract the title from an include file if the include file was specified using " +"
continuations. Now fixed.
Fixes bug 34511.

• If a program argument contained backslashes then REPORTER would convert them to forward slashes for
internal storage but then not convert back to backslashes on Windows when running the program. This could
make some external programs fail (e.g. Perl scripts). Now fixed.
Fixes bug 34254.

• T-HIS objects using the JavaScript type did not pass the job file correctly to T-HIS. Now fixed.
Fixes bug 33922.

• If a D3PLOT object captured a plot for one model and was then replayed on a slightly different model then
sometimes the wrong elements could be (un)blanked in the plot. Two new options have been added for D3PLOT
in File->Program Locations to help in these situations. These options can also be set by preferences.
Fixes bug 33886.

• If the border colour for a table was set to ’none’ this was not correct in PowerPoint files produced by
REPORTER. Black was incorrectly used. Now fixed.
Fixes bug 33197.

• The logic in REPORTER for reading variables assumed that the name would only contain A-Z, a-z, 0-9 and
underscore characters. However the variable dialog and some scripts actually allowed many other characters and
this meant that the variable was not processed correctly if other characters were used. The logic has now been
changed and variable names can now contain spaces (converted to a single underscore character), A-Z, a-z, 0-9
and the following special characters ’{’, ’}’, ’[’, ’]’, ’/’, ’\’, ’@’, ’.’ and ’^’. This allows units to be included in variable
names. For example the following is now a valid variable name:
ACCELERATION_[mm/s^2]
Fixes bug 31871.

Version 14.0
• When editing an auto table and updating the backgound colour in conditional formatting the table editing

window would be lowered so it was hidden. Now fixed.
Fixes bug 33482.

• When editing conditional formats the background colour could be shown incorrectly. Now fixed.
Fixes bug 33481.

• If you specified that the output from a library program should be saved in a variable it did not work if the
variable didn’t already exist. Now fixed.
Fixes bug 33329.

• REPORTER could give the wrong initial added mass, initial percent added mass and smallest timestep values for
some otf files. Now fixed.
Fixes bug 33272.

• Updating a capture for a D3PLOT object did not work if there was a pre-JavaScript defined. Now fixed.
Fixes bug 33232.

• REPORTER could crash if a temporary variable was deleted by using Delete Temporary Variables in the
Variables menu and recreated. Now fixed.
Fixes bug 32988.

• Rows and columns can now be added or deleted from any location in a table.
Enhancements 12788, 13840, 31875.

• Cells in a table can now be merged.
Enhancements 15549, 22387, 31875.

• The borders can now be set for individual cells in a table.
Enhancements 12855, 15549, 22387.

• Conditional formatting can now be copied and pasted from one cell to another.
Enhancements 13842, 15549, 22387.

• The output from a library program and text can now be used together in a table cell.
Enhancement 13866.

• Library programs can now not produce output. This may be useful in some situations. For example the output
can set to a variable and the variable used later in a table cell.

REPORTER User manual Version 18.0, April 2021

Page 0.8

• A File.Move method has been added.
Enhancement 31605.

• A File.Copy method has been added.
Enhancement 31603.

• When replacing variables in D3PLOT JavaScripts \ was not escaped to \\. Now fixed.
Fixes bug 32631.

Version 13.1
• The icon shown in the top left of the titlebar when a template was opened was the old (version 12) icon instead

of the new (version 13) icon. Now fixed.
Fixes bug 31046.

• The -iconise command line option did not work correctly on linux. Now fixed.
Fixes bug 30982.

• The elapsed time library scipt did not work for the R8 and R9 versions of LS-DYNA. Now fixed.
Fixes bug 30565.

• Endash characters (–) were incorrectly written to pdf files as spaces. Now fixed.
Fixes bug 30654.

Version 13.0
• The aspect ratio or size of images in D3PLOT, PRIMER and T/HIS objects can now be controlled.

Enhancement 29004.
• Images in ImageFile, D3PLOT, PRIMER and T/HIS objects can now be justified.

Enhancement 28875.
• An optional index argument has been added to the Page.Duplicate() method.

Enhancement 28334.
• The name argument in the Item constructor was ignored. It is now used correctly.

Fixes bug 28332.
• Variables can now be marked as temporary variables. Temporary variables can be removed from a template with

a new ’Delete temporary variables’ command in the Variables menu.
Enhancement 27253.

• The format and precision properties were missing from the Variable class. They have now been added.
Fixes bug 22881.

• An ImportItem method has been added to the Page class.
Enhancement 28221.

• The numbering of ’generated’ items on a page missed out tables. Tables have been added as they can contain
scripts that need to be generated.
Enhancement 27384.

Version 12.1
• When combining reports if one of the reports to combine did not exist hyperlinks could link to the wrong pages.

This has been fixed.
Fixes bug 27640.

• Values for variables with expressions were not written to the reporter_variables file correctly when generating
the report. This has been fixed.
Fixes bug 27256.

• REPORTER would delete files in the temporary directory if the directory was set with the oasys*temp_dir
preference.
Fixes bug 26416.

• Ampersand characters (&) in table objects created corrupt pptx files. This has been fixed.
Fixes bug 26906.

Version 12.0
• Circles and ellipses were not rendered correctly in pdf files. Now fixed.

Fixes bug 25848.
• REPORTER could crash if a library image was inserted very near the top or right hand edge of a page. This has

been fixed.
Fixes bug 24988.

• FAST-TCF objects did not use the job filename when generating. FAST-TCF would look in the directory for
the job. If there were multiple jobs in the same directory it could choose the wrong file. This has been fixed.
Fixes bug 24979.

• Extra commands added to a D3PLOT capture which were longer than 80 characters did not work. This has been
fixed.
Fixes bug 24933.

• Objects can now be locked on the page so they cannot accidentally be moved.
Enhancement 23503.

User manual Version 18.0, April 2021 REPORTER

Page 0.9

• REPORTER will now prompt the user to replace variables in the macro after doing a capture in PRIMER. For
each matched text string you can choose whether to replace it with a variable or you can do "Yes to All" or "No
to All".
Enhancement 21309.

• A new Batch() method has been added to JavaScript so scripts can test if REPORTER is running in batch mode.
Enhancement 23990.

• A Duplicate method has been added to the Page class.
Enhancement 17602.

• Static methods GetAll and GetFromName have been added to the Variable class.
Enhancement 22772.

• Report hyperlinks can now have the form ’#page title’ to link to another page in the report.
Enhancement 22974.

• A DeletePage() method has been added to the Template class in JavaScript.
Enhancement 22974.

• A new EditVariables method has been added to the Template class so that a variables editing panel can be called
from JavaScript.
Enhancement 22387.

• A System() method has been added to JavaScript.
Enhancement 15772.

• Script objects can now be shown as a button in presentation mode. Clicking the button runs the script.
Enhancement 22387.

• A single script object in a template can now be set to run automatically when the template is opened.
Enhancement 22387.

• A new Window class has been added to JavaScript to enable standard dialogs to be used.
Enhancement 22387.

• T/HIS objects can now be defined with a JavaScript instead of a FAST-TCF script.
Enhancement 22387.

• New Page and Item classes have been added to JavaScript.
Enhancement 22387.

• Library templates can now be opened directly from the File menu.
Enhancement 22387.

• A File.Delete() method has been added.
Enhancement 22387.

Version 11.2
• Less than signs (<) in text and textbox objects created corrupt pptx files. This has been fixed.

Fixes bug 24613.
• If the Variable constructor was used to redefine an existing variable in a script REPORTER would give an error

if you tried to get any of the variable properties later in the script. This has been fixed.
Fixes bug 23586.

Version 11.1
• If a D3PLOT object with multiple captures was updated again in D3PLOT to delete or replace captures

REPORTER could produce errors when generating or change the order of the captured images. This has been
fixed.
Fixes bug 22227.

• If a D3PLOT object was made that had more than 20 captures and the template saved to file , REPORTER
would not be able to read the file again. This has been fixed.
Fixes bug 22226.

• D3Plot objects using a command file (instead of capturing) did not work in version 11. This has been fixed.
Fixes bug 22147.

• When saving old style T/HIS objects (i.e. using a command file instead of a FAST-TCF script) the command
file was not saved. This has been fixed.
Fixes bug 22117.

• Opening the HTML manual did not work on Linux. This has been fixed.
Fixes bug 21989.

Version 11.0
• When writing PowerPoint files REPORTER now correctly writes animated gifs.

Fixes enhancement 17601.
• REPORTER could crash if you created a table that used a library program for a cell and you saved the output of

the program to a variable. This has been fixed.
Fixes bug 21346.

• The library program which reported the LS-DYNA version and revision from the otf file did not work correctly
for new (R7) LS-DYNA output because there is now a new ’SVN Version’ line in the otf file. Additionally the
version and revision were expected to be to be a single ’word’. This has been fixed.

REPORTER User manual Version 18.0, April 2021

Page 0.10

Fixes bug 21243.
• Outlines were not written for Oasys Ltd. or File Image type objects to PowerPoints. Now added.

Fixes bug 21242
• REPORTER would hang when reading a template file if one of the page titles in the file contained an ampersand

(&). This was because the ampersand was not escaped properly when writing the template. This has been fixed.
Fixes bug 21235

• You can now specify an outline border for file image objects.
Fixes enhancement 18206

• REPORTER can now use D3PLOT to generate multiple images in one session. The second and subsequent
images are automatically created as image file objects linked to the d3plot object.
Fixes enhancements 7777 and 13034

• A JavaScript can now be run for D3PLOT and PRIMER objects.
Fixes enhancement 15550

• When capturing an image from D3PLOT, REPORTER now automatically shows the images.
Fixes enhancements 7779 and 10668.

• A new PRIMER object has been added.
Fixes enhancements 8095 and 16530

• REPORTER can now write PowerPoint pptx files directly.
Fixes enhancement 11858

• REPORTER can now combine multiple reports into a single pptx/pdf/html.
Fixes enhancements 7712, 8956, 9020 and 10742

• REPORTER could think that a script had changed when cancelling from the editor if the script was created on
windows but edited on unix.
Fixes bug 7769

• When writing a pdf file jpeg images are now written as jpegs rather than pngs as they can be much smaller.
Fixes enhancement 17920

• Added the ability to see the item generation order.
Fixes enhancement 18489

Version 10.2
• REPORTER did not automatically change LS-DYNA filenames from h3hsp to %DEFAULT_JOB%.otf (and

visa-versa) when importing a library page. This has been fixed.
Fixes bug 19200

• REPORTER could crash when writing a pdf file that had overflow pages in an auto-table if there was an error
when the report was generated. This has been fixed.
Fixes bug 19197

• The "cropping" button was the default focus in the D3Plot object edit menu (i.e. was applied when hitting enter)
rather than the "OK" button. This has been fixed.
Fixes bug 19113

• REPORTER was not able to create and import image files which were not JPEG when generating a D3Plot
captured object. This has been fixed.
Fixes bug 18403

• REPORTER could crash if the user added a page to the reporter_library/pages area which contained certain
REPORTER items. This has been fixed.
Fixes bug 18432

Version 10.1
• If the page layout is changed from landscape to portrait or visa versa any items that are off the page are

automatically moved to stay on the page
Fixes bug 14307

• If multiple conditional formatting conditions were set for a table, autotable, textbox or file object background,
then REPORTER would display the last condition matched rather than the first one. This has been corrected.
Fixes bug 17794

Version 10.0
• Added the -loghtml command line options to allow the log file to be saved as html instead of plain text.
• Added a Templates tab to preferences to allow the user to change whether existing files should be overwritten

when generating images for multiple pages in T/HIS. This is saved as a property of each template
• Added the -iconise and -oasys_batch command line options
• Checkbox for turning on/off error checking during generation when an error was found was not working

correctly.
Fixes bug 15143

• Added the ability to set the format of a variable on the variable edit panel.
Closes enhancement 8819.

• Fixed problem with rounding errors on spinbox input values on edit panels.
Fixes bug 15548.

User manual Version 18.0, April 2021 REPORTER

Page 0.11

• When resizing/moving a table object, the relative width/height of the columns/rows is now maintained.
Closes enhancement 15546.

• Added a new library script for reading variables from a CSV file.
Closes enhancement 15476.

• The "P" key can now be used to swap between design view and presentation view.
Closes enhancement 9333.

• "Fit page" is now the default zoom level when opening a file.
Closes enhancement 13863.

• Added the ability to use the control key plus the mouse scroll wheel to zoom in and out of the page.
Closes enhancement 15516.

• Added the ability to distribute selected items evenly horizontally or vertically either to the page or within the
currently selected items.
Closes enhancement 15509.

• Added the ability to align items to the top/bottom/left/right of the the page.
Closes enhancement 9300.

• You can now specify an outline border for Oasys Ltd. image objects.
Closes enhancement 15503.

• The escape key can now be used to deselect any selected objects. It is still used to quit out of fullscreen mode.
Closes enhancement 15530.

• The total number of pages in the document is now displayed at the top of the window.
Closes enhancement 15513.

• Added preferences to allow the user to specify the format of the default DATE and TIME variables.
Closes enhancement 15529.

• Modified the default variable DATE so that it just shows the date rather than the date and time. A new default
variable TIME has been added
Closes enhancement 15453.

• The maximum number of pixels you can crop off an image edge has been increased from 1000 to 10000.
Closes enhancement 15451.

• Textboxes were not copied when duplicating a page. This has been fixed.
Fixes bug 15441.

• Added the ability to write the output of a library program to a variable.
Closes enhancement 9031.

• Added the ability to align multiple objects together. Option are left, centre, right, top, middle or bottom.
Closes enhancement 9300.

• Added the ability to select multiple objects on a page. Multiple objects can be dragged, cut/copied/pasted,
saved/imported, generated, resized etc.
Closes enhancements 8980, 9106, 9300.

• Added the ability to format a variable. For example if a number, how many decimal places.
Closes enhancement 13867.

• The text on the status bar could get overwritten during generation of items. Now fixed.
Fixes bug 14230.

• Setting the background colour of various object types via conditional formatting has been added.
Closes enhancement 9026.

• It is now possible to set the background colour of cells in tables.
Closes enhancement 15319.

• A note object has been added for adding notes to the design view of a report.
Closes enhancement 13825 .

Version 9.4.2
• " Hyperlinks for HTML files are now converted to relative links.

Fixes bug 16138.
• If you inserted a normal program into a template by selecting the program tool and dragging an area Reporter

would think that the object was a library program, not a ’normal’ program.
Fixes bug 15133.

Version 9.4
• Reporter could crash when accessing variables after using the JavaScript method Template.GetVariableValue()

with a variable name that did not exist in the template.
Fixes bug 14347.

• If a job file was selected before doing a capture for a T/HIS object REPORTER would not try to substitute
DEFAULT_DIR (and other variables) in the filename. Now fixed.
Fixes bug 14329.

• If you modified an items outline, fill or text colour or modified its line thickness or style this did not flag the
template as requiring a save. This has now been fixed.
Additionally templates which require saving are now marked with a * in the window title.
Fixes bug 13960.

• Exiting from REPORTER using File->close and using the top right window close button now gives the same
error message and options to save any modified templates. Previously the messages were different and this

REPORTER User manual Version 18.0, April 2021

Page 0.12

caused confusion to some users.
Fixes bug 13430.

• D3PLOT objects with multiple filenames would not work if one (or more) of the filenames contained spaces.
This was due to a bug in D3PLOT. Now fixed.
Fixes bug 12409.

• When writing PowerPoint output blank table cells were given the default font size by PowerPoint. As this is very
large it caused the table row to be larger.
Fixes bug 13874.

• User defined script directories can now be defined by using the library_directory preference. This allows users to
add their own library scripts if REPORTER is installed in a read only location.
Closes enhancement 13503.

• If a library program is added it is now possible to set the font, size, style and justification in the menu.
Additionally if you edit an existing library program this menu is now used instead of the ’normal’ program menu.

• When generating a report more feedback is now given in the status bar so you know what REPORTER is doing
(e.g. running a D3PLOT object in background).
Closes enhancement 13888.

• Report generation can now be stopped at any point by a new ’Stop’ button in the status bar.
Closes enhancements 10708 and 11271.

• D3PLOT and T/HIS can now be run from REPORTER without any windows being mapped by either giving the
-batch command line option to REPORTER or by setting the batch mode checkbox in File->Program locations.
Additionally REPORTER can be minimised during report generation so you can use other programs.
Closes enhancement 10709.

• HTML output has been improved for tables. Previously cell heights could be too high on Internet Explorer and
additionally text that was too big for a cell was not cropped.
Fixes bug 13846.

• Once a ’Capture’ has been done for D3PLOT or FAST-TCF objects the ’Capture’ button is changed to say
’Update capture’ as it was not clear that pressing the button again would allow you to change the existing capture
rather than starting again from scratch.
Closes enhancement 13757.

• PowerPoint output could sometimes only be done once for each Reporter session.
Now fixed.
Fixes bug 13873.

• Page ranges set by the user in the printer dialog were ignored and the whole report was printed. Now fixed.
Fixes bug 13887.

• The Hyperlink dock box was not mapped correctly when a hyperlink was clicked. A similar problem occurred
with the ’master page’ dock box.
Fixes bug 13827.

• Clicking on a hyperlink that referred to a non-existant report could crash Reporter.
Fixes bug 13836.

• PDF output for table cells was not cropped if it was too large for the cell.
Fixes bug 13883.

• If you edited an existing FAST-TCF object that used variables somewhere in the script and you pressed capture
to change the script REPORTER prompted you to try to replace text with variables in the new script but no
replacements were done. Now been fixed.
Fixes bug 13833.

• Image cropping has been added for Image, ImageFile, D3PLOT and Fast-tcf objects.
Closes enhancement 12854.

• Text wrapping, border style, border colour and background colour have been added to the textfile object.
Closes enhancement 8631.

• A new text colour button has been added to the Style toolbox to change the colour of text (previously the outline
colour button changed the colour of text). This was necessary as the new textbox objects have fill colour, border
colour and text colour.

• A new textbox object has been added to Reporter.
Closes enhancements 9107, 7800 and 3881.

Version 9.3.1
• Visual basic output did not work on windows for text file items that had more than one line of text. Now fixed.

Fixes bug 13165.
• Images for advanced objects in HTML output were scaled incorrectly. Now fixed.

Fixes bug 13159.
• Reporter now shows files with extension .pptx as well as extension .ppt when writing PowerPoint files.
• Writing text objects to a PowerPoint file did not work correctly with PowerPoint 2007 (the text was written with

a single letter on each line). Additionally:
• File objects had a black background if a visual basic macro from Reporter was read into PowerPoint

2007.
• Justification of text objects was not correct if a visual basic macro from Reporter was read into

PowerPoint 2007.
• Tables had the wrong border and background colours in PowerPoint 2007.
• The colour of some lines could be incorrect in PowerPoint 2007.

Now fixed.

User manual Version 18.0, April 2021 REPORTER

Page 0.13

Fixes bugs 13022 and 13138.
• Output from writing text objects to a Powerpoint file and to a visual basic macro could be inconsistent. The

textboxes produced when writing a PowerPoint file directly were not resized to fit the text, and textboxes
produced from a visual basic macro would have different margins to those produced when writing a PowerPoint
file directly. This is now fixed.

• Reporter would not play a d3plot command file with ’button click’ data correctly. The button click data would be
stripped from the command file and the commands treated as dialogue commands. Now fixed.
Fixes bug 13027.

• In an automatically generated table column text entries containing variables would not generate correctly (the
variable would be replaced by a blank string) if the variable name was in lower case. Now fixed.
Fixes bug 12995.

• On some platforms when generating a report, a warning message from T/HIS and D3PLOT could be passed to
REPORTER in two or more chunks (it should be passed to reporter as a single string). REPORTER would
mistakenly think that the second and subsequent chunks were error messages and try to alert the user that an
error occured. This has now been fixed.
Fixes bug 12738.

• If a library object failed to generate properly (e.g. if the otf filename was incorrect) then the next time that
Reporter generated the report you could get ’Cannot get File data in File destructor’ errors. This has been fixed.
Fixes bug 12629.

• When writing tables to powerpoint directly or writing a visual basic macro, the colour and width of table borders
was ignored. Now fixed.
Fixes bug 12733.

• The -maximise command line option and maximise oa_pref option did not work correctly on some screens. This
has now been fixed.
Fixes bug 12941.

• The hostname library script would fail if the hostname of the machine contained a hyphen (-).
Fixes bug 12413.

• When drawing a polygon with the image.Polygon() function you could not define the line colour as ’none’ (it
always gave a black outline). This has now been fixed.
Fixes bug 9585.

• If you edited a normal table after generating program data in any of the cells the program output was lost during
the edit. This has now been fixed.
Fixes bug 12348.

• If you saved output to html (or vba, pdf) and the file existed you were asked twice if you wanted to overwrite it.
Fixes bug 12428.

• Variable expressions were not correctly evaluated when used in text. Instead of the variable value being
evaluated the entire string was evaluated which could sometimes mean that the expression could not be
evaluated correctly. This has now been fixed.
Fixes bug 12347.

• Powerpoint output was incorrect for several object types:
• Bold, italic and underlined text was shown as normal text.
• Arrowheads were not drawn on arrows.
• Rectangles and ellipses without fill were still drawn with fill.
• Dashed and dotted lines were drawn as solid lines.
• Autotable cells could have the wrong font style and justification.

This has now been fixed.
Fixes bug 12433.

Version 9.3 (October 2008)
• When doing conditional formatting the default font for each condition is now the same as the existing font before

you asked for conditions (so for example you have to change only the colour). Previously the defult font was
always 10pt Courier. Closes enhancement 11906.

• If you double click on a variable in the Edit variable menu it now edits the variable. Closes enhancement 11904.
• In design mode, programs that use library scripts now have %REPORTER_HOME%/reporter_library/scripts

removed from the beginning of the text that is shown on the object so it is easier to see what the program is.
Fixes bug 7701.

• A library script has been added to read a reporter variables file. Closes enhancement 11902.
• Printing did not work for autotable objects. This has now been fixed. Fixes bug 11848
• The library directory for Reporter has been renamed to ’reporter_library’. Existing scripts which use ’library’ will

be modified when Reporter reads the file.
• In the menu that is mapped when the user right clicks on an object, Edit and Delete were next to each other.

Occasionally people pressed Delete by mistake. A space has been added to the menu either side of the Delete
button to make it harder to delete the object by accident. Fixes bug 11332.

• When the dyna filetype preference was changed in Reporter it did not change the filetypes for any existing
objects in the template.
Additionally, when opening a template, if the preference was set to the Oasys Ltd. filetypes, Reporter would
silently change any ’d3hsp’, ’d3thdt’ and ’d3plot’ definitions to ’%DEFAULT_JOB.otf’, ’%DEFAULT_JOB.thf’
and ’%DEFAULT_JOB.ptf’ and there was no way to undo this change.
Now if you change the preference interactively Reporter looks to see if any filenames need updating. If they do
then it asks you if you want to change them.

REPORTER User manual Version 18.0, April 2021

Page 0.14

Similarly, if you read a template Reporter checks and asks you if you want to change them. However, this is not
done if the batch option has been set.
Fixes bugs 9782, 10613 and 11438.

• Library scripts which retrieve data from the end otf file have been made significantly quicker. Fixes bug 9479
• It is now possible to have D3PLOT and FAST-TCF objects that do not return images to REPORTER. Fixes

bugs 9028 and 9108.
• A new ’Expression’ variable type has been added that allows user to do simple maths with variables. e.g.

(%THREE%+%ONE)*%THREE%/%TWO%. In fact it will evaluate the expression as a JavaScript expression
so Math.sqrt(), Math.sin() etc are also available. Fixes bugs 9010, 9017 and 9111.

• After reading in a template, Reporter now shows the first page, not the last page. Fixes bug 9006.
• All dialog boxes in Reporter now have a maximise button to make them easier to resize if they need to be made

bigger (e.g. if editing a FAST-TCF object). Fixes bug 8793
• Normal table objects have now been added to Reporter. Closes enhancements 7233, 7703 and 7704.
• Postscript output has been removed from Reporter for version 9.3. Use pdf output instead.
• Added File.Mkdir() method to create a directory.
• Added File.APPEND constant to enable appending to files.
• Library scripts in tables did not work if there was a space in the installation directory of Reporter. Additionally

any variables that were used as arguments would not have been expanded correctly (they would get the value
from the current template instead of the value from the reporter_variables file). Fixes bug 9451.

• Added pdf_image_downsample, pdf_image_downsample_resolution and pdf_image_downsample_threshold
preferences to allow image downsampling when writing pdf files.

• Added use_file_vars preference to enable filenames returned from D3PLOT and T/HIS to be replaced with
directory/file variables automatically if they match

Version 9.2.3 [Build 36] (21/11/2006)
• Reporter would create a corrupt pdf file if a page contained a zero size image. This has now been fixed. Fixes

bug 9315
• If special characters like > and < were used in a condition name Reporter could not read the template file. Now

fixed. Fixes bug 9220.
• Fixed problem with text in pdf files not printing properly on some printers. Fixes bugs 9134 and 9212.
• The output from a table can now be written to a CSV file during generation. Closes enhancement 9133.
• Reporter now gives the user the ability to stop report generation if an error occurs. Closes enhancement 9126.
• Some objects with a line colour and/or fill colour of none were not being rendered properly (black was used

instead). This has now been fixed. Fixes bug 9081.
• Reporter would get the start in directory wrong for T/HIS and D3PLOT if there was a single jobfile that

contained spaces. This could cause T/HIS to crash. This has now been fixed. Fixes bug 9038.
• Library scripts could not be used as table items (an error occured when they were run). This has now been fixed.

Fixes bug 9024.
• It is now possible to generate a single page of a report. Closes enhancement 9011.
• Powerpoint could be left open after writing a powerpoint file. This would happen if the -exit command line

argument was given after the -ppt argument. This has now been fixed. Additionally Powerpoint will now not be
closed if there is an existing presentation open in Powerpoint. Fixes bug 8998.

• The extension orp was not automatically appended when exporting a page (if the filename has no extension). It is
now added if required. Additionally ps is added for postscript, pdf for Acrobat, htm for HTML (html on unix),
bas for Visual basic macros, and ppt for Powerpoint. Fixes bug 8988.

• If a library page (e.g. checking page) was inserted into a template and the Oasys Ltd. filenaming scheme was
used (file.thf instead of d3thdt etc.) the objects would not generate properly as they referred to d3thdt, d3hsp etc.
This has now been fixed. Fixes bug 8954.

• Reporter is now more intelligent when pasting multiple copies of an item. Additionally the pasted item is now
selected. Fixes bug 8861.

• On Solaris 10 it was possible what errors when generating T/HIS objects did not get logged properly. This meant
that sometimes the user was not notified that an error occured. This has now been fixed. Fixes bug 8487.

Version 9.2.1 [Build 35] (26/7/2006)
• Switching between templates on HP unix machines caused Reporter to get stuck in a loop refreshing the screen

until the mouse was moved out of the template. This has now been fixed
• Multiple spaces in arguments to external programs were simplified to a single space. This was incorrect and has

now been fixed. Fixes bug 8857.
• Recapturing from T/HIS could fail if there were multiple models. This has now been fixed. Fixes bug 8842.
• When capturing from D3PLOT and T/HIS on Windows sometimes DEFAULT_DIR was not replaced in the

filename. This occured if slashes (/ or \) did not match between the variable and filename. Now fixed.
Additionally, now if DEFAULT_DIR does not match REPORTER will try to use other Directory variables to
match. Fixes bugs 8314 and 8758.

• Compounded variables (i.e. variables that contained variables) did not expand correctly. Now fixed. Fixes bug
8669.

• Arguments to an external program which used variables that contained spaces would not be passed to the
program correctly. Now fixed. Fixes bug 8666.

• Brackets (,),[,],{,} and slashes \,/ in arguments to an external program could cause Reporter to hang. Now fixed.

User manual Version 18.0, April 2021 REPORTER

Page 0.15

Fixes bug 8665.
• Fixed bug that caused spurious pages to be created when a page was duplicated. Fixes bug 8716.

Version 9.2 [Build 34] (24/5/2006)
• Fixed bug that caused the current page number on a master page to be incorrect when printing. Fixes bug 8628.
• Fixed bug that caused corrupt pdf output if there were images on the master page. Fixes bug 8629.
• Fixed problems with missing output from running external programs
• Adding a new page while an object was selected would erroneously leave the selection handles drawn on the

new page. Now fixed. Fixes bug 8530.
• Fix problem in javascript File class that caused errors in File destructor.
• Output from T/HIS and D3PLOT was not written to the logfile for Solaris 10. Now fixed.
• Errors and warnings from D3PLOT and T/HIS are now fed to REPORTER via stderr so they now correctly

come through as errors and REPORTER is aware of them.
• The log window is now raised when it is mapped as previously it could get lost behind the main window.
• Hyperlink rectangle produced in pdf files for text objects with hyperlinks is now correct if the text object used

variables. Fixes bug 8405.
• Objects that are not visible are now not selectable. Fixes bug 8404.

Version 9.2 Beta 4 [Build 33] (4/4/2006)
• Fix problem with centre justified text in HTML (it was not positioned correctly as the style was incorrect).
• Hyperlinks from objects other than tables containing variables now work correctly.
• Hyperlinks now open a report in presentation mode (this was broken in an earlier release).
• Output from program items with hyperlinks is now correctly written when writing a report.
• Cursor used when hovering over hyperlinks is now correct on Windows
• Replacing subsequent variables in table cell contents and hyperlinks would fail if the first variable in the text did

not exist. This is now fixed.
• Fixed JavaScript compiling problems on SGI that caused crashes.

Version 9.2 Beta 3 [Build 30] (20/2/2006)
• Add unicode support for writing pdf files. Partially fixes enhancement 7799 (no ps support yet). Unicode

characters can be used in text objects and table headers.
• Add ability for capturing from T/HIS to read a cvs file. As no jobfile is returned N/A is shown. Fixes bug 8151.
• D3Plot objects can now use multiple models and/or windows. When using capture new models can be opened.

When you return to Reporter all of the models and windows are remembered. Fixes enhancement 7237.
• Object coordinates can now be specified by using 2 corners or by using a corner and width/height. This can be

set by a preference. Fixes enhancement 7811.
• You can now search and replace strings in objects. Fixes enhancement 7820.
• Text items can now be vertically justified as well as horizontally. This should help line up output from text items

and program items. Fixes enhancement 7812.
• D3PLOT and T/HIS are now passed the ’-maximise’ command line argument to ensure that they are full screen.
• The FAST-TCF and T/HIS tools are now combined into one tool as people found having two tools confusing.

Fixes enhancement 7818.
• Reporter now has different cursors depending on which tool is used. Fixes enhancement 7817.
• Variables can now be given a type to help manage/distinguish them.
• File and directory variables can now be browsed for. Fixes dynatrack cases 7688 and 6857.
• You can now find and loop over all the warnings and errors written to the logfile.
• If an error occurs when generating Reporter now shows a dialog box to tell the use and gives the ability to show

the error. Fixes bug 7771
• Added this changelog to the help menu in Reporter.
• Added ability to create, drag etc in presentation mode. Fixes dynatrack bug 7766.
• Added ’hand’ tool to presentation view which allows you to follow hyperlinks etc.
• Added a ’write Report’ option in the file menu to make saving as a report easier (previously you had to do

SaveAs and change filetype). Fixes enhancement 7778.
• Reporter now remembers the directory from the last file you selected and uses that as the start directory for the

next file selection. Fixes enhancement 7714.
• Added powerpoint size as a page size. Fixes enhancement 7709.
• Existing bitmaps are now deleted before generating advanced objects. This is to guard against picking up old

data by mistake. Fixes enhancement 7772.
• Variables now have their own menu. Fixes enhancement 7819.
• Variables are now saved by default when generating. Fixes enhancement 7687.
• Now gives an error if a save did not work because a file or directory is write protected.
• Automatically replace job names with DEFAULT_DIR and DEFAULT_JOB when capturing. Can be turned off

with a preference. Fixes enhancement 7657.
• A default size is now given to an object if the user doesn’t drag when creating an object. This size can be set with

an oa_pref option. Fixes enhancement 7696.
• CURRENT_PAGE variable now works correctly on a master page when writing pdf, vba and ppt. Fixes bug

REPORTER User manual Version 18.0, April 2021

Page 0.16

7892
• Colour buttons now set correctly for WindowsXP style in Colour Dialog. Fixes bug 7647
• Added conditional formatting for textfile objects. Fixes bug 7606
• Shift and Ctrl keys now constrain lines, arrows, rectangles and ellipses when dragging. Fixes bug 7733
• version.js script bug fixed. Fixes bug 7695.
• The initial text properties are now set correctly for text file items. Fixes bugs 7647 and 7605.
• LSTC/OASYS Ltd. filenaming can now be set as a preference. Fixes bug 7692 and enhancement 7630
• Images are now embedded when saving as a report. Fixes bug 7660.
• Online manual now linked to Reporter from Help menu
• Reporter now prompts you to save a template before closing if any changes have been made
• Variables can now be used in condition values
• When the mouse enters the report you now get the keyboard focus
• -log= argument now works.
• bug fix 7774. Reporter now traps template files that don’t exist on the command line and skips remaining

arguments but does not skip -exit or -log= so it doesn’t hang
• Change name to Reporter.
• Unicode support added for text object strings (no postscript or pdf support)
• The -generate command line option now always generates the report. Previously it only generated in design

mode. This meant that if you opened a report you could not generate it (as it is opened in presentation mode)
• ’\’ characters in filenames etc are now converted to ’/’ characters on unix machines.
• Change logic for multiple models in T-HIS to that Presenter passes the directory of the first model as the

-start_in argument.
• Added us-ncap.js library script to plot US-NCAP graph
• Added fontAngle and fontJustify properties to javascript Image class to give more control of text rendering

Version 9.2 [Build 21] (14/11/2005)
• Added maximise preference for Presenter
• Presenter now reads the start_in and vba_directory preferences
• Presenter now picks up variables from T-HIS correctly when there are multiple analyses
• In the variables dialog the whole row is now highlighted when you select a variable instead of just the first

column.
• When adding a library program Presenter now checks to see if any compulsory arguments are missing.
• When a new file is created a new page is now automatically started.
• Added more error checking to data_file_from_variables.js script (bug fix 7635)
• Added LogPrint, LogWarning and LogError methods to global javascript object
• Added File->close option (was previously under Window->close but obviously people expect it to be under the

file menu! (bug fix 7637)
• If you change drawing mode when in presentation mode you are now automatically taken back to design mode

(bug fix 7636)
• If you right click on an object when in any drawing mode you will change to select mode, select the item and

map the popup menu (bug fix 7634).
• Added ability to reorder pages (enhancement 7571)
• Variable values and descriptions are now escaped properly when saving so special characters can be used (&,<,>

etc)
• When capturing a FAST-TCF script, if the job file is not empty it is read into T/HIS (previously it was only

done if there was a script as well)
• When you edit a text item a crosshair is now shown at the point the text is justified to
• If you paste an item on the same page it is now offset from the original by the nudge distance so it is obvious to

the user that a new item has been pasted. If you paste into a different page or template it will be placed in the
original position

• Right clicking on the page when you do not have a selected item now gives you the option to paste an item at
that location (if you have copied or cut an item previously)

• Table items can now be written directly to PowerPoint
• Table items can now be written to vba
• Add -ppt command line option to write powerpoint files
• Subroutines in visual basic macros written by Presenter are now automatically split if necessary to keep them

below the 64k limit for VBA (previously there was one Subroutine per page)
• If a table with overflow pages is read from a report, the overflow pages are now correctly displayed. Previously

you would have to regenerate or edit the table.
• Added support for multiple models for T-HIS and Fasttcf scripts
• PRESENTER_DEFAULT_DIR is now set to the user home directory instead of the temp directory when

starting. Setting it to the temp directory caused lots of problems (e.g. the next time you start Presenter that
directory probably won’t exist!)

• New library script added to create D3Plot data files from csv file
• Bug fix. When dragging new items they were sometimes not drawn properly (Presenter thought that they were

off the screen when they were not)
• Dragging a new item is now double buffered so you don’t get flicker
• New library script added to create D3Plot data files from variables file
• Presenter now tries to preserve variables in FAST-TCF scripts when the user uses the capture feature to update

the script.

User manual Version 18.0, April 2021 REPORTER

Page 0.17

• If user does not type extension when saving file ’.opt’ is now automatically added to the filename.
• Added Ctrl+V shortcut for Paste item
• Bug fix. When you save a template using SaveAs the template name is now updated after the save to the new

name
• Bug fix. When a report was generated the template could lose the keyboard focus so PgUp, PgDown etc did not

work properly.
• Bug fix. Presenter crashed when double clicking on page if in line, arrow mode etc
• Add ability to load and save fasttcf scripts from editing panel
• Added next page and previous page to Page menu
• Added window menu with window list, tile, cascade etc
• When a file is opened or a new file is created it now appears maximised instead of a window
• Fixed bugs in page setup dialog (not initialised properly for some page sizes and orientations)
• Fixed bugs when writing advanced item images to vba and ppt. They were not sized correctly
• Fixed bug that caused Presenter to crash on windows when paging up/down and selecting items
• Changed comments.js script so that newlines are added correctly.
• Revise and fix javascript destrructor and garbage collection problems
• Add javascript method Close to template object
• Add ability to include debug information in logfile from D3Plot and T/HIS
• Bug fix 7218. Printing advanced items positioned them incorrectly
• Add Star method to Image class
• Add ability to change linecap and linejoin styles in Image class
• Added Polygon, Polyline and Fill methods to Image class
• T/HIS is now called with display=X instead of display=batch so that FAST-TCF works correctly
• Bug fix 6841. When changing the visibility of items by using the checkboxes in the view menu the template did

not update immediately. It now does.
• Bug fix 6948. Presenter could crash when inserting an image if it was close to the edge of the page. Now fixed.
• Bug fix 6950. If a keyword file/otf file did not have a title the scripts to return the title returned an empty string.

Some people thought that the script was not working. If there is no title the scripts now return ’no title’
• Bug fix 6953. Scripts containing errors caused Presenter to crash on linux.
• Bug fix 6954. Insert Variable dialog box was being mapped with the ’Save variables’ buttons from the

File->variables dialog box. Now removed. Additionally, I have changed the dialog caption to something more
sensible.

• Bug fix 6957. When duplicating a page image items did not get duplicated.
• Builds now automatically add the date compiled (which is shown in the help about dialog box)
• Bug fix. total_mass.js did not work. Now fixed.
• Add overflow pages for automatically generated tables which have too many rows to fit on one page (in the area

allocated to the table) Currently works for drawing, printing, postscript, html and pdf
• Add direct PowerPoint output for windows version
• Write JavaScript API documentation
• Bug fix 6655. Scripts could run very slowly on Windows machines but very quickly on HP workstations. This

was because the script i/o was written using the C++ standard library. It has been rewritten in C and is now
significantly faster.

• The variable PRESENTER_DEFAULT_DIR is now initially set to the same value as PRESENTER_TEMP
when creating a new template. This is so that if you capture from D3Plot or T/HIS the images you create are put
in a sensible location until you change PRESENTER_DEFAULT_DIR to whatever value you want.

• FlexLM licensing has now been added to Presenter. The dll lmgr9a.dll must be given out and put in the same
directory as the executable for windows.

• You can now change the script used in T/HIS when capturing. If you press ’Capture...’ for a second time. T/HIS
will replay the FAST-TCF script and you can then update as required an resave.

• Enhancement 6508. You can now edit the command file used in D3Plot when capturing. Additionally you can
now change the settings that D3Plot creates. If you press ’Capture...’ again D3Plot will now replay the settings
and properties file and you can then update as required and resave.

• Bug fix 6688. Right clicking on an object when in presentation mode and anything other than select mode
caused Presenter to crash. This has been fixed.

• Bug fix 6654. When capturing from D3Plot, if the image file was longer than 80 characters, Presenter would not
correctly write the command file. This has now been fixed.

• Bug fix 6653. If a library javascript file was missing Presenter could crash. Presenter will now write an error to
the logfile window

• Comment lines in oa_pref files are now correctly skipped
• Added this ChangeLog
• Initial internal releases of Reporter.

Version 9.0

Build Date Description

0 - 0.9 Initial internal releases of REPORTER

REPORTER User manual Version 18.0, April 2021

Page 0.18

1.0 November 2003 First release

Text conventions used in this manual

Typefaces

Four different typfaces are used in this manual:

Manual Text This typeface is used for text in this manual

Computer type This one is used to show what the computer types.

Operator type This is used to show what you must type

Button text This is used for screen menu buttons and headings

User manual Version 18.0, April 2021 REPORTER

Page 0.19

Themes for the Graphical User Interface
In addition to our Classic GUI theme, beginning in Oasys Suite 18.0, users can select either a Light or Dark theme.
Both of these provide a more modern look and feel for the software, as well as offering different colour and contrast
options for comfort and accessibility.

Setting the theme

The default software theme in Oasys Suite 18 is Light. This can be changed from the Oasys SHELL by choosing from
the Themes pop-up. This automatically saves the selected theme as your preference for all programs.

REPORTER User manual Version 18.0, April 2021

Page 0.20

The theme can also be set for individual programs from the Display menu in PRIMER, D3PLOT and T/HIS or the
Preferences menu (File->Preferences...) in REPORTER. This choice is not automatically retained after exiting
the program, so you must select a theme, then select Save pref to ensure a theme is used for all future sessions.

User manual Version 18.0, April 2021 REPORTER

Page 0.21

REPORTER User manual Version 18.0, April 2021

Page 0.22

1. Setting up and running REPORTER

1.1 Setting up REPORTER

1.1.1 Prerequisites

Oasys Ltd LS-DYNA Environment software

You should already have the standard Oasys Ltd LS-DYNA Environment software T/HIS (including FAST-TCF) and
D3PLOT installed, and have licenses for the software.
The folders that the Oasys Ltd LS-DYNA Environment software is installed in must not have any special characters in
folder names (e.g. &, !, ~, ’, "). Just use letters, numbers spaces and underscores for folder names.
e.g. the following example is invalid: C:\Program Files\Ove Arup & Partners\arup18
this is valid: C:\Program Files\Ove Arup\arup18

1.1.2 REPORTER installation

For more details, refer to the installation guide (copies available at
https://www.oasys-software.com/dyna/downloads/oasys-suite).

Licensing

REPORTER uses LMX licensing. For REPORTER to run you must have a valid license for REPORTER or
alternatively a license for D3PLOT, PRIMER or T/HIS.

Troubleshooting

If REPORTER does not run then check the following.
1. Do you have a license to run REPORTER? If not contact Oasys Ltd.
2. Do you have D3PLOT and T/HIS installed?
3. Do you have licenses for D3PLOT and T/HIS?

User manual Version 18.0, April 2021 REPORTER

Page 1.1

https://www.oasys-software.com/dyna/downloads/oasys-suite

1.2 Running REPORTER

REPORTER is run by selecting the REPORTER button menu of the Oasys Ltd shell.

Alternatively, you can right click on the button to give starting options for REPORTER.

1.3. A one-minute introduction to REPORTER

REPORTER is designed to help you automate your LS-DYNA analysis post-processing. The idea is that you create a
template which contains the intructions or ’recipe’ for how to process an analysis. When you run REPORTER on some
analysis results, it takes this template, applies it to the analysis and creates a report which you can save as PowerPoint,
PDF or HTML.

For example, you may wish to run a set of standard checks on an analysis after it has run – to check that the analysis
teminated normally, that there was not too much added mass, that the energy balance is acceptable, etc. You could
create a checking template in REPORTER and then this would be applied to each analysis you want to check.

A summary of the steps required to make a template is:
1. Start REPORTER. See Running REPORTER for more details.
2. Create a template. See Creating a new template for more details.
3. Create pages (and/or a master page) if required. See Inserting and editing pages for more details.
4. Add objects on to pages. These can be simple things such as lines, text etc or advanced things like D3PLOT or

T/HIS objects. See Inserting and editing simple objects and Advanced objects for more details.
5. Use variables to make the template generic. See Working with Variables for more details.
6. Save the template. See Saving a template for more details.

Once you have created a template you can apply it to analyses as many times as you want.
1. Start REPORTER . See Running REPORTER for more details.
2. Open the template. See Opening a template for more details.
3. Set the current analysis variable(s). See User defined variables for more details.
4. Generate the report. See Generating reports for more details.
5. Create output such as report, PowerPoint, HTML, PDF etc. See Outputting a generated report for more details.

REPORTER User manual Version 18.0, April 2021

Page 1.2

2. Menu Layout

2.1 Basic menu layout

A typical REPORTER session will look like this:

Within this main window there are a number of sections
• "Menu Bar" Access to the main pull down menus.
• "File toolbar" toolbar for opening, saving, and creating report template.
• "View toolbar" toolbar for changing the view.
• "Design" toolbar to switch between the presentation and design view.
• "Style" toolbar to modify the line type, colour, etc of objects in the report.
• "Tools" toolbar for creating and editing shapes and advanced objects.
• "Main Report Area" Main working area.

File toolbar

The file toolbar gives a quick way to create a new template, open a template or save a template.
See chapter 3 for more details.

View toolbar

The view toolbar gives a quick way of zooming in and out of the template using
the magnifing glass button. This is the same as using the Zoom submenu from
the View menu. There are also 4 further buttons which control (from left to right
respectively):

• the grid visibility,
• the snap option,
• the visibility of the item generation order, and,
• the page master view.

User manual Version 18.0, April 2021 REPORTER

Page 2.1

Generate toolbar

The generate toolbar includes 3 buttons which can be used to generate the entire report, the
current page, or the currently selected items. These options are also available in various other
places (e.g. the File and Template menus, the Page menu, and the right-click context menu for
certain items).

Page toolbar

The page toolbar provides arrow buttons to navigate up or down a page as
well as an input box to jump to a specific page. The 3 remaining buttons
enable addition, deletion, and duplication of pages. See Chapter 4 for more
details.

Animation toolbar

Starting with 18.0, the D3PLOT, Image, and Image File Item types now support
animation. The animation toolbar provides buttons for controlling the playback
of all animated Items on the current page. From left to right, these buttons have
the following functions:

• Restart - pause all animations and go back to the first frame.
• Step back - pause all animations and go back one frame.
• Play/Pause - play or pause all animations.
• Step forward - pause all animations and go forward one frame.
• End - pause all animations and skip to the final frame.
• Speed - adjust the speed at which animations are played (as a factor of

their base frames per second).

Oasys link toolbar

The Oasys link toolbar provides buttons for opening linked instances of D3PLOT and
T/HIS.

Design toolbar

The two buttons on the design toolbar buttons allow you to swap between the "design" view
(wrench and screwdriver icon) and the "presentation" view (easel icon) . See chapter8 for more
details. By default the Design toolbar is docked on the left hand side. However you can drag it
and make it a floating menu if you wish. The "p" keyboard shortcut can be used to toggle between
"design" view and "presentation" view.

REPORTER User manual Version 18.0, April 2021

Page 2.2

Tools toolbar

The Tools toolbar on the left contains the various objects which you can
place on the page. These may be simple objects such as lines, rectangles,
text etc or more complicated objects such as a D3PLOT object or a library
program. All of these items are also accessible from the Insert menu.

The level of detail shown alongside the Tool icons can be controlled using
the "Show labels" and "Group tools" checkboxes. Here we have "Show
labels" ticked so that each icon is given accompanying text. This is the
same text that is shown when letting the mouse hover over the button for a
couple of seconds. Ticking the "Group tools" checkboxes collapses each
group (e.g. Lines, Shapes etc.) into a single button. Clicking and holding
this button (or clicking on the small triangle in the corner) then presents a
popup menu with all the available Items in that group (see image below for
an example using the Text group).

By default the Tools toolbar is docked on the left hand side. However you
can drag it and make it a floating menu if you wish.

See chapters 5 and 6 for more details.

Editing toolbars

On the right of the page, various toolbars are available for quick editing of items.
Changes made here affect all currently selected items. All of these toolbars are
undockable and can be rearranged at will (or removed entirely by pressing the X
button). Removed toolbars can be replaced using View...Toolbars .

User manual Version 18.0, April 2021 REPORTER

Page 2.3

Geometry

The Geometry toolbar provides a means of controlling the precise size and location
of Items on a page. The options displayed here correspond to the chosen‘’Object
coordinates’ in the Editing tab of the Preferences window (see below). When‘’Use
one corner, width, and height’ is selected, the X and Y values in the Geometry toolbar
give coordinates for the chosen Reference Corner of the selected item while W and H
give its width and height. When ‘Use 2 opposite corners’ is selected, X, Y, W, H are
replaced by X1, Y1, X2, Y2 respectively.

Style

The Style toolbar can be used to change the line style, line width, line colour, fill
colour and text colour for shapes. See Section 5 for more details.

Font

The Font toolbar can be used to change the font, font size, and style (bold, italic,
underline). This can be used, for example, to quickly change the font settings for all
entries in a table.

Paragraph

The Paragraph toolbar can be used to change the horizontal and vertical alignment of
text within items. This affects Items in the Text and Tables item groups.

Arrange/Align items

The Arrange/Align toolbar can be used to change the positioning of Items relative to
one another. The top row of buttons alter how Items are stacked on top of one
another (e.g. for positioning Text or a Note on top of another Item). The drop down
button on the second row has options ’Align to Selection’ or ’Align to Page’ which
determines how the buttons on the bottom two rows are implemented. The bottom
two rows feature the alignment buttons. With ’Align to Selection’ in use, pressing the
’Align left’ button will align all selected items to the leftmost item. With ’Align to
Page’ selected, pressing the ’Align left’ butotn will align all selected items to the left
of the page. Functionality of the other buttons is provided in tooltips, accesed by
hovering over the button for a few seconds with the cursor.

REPORTER User manual Version 18.0, April 2021

Page 2.4

2.2 Mouse and keyboard usage for the screen-menu
interface

Most screen-menu operations are driven with the left mouse button only, but there are exceptions:
• Text in the dialogue area and text boxes requires keyboard entry;
• Text strings saved in the cursor "cut" buffer may be "pasted" into dialogue areas and text boxes using the

middle mouse button.

The primitive "widgets" in the menu interface are used as follows:

Buttons

Screen buttons are depressed and highlighted by clicking on them. Some buttons remain
set when they have been selected and will continue to appear depressed and highlighted.

Buttons may be set by REPORTER itself, for example the cursor arrow button on the
right, to indicate that this option is in force. They may also be greyed out, to indicate that
the option is not currently available (e.g. the hand button on the right).

"Popup" window invocation: Some buttons when selected will invoke a "popup"
window, from which a selection can be made. The popup is invoked by clicking on the
triangle.

Text boxes

To enter text in a text box: first make it "live" by
clicking on it then type in text into the screen that
appears. You can use the left and right arrow keys
for line editing within a box, text entry takes place
after the current cursor position. The cursor is
shown as a flashing vertical bar.

Right clicking the mouse button in a text box maps
the menu on the right which allows you to copy
and paste text from the clipboard and (where
applicable) insert a variable (see chapter9).

2.3 Using the "file filter" boxes.

Wherever REPORTER requires you to enter a filename you will be presented with a text box into which to type it.
However, to the right of this text box you will also see a Choose button, which may be used to invoke a basic file filter
box. The appearance of this is operating system dependent.

User manual Version 18.0, April 2021 REPORTER

Page 2.5

Basic UNIX file filter box

The files can be filtered according to file types by using the File type popup, in this case the pathname is
/u/mid/milest/REPORTER_DEMO/test/ and the pattern is *.ort (REPORTER template) and *.orr
(REPORTER report).

The main window show a list of the directories within the present one and a list of files that match the filter selection.
Files or directories can be selected by double-clicking on them.

To go back up the directory tree you need to select the button, or you can click on the Look in popup to select any
of the parent directories.

The File name box shows the current selection.

The Open button closes the file filter box and opens the selected file

The Cancel button closes the file filter box without opening any files

As an alternative to selecting a file and pressing Open you can double-click (quickly) on the file to make your
selection.

The left hand area of the menu shows commonly used directories. In this case temp, reporter. You can add
directories to the list by dragging them from the main area and dropping them. Clicking on one of these directories
updates the main area to that directory.

REPORTER User manual Version 18.0, April 2021

Page 2.6

Basic"Windows" file filter box

Double-click on the directory required, then on the filename you wish to open.

To open files that do not have the (*.orr) extension you will need to select All files (*.*) from the Files of type
pull-down menu.

2.4 Log file

REPORTER creates a log file as it runs. This log file shows how REPORTER is trying to run
programs, how it is creating images etc.

If any problems or warnings are generated they will be written to this log file. This can then be
used to solve any problems.

The logfile is accessible from Logfile in the Help menu. A typical log file window is shown
below.

User manual Version 18.0, April 2021 REPORTER

Page 2.7

You can save the contents of the log to a file using the Save option. If warnings or errors have been given the Next
warning and Next error buttons allow you to cycle through the warnings/errors.

REPORTER User manual Version 18.0, April 2021

Page 2.8

2.5 View Controls

What is and isn’t displayed on the screen and how far zoomed in or out the page is can be
controlled from the View menu

2.5.1 Item visibility options

What of type of Items are visible on screen can be controlled
by selecting or deselecting the various options in the View ->
Item visibility menu.

2.5.2 Design/Presentation view

The Design view and Presentation view checkboxes allow you to swap between design and presentation view. See
chapter8 for more details.

2.5.3 Assorted options

The ’show grid’, ’Snap to grid’, ’Generation order’, and ’Page master’ options are the same as those offered in the View
toolbar. That is, they toggle the:

• grid visibility,
• snap option,
• visibility of the item generation order, and,
• page master view.

The effect of toggling the visibility of the item generation order is discussed inmore detail in the following section.

2.5.4 Generation order

User manual Version 18.0, April 2021 REPORTER

Page 2.9

The Generation order checkbox allows you to turn
off whether the order that objects will be
generated in is shown. The order is important if
you are using variables to make sure that
variables are not used before they are defined. To
help with this REPORTER can show the order
that the objects are generated in.

When the generation order button is turned on
REPORTER shows a number next to each item
that will be generated. The number is the order
that the items will be generated on this page. In
the image on the right you can see that the first 5
library programs in the table are generated one
after another but the last one is generated later on
(8th on the page). Showing the numbers helps to
identify problems with objects being generated in
the wrong order (e.g. perhaps the last library
program should have been generated 6th on the
page instead of 8th). See chapter8 for more details
on generation order.
When the generation order button is turned off the
numbers are not shown. The numbers are only
shown in the design view. They are not shown in
any output generated from REPORTER.

2.5.5 Zoom

Clicking on the Zoom option in the View menu will bring up the
Zoom menu.

• 25% 150% etc - will zoom in or out relative to the
standardised size at 100%

• Actual size - will resize the page to the actual size that the
work is (100%)

• Fit page - will scale the page so that it fits into the window
• Fit width - will scale the page so that the width of the page

will fit the screen
• Fit height - will scale the page so that the height of the page

will fit the screen

2.5.6 Full screen view

The Full screen option in the View menu will enlarge the "Main report area" of the REPORTER window to fill the
whole of the screen. You can return to the normal REPORTER window by pressing the ESC key.

REPORTER User manual Version 18.0, April 2021

Page 2.10

2.6 Running a script file

To run a javascript script in REPORTER use the Script->Run script file... function. This is equivalent to running a
script from the command line or inserting a script object onto a page. For more details on scripting see the scripting
chapter.

2.7 Preferences

Preferences for REPORTER can set from File->Preferences... . Any options set in this menu will affect only this
session of REPORTER unless the ’Save Preferences’ button is pressed, in which case the choices made will be saved to
the oa_pref file in the user’s HOME directory and loaded for all future REPORTER sessions.

User manual Version 18.0, April 2021 REPORTER

Page 2.11

2.7.1 Editing

When creating or editing objects in REPORTER that occupy a rectangular area on the page the position and size of the
object can be given by 2 different methods.
1. By giving the coordinates of 2 opposite corners of the rectangle.
2. By giving the coordinates of one corner and the width and height of the object. The default is to use the bottom

left corner.

The nudge distance is the amount that a selected item will be moved when the arrow keys are used. Note that if you
have snap active (see Preferences - Grid) this may give unexpected results (e.g. a larger nudge than expected). If snap is
active and nudge distance is smaller than snap size, nudge will automatically use the snap size as the nudge distance to
ensure that nudging is always possible.

The Selection options are fairly self-explanatory. After creating a new Item, the default behaviour is now to revert to
the Select tool so that the user can quickly jump to editing this Item with a double-click (or move the Item around the
page etc.). If you would rather remain on the current tool (remembering that the Select tool can always quickly be
accessed with the ’s’ key), then this option can be changed here.

.

REPORTER User manual Version 18.0, April 2021

Page 2.12

2.7.2 Grid

These options are for helping layout Items on the page.

The colour, style and size of the grid drawn on the page can be altered with these preferences. Note that the grid size
does not have to be the same as the snap size.

Snap will make the reference corner coordinates round to the snap size. e.g. in the image below snap is set to 1.0mm, so
item coordinates will be rounded to the nearest mm.

User manual Version 18.0, April 2021 REPORTER

Page 2.13

2.7.3 Fonts and Colours

These preferences control the font cache and font mapping, including the default fonts used when no suitable alternative
can be found. For more information on how REPORTER supports fonts, see Section 12.

You can also control which XML file is used to store your user colours, and whether or not user colours are saved
automatically on exiting REPORTER.

REPORTER User manual Version 18.0, April 2021

Page 2.14

2.7.4 Date and Time

These preferences set the default formatting for the %DATE% and %TIME% variables. The available options are:
• %DATE% - Day Month Day Year, dd/MM/yyyy, MM/dd/yyyy, yyyy/MM/dd.
• %TIME% - hh:mm:ss, hh:mm:ss A, hh:mm, hh:mm A.

For more information about what these formatting options mean (and for further formatting choices), see Section9.

User manual Version 18.0, April 2021 REPORTER

Page 2.15

2.7.5 Library

By default REPORTER looks for library items in a subdirectory reporter_library in the directory where
REPORTER is installed. For detail on how to add extra library items (e.g. templates, pages, images, and scripts) see
Appendix B.

Due to file permissions, it may not always be possible to add library items to the reporter_library directory. For
this reason it is possible to specify other directories for REPORTER to use in addition to the default directory. This can
be done using the library_directory oa_pref option. This option can be set once for each oa_pref file: one in
OA_ADMIN, one in OA_INSTALL, and one in HOME. REPORTER will treat any directory given by
library_directory as a user defined library directory. The oa_pref file in HOME is likely the easiest to access,
and is the same file to which preferences are usually saved when the ‘Save Preferences’ button is pressed.

In order to be read correctly, any user-defined library directory should contain subdirectories named templates, pages,
and scripts containing their respective library items. For example, if library_directory is set to
/home/user/reporter_library then you should put your scripts in
/home/user/reporter_library/scripts.

Finally, the ‘Size’ spinbox in the ‘Image thumbnails’ section controls the size of thumbnails that are drawn for library
images.

REPORTER User manual Version 18.0, April 2021

Page 2.16

2.7.6 Oasys Items

The filename convention preference determines how LS-DYNA filenames are referred to by REPORTER in library
scripts etc. If you are using the Oasys Ltd SHELL then you should use Arup naming.

The program executable options would only be useful if you want to use an older version of D3PLOT, PRIMER and/or
T/HIS for some reason.

If REPORTER is started in batch mode with the -batch command line argument then on Windows D3PLOT,
PRIMER and T/HIS will be run without any windows being shown. Setting the Run programs in batch mode
checkbox will set this option when running REPORTER interactively.

It may occasionally be necessary to pass extra arguments to D3PLOT, PRIMER or T/HIS when generating a report.
Extra arguments to pass can be given in the D3PLOT, PRIMER and T/HIS Additional arguments to pass
textboxes.

The D3PLOT properties options allow you to change how properties files are reloaded in D3PLOT.
By default when D3PLOT reads a properties file it only alters the blanking status of parts and elements that are in the
file. Any parts that are not in the file will not be affected. The default for parts that are not in the file is to leave them
unblanked. This means that if you record a properties file for one model and replay it on another model which has extra
parts, the extra parts will not be blanked. With the Blank model before reading properties file option set
D3PLOT will blank the model before reading the properties file so any extra parts not in the file will be blanked.

Older versions of D3PLOT always wrote the blanking status of elements as well as parts to the properties file, even if
all of the elements in the part were blanked or unblanked and just writing the part status would be sufficient. If a
properties fie recorded for one model was used for another model which had some remeshed parts then the elements in
the properties file would not match the actual elements in the model for the remeshed parts. This could result in some of
the elements not being blanked or unblanked correctly. With the Ignore elements in properties files option set
D3PLOT will ignore any elements when reading the properties file and only consider parts.

User manual Version 18.0, April 2021 REPORTER

Page 2.17

2.7.7 Startup

Here you can control whether the main window is maximised when REPORTER starts (recommended). You can also
control the directory that REPORTER starts in. By default, this is the installation directory..

REPORTER User manual Version 18.0, April 2021

Page 2.18

2.7.8 Theme

Here the GUI theme for REPORTER can be set. Legacy is deprecated and we do not recommend its usage. Light is the
default theme, with Dark providing an alternative experience for users.

For more information on Themes, see the general Themes section.

User manual Version 18.0, April 2021 REPORTER

Page 2.19

REPORTER User manual Version 18.0, April 2021

Page 2.20

3. Opening and closing templates and
reports

Templates can be created, opened, or saved by
either using the File menu or the File Buttons

3.1 Creating a new template
A new template can be created from either the New file option in the File menu or by using the New file button.

3.2 Reading an existing template or report
An existing report template can be opened from either the Open file option in the File menu or by using the open file
button.

3.3 Reading a library template

User manual Version 18.0, April 2021 REPORTER

Page 3.1

When REPORTER starts, the Choose a Template window is shown, allowing you to open a file from the recent files
list or to select a template from the library. Library templates are presented on different tabs. The Standard tab has
some standard layout templates to help you start creating reports, and to provide some inspiration. The Automotive
tab has a number of built in templates to create reports for standard automotive crash test protocols (EuroNCAP, IIHS
etc.). You can also open the Choose a Template window at any time with File → Open Library Template.

In the Choose a Template window, select a template by clicking on its thumbnail with the mouse and then clicking
OK to open the template. You can also double-click on templates to open them immediately. The Cancel button will
exit you from this window without opening a template.

The options presented to you when using the Choose a Template window will match the filters ticked in the
checkboxes.

Pressing New File will open a new template with a blank portrait A4 page.

Pressing Open File... will allow you to open a template or report from elsewhere on your system.

The Recent Files section contains a list of your most recently accessed templates and reports. Pressing Clear recent
files will delete this list (the files themselves will not be deleted).

As well as using the library templates suplied with REPORTER, you can create your own library of templates. If you
add tags to your templates and save them to a common directory, you can add them as a library by pressing Add
library.... This will open the Library tab of the Preferences menu, allowing you to include your directory of templates.
For example, at Arup, we have a library of templates all tagged with Type: Arup so that they all appear together in an
"Arup" tab for easy access.

REPORTER User manual Version 18.0, April 2021

Page 3.2

3.4 Editing template
properties

The Edit Template Properties window can be
accessed by selecting Template →
Template properties....

Properties

The Properties section contains the Title and
Description for the current template which
can be freely changed. The Read-Only
property is immutable and signals whether
the template can be overwritten. For library
templates it is always checked; for
user-made templates it is unchecked.

Tags

The tags list provides information about the
current template that is used for filtering in
the Choose a Page / Template windows. Tags
can be added to the list by selecting a
category and value from the drop-down
menus and pressing Add. User-defined
category-value pairs may also be added by
typing directly into the Category and Value
boxes instead of using the drop-down
buttons. Tags can be deleted from the list by
selecting them from the Tags list panel and
pressing Delete. The Type category
determines the tab in which the template
appears in the Choose a Template
window.

Thumbnail

The thumbnail determines the image that is
shown to represent the template in the
Choose a Template window. This can either
be generated from the first page of the
template, or embedded from a separate file.

Generation

When generating image files for D3PLOT and T/HIS the Overwrite existing image files preference controls what
do do if an image with the same name exists. By default (selected) REPORTER will overwrite the image. However, you
many want to run the same template multiple times for different models in the same directory. With this unselected a
new image will be created for each model.

The Auto confirm menus preference controls how macros are replayed when generating a PRIMER object. When
creating or updating a PRIMER object, REPORTER ensures that the MENU_AUTO_CONFIRM environment variable is
unset so that any listing boxes created are not automatically dismissed. However in version 16.0 and earlier when
generating a PRIMER object REPORTER would set the MENU_AUTO_CONFIRM environment variable. In some
instances this could mean that the macro recorded in the object would not play properly (as when it was recorded the
MENU_AUTO_CONFIRM environment variable was not set). From version 16.1 onwards by default REPORTER will
now not set the MENU_AUTO_CONFIRM environment variable when generating PRIMER objects to be consistent.
There may be very rare cases where this needs to be set when generating, in which case the Auto confirm menus
preference can be used.

User manual Version 18.0, April 2021 REPORTER

Page 3.3

These preferences are not programme wide preferences. They are actually stored with the template and read/written as
properties so they must be set for each active template.

3.5 Saving a template
A template can be saved by choosing the Save as option in the File menu and then changing the file type to
template.

3.6 Saving a report

A report can be saved by using the Save as option in the File menu and setting the file type to report. The difference
between a report and a template is that a template is the instructions or recipe of how to construct the report. To actually
create the report you have to generate it and then create some sort of output. This could mean running D3PLOT
command files, programs, FAST-TCF scripts etc.

Alternatively, once the report has been created you can save the whole thing as a report. This saves the output of
programs, command files etc. with the template so when you next read the file the results are already available (the
report does not need to be regenerated).

REPORTER User manual Version 18.0, April 2021

Page 3.4

4. Inserting and editing pages
A report is generally made up of a number of different pages. Only one page is
shown on the screen at any one time. Moving through the pages of the report,
adding, deleting, and reordering pages are all controlled from the Page menu.

Some of the options within the Page menu are also available from the Page
toolbar.

4.1 Adding a new page

A new blank page can be added by using the
New page option in the Page menu. This will
bring up a Page layout window from which
you can give the new page a title,and set the
background colour.

Choose... can be used to pick the background
colour for the page. Alternatively pressing
Master will make the page inherit the colour
from the master page.

4.2 Adding a new page from the library

A new page can also be added by selecting an existing page layout from the library by using the New Library Page...
option in the Page menu (or toolbar).

This will bring up the Choose a Page window from which you can select a page layout. Highlight the page layout
you want by clicking on its thumbnail with the mouse and then clicking on then OK button to create the new page. The
Cancel button will exit you from this window with out creating a new page.

The options initially presented to you when using the Choose a Page window will match the Template Properties of
the current template. For example, in the image below we are currently using the Exectuive 16:9 Landscape Title Page
template in REPORTER. Thus when the Choose a Page window is opened the Executive, PowerPoint (16:9), and
Landscape filters are all ticked in the tree on the left, and the library page thumbnails on the right all match these filters.

Pressing New Empty Page will add a new blank page to your template with the same size and orientation as the
current page.

Pressing Import Page... will allow you to add an existing page to your REPORTER page library.

Pressing Add library... will open the Library tab of the Preferences menu.

User manual Version 18.0, April 2021 REPORTER

Page 4.1

See the library object appendix for more details on using the library.

4.3 Deleting pages

You can delete the present page you are working on by using the Delete page option in the Page menu (or toolbar),
or you can delete all the pages in the report template by using the Delete all option in the Page menu. Both of these
option will bring up a confirmation window in which you need to confirm the delete operation.

4.4 Duplicating pages

You can copy the current page by using the Duplicate page option in the Page menu (or toolbar). This will make a
copy of the current page, and insert it after that page. The current page will also be changed to this newly created
page.

REPORTER User manual Version 18.0, April 2021

Page 4.2

4.5 Reordering pages

You can change the order of the pages in the report by
using the Reorder pages option in the Page menu. This
will bring up the reordering window.
The pages are listed by the page number and title. The
page order can be modified by clicking on the page you
want to move in the Pages box. This will highlight that
page, which can then be moved by using the Move up and
Move down buttons. Once finished the OK button will
save the new order and exit the window. The Cancel
button allow you to exit this window without making any
changes to the page order.

4.6 Changing the current page

You can change the current page you are working on by using the Prev page and Next page option in the Page
menu (or toolbar) to change the current working page to the previous or next page in the report. You can also move
through the pages by using the Page Up and Page Down keys. If you have a mouse which has a wheel then the
wheel can also be used to move through the pages.

4.7 Changing the page properties

You can change the title of the current page by
using the Properties option in the Page menu.
This will bring up an edit page properties window.
The new page title is entered into the Title text box
and the colour can be chaged by clicking on the
Choose button. Pressing Master will make the
page inherit the colour from the master page.

Clicking on the OK button will save the changes
and exit this window. The Cancel button will exit
this window with out making any changes to the
page title

4.8 Inserting pages from file

You can insert all the pages from another template file into the current template by using the Insert option on the
Page menu, and then selecting the required template file from the File window.

4.9 Importing and exporting pages

Individual pages can be exported from a template using the Export page option. These pages can then be used in the
page library or can be imported into another template by using Import page. Individual pages should be saved with
the extension .orp so REPORTER can find them.

User manual Version 18.0, April 2021 REPORTER

Page 4.3

4.10 Page masters

Page masters can be used to automatically add objects to every page in the report. For example
you may want to have your project name written on the bottom right corner of every page in the
report. You could do this by having a standard page and either use the page library or import it
each time you want to create a new page. This will work, however if in the future you want to edit
the project name, you would need to edit each page individually.

An alternative is to use page masters. A page master is a type of template used to keep each page
looking the same (eg such as using a company logo). Each REPORTER template has one
associated master page and any objects that you put on that page will automatically appear on
every page in the template.

The master page is accessed via a toggle, either by clicking on the page master icon (see image on
the right), pressing the ’m’ key, or using View ... Page master. From within this view, the
master page can be edited in exactly the same manner as you would interact with a normal page.
To close the master page and return to the normal page view, simply click the toggle as before.

4.11 Page Setup

To set up the page settings choose the Page setup option from the File
menu. This allows you to change the page size and orientation. If the page
size and/or orienation is changed objects on existing pages are
automatically moved to ensure that they are not outside the page
boundaries.

4.12 Generating a single page

Instead of generating the entire report you can generate a single page by using the Generate page option in the Page
menu (or Generate toolbar). However, note that if some of the objects on the page require data that would be generated
on previous pages and those pages have not yet been generated the page generation will not work.

REPORTER User manual Version 18.0, April 2021

Page 4.4

5. Inserting and editing simple objects
REPORTER allows you to create and edit a number of different shapes through the
use of the various Tools and Style button options.

5.1 Using the Grid and Snap options

5.1.1 Grid

The grid option can be turned on by clicking on the Grid button. This will create a grid of dots on the screen with a
pitch equal to the grid size, this is to help you in aligning objects in the report. These dots will not appear in the
generated report. The size and attributes of the grid can be modified by using the Grid tab in the preferences.

5.1.2 Snap

The snap option can be turned on by clicking on the Snap button. This will create an invisible grid with a pitch equal to
the snap grid size. When positioning and sizing object the point you select will not be the exact position of the mouse
pointer but the nearest point on the snap grid.

The size and attributes of the grid can be modified by using the Editing tab in the preferences.

5.2 Setting line style, thickness, colour, and fill colour

When you select an object the Style widget buttons are updated with the properties of the selected object. Changing any
of these while and object is selected will change the property of the object.

5.2.1 Line style

The line style can be set using the Line style button (top button in the Style widget).
Clicking on this will bring up a Line style window from which the line style can be
selected.

User manual Version 18.0, April 2021 REPORTER

Page 5.1

5.2.2 Line thickness

The line thickness can be set by clicking on the Line thickness button (second from top
in the Style widget). Clicking on the button will bring up a Line thickness window
from which the line thickness can be selected.

5.2.3 Fill, Line and Text Colour

The fill, line or text colour can be set using the Fill colour button the Line colour
button or the Text colour button, the current colour is displayed to the right of the
button:

Clicking on this will bring up the Colour window.

Line
Colour
Fill
Colour
Text
colour

The new colour can be selected from those on display or by clicking on the More colours button a set of red, green,
and blue sliders can be brought up which you can use to create you own new colour. For the Fill colour you can also
select no colour which will give you a transparent Fill colour allowing object below to show through. The Done
button will exit this window setting the fill or line colour to the new colour. The Cancel button will exit you without
changing the colour.

5.3 Inserting and editing shapes, images, and text

5.3.1 Lines and arrows
You can create a line or arrow by using the Line and Arrow tools.

To create a line click and drag the mouse from the point you want the line to start from to the point you want the line to
end at. It is the same procedure for creating an arrow with the arrow head appearing at the end point of the line. The line
type, thickness, and colour will be set to the current settings.

REPORTER User manual Version 18.0, April 2021

Page 5.2

5.3.2 Rectangles

You can create a box by using the Rectangle tool.
To create a box click and drag the mouse from one corner of the box to the other. If the shift key is held down while
doing this a perfect square can be created.
If the Ctrl key is held down then the initial click position will be the centre of the rectangle instead of one corner. The
line type, line thickness, line colour, and shape fill colour will be set to the current settings.

5.3.3 Ellipses and circles

You can create an ellipse or circle by using the Ellipse tool.

To create an ellipse click and drag the mouse from one
corner to the other of a rectangle into which the ellipse will
be drawn. If the shift key is held down while doing this a
perfect circle can be created. If the Ctrl key is held down
then the initial click position will be the centre of the ellipse
instead of one corner. The line type, line thickness, line
colour, and shape fill colour will be set to the current
settings.

The edit window for the Line, Arrow, Item and Ellipse
Items simply allow you to edit their geometry (e.g. as can be
seen in the image on the right for an Ellipse).

5.3.4 Text
A single line of text can be added by using the Text tool.

To add text click on the point you want the text to be, this will bring up a Text window.

Text can be added using the Enter text
box. You can also enter variables in the text
by right clicking in the text box or pressing
Ctrl+I which will allow you to bring up an
Insert variables window from which to
select a variable.

The font, style, and size are set in the
relevant boxes.

The horizontal and vertical justification of
the text can be set independently to enable
you to position the text how you want.
Changing the vertical alignment can help
when trying to align text with program
items.

The text colour will be set to the current
text colour setting. The OK button will exit
this window and create the text. The
Cancel button will exit this window
without creating any new text. Also a
Hyperlink... button (see section10) allows
the user to set the text up as hyperlink and
the Conditions... button (see section11)
enables the user to apply conditional
formatting to the text.

5.3.5 Textbox

Text inside a box (with multiple lines if necessary) can be added by using the Textbox tool.

To add a textbox click and drag the mouse from one corner of the textbox you want to create to the other. This will

User manual Version 18.0, April 2021 REPORTER

Page 5.3

bring up a Textbox window.

Text can be added using the Text box. You
can also enter variables in the text by right
clicking in the text box or pressing Ctrl+I
which will allow you to bring up an Insert
variables window from which to select a
variable.

The font, style, and size are set in the
relevant boxes.

The horizontal and vertical justification of
the text can be set independently to enable
you to position the text how you want.

The text colour will be set to the current
line colour setting. The OK button will exit
this window and create the text. The
Cancel button will exit this window
without creating any new text. Also a
Hyperlink... button (see section10) allows
the user to set the text up as hyperlink and
the Conditions... button (see section11)
enables the user to apply conditional
formatting to the text.

The background and border colour for the
textbox can be set using the fill and line
colour buttons in the style toolbar. The
border style can also be set with the line
style and line thickness buttons in the sytle
toolbar.

The margins for the textbox can be changed
by using the Margins... button.

Margins

The Edit margins dialogue box allows
you to change the margins around the
text in a textbox.

The margins can be set independantly
for the top, bottom, left and right sides
of the textbox.

5.3.6 Images

PNG, Bitmap, GIF, and JPEG images can be added using the Images button.

To add an image, click on the point where you want the bottom left corner of the image to be. This will bring up an
Image window.

Enter the image filename into the Image text box or click on the Choose... button to call up a File window from
which to select the image file. You can also enter variables by right clicking in the text box which will allow you to
bring up an Insert variables window from which to select a variable.

The OK button will close this window and add the image to the page.

The Cancel button will exit this window without adding an image.

The Cropping... button (see section 5.4.2 below) can be used to crop the image before showing it. Also the
Hyperlink... button (see section10) allows the user to set the image up as hyperlink.

REPORTER User manual Version 18.0, April 2021

Page 5.4

The embed image in template checkbox allows you to embed the image file directly in the template. If this option
is selected, REPORTER will display the image from the embedded data rather than searching for the external image
file. This feature can be useful when sharing templates with users who do not have access to the original image files.
For example, if you create standard templates for users in your organisation, you could embed the company logo image
so that you do not need to supply the image file along with the template file.

We recommend that where users have access to the image files, you continue to use the image file link (rather than
embed) because this reduces the template file size and means that templates will automatically update if changes are
made to the source files.

Image cropping

The Cropping... button allows you to
crop parts of the image before it is
shown. Pressing the button maps the
panel shown on the right. This allows
you to input how many pixels will be
cropped from the left, right, top and
bottom of the image before showing it.
Type the values or use the up and down
arrows to set the values you require.

Pressing OK will update the cropping
information for the image. Pressing
Cancel will abort without changing the
values.

User manual Version 18.0, April 2021 REPORTER

Page 5.5

Animated Images

From version 18.0, Image Items
using the .gif or .mp4 extension can
now be animated on the page. These
Items can be added to the page
through the Image window in
exactly the same process as
described above, although the
Cropping and Hyperlink features
are disabled for animated Items. It is
still possible to embed a .gif Image
in the Template.

Playback of the animated Image
can be controlled using either the
buttons in the Animation toolbar,
or by hovering over the Image with
the Hand tool while in Presentation
view. Hovering over the animated
Image will display a border around
its perimeter and centred Playback
buttons, as can be seen in the
image on the right. For animated
GIFs, only the Play/Pause button is
present while hovering. Clicking
anywhere on the Item is sufficient to
toggle Play/Pause.

Please see the section on animation
support for output file formats to see
how animations will be displayed
when producing different types of
output content.

5.4 Editing shapes, image, and text objects

You can edit a existing shape, image, or piece of text by first
clicking on the Select tool to select the editing tool and left
clicking on the object. Multiple objects can be selected by
holding down the SHIFT or CTRL keys when clicking on the
objects, or by left click mouse dragging a selection box around
multiple objects. The object(s) are then drawn with blue boxes
or "handles" which allow you to resize the object(s).
Additionally the cursor changes to indicate that you can now
move the object(s). If you click and drag when over the
object(s) you can move them around the page. The cursor keys
can also be used to "Nudge" the items around. If you move the
mouse over one of the blue "handles" you can resize the
object(s). The cursor changes appropriately to indicate how the
object(s) will be resized. The escape key can be used to
deselect all currently selected objects.

You can also right click on an object regardless of the mode the cursor is in. If the object is not already selected, it is
selected and then a popup menu is displayed.

REPORTER User manual Version 18.0, April 2021

Page 5.6

Right clicking when editing an object will bring up a small popup menu.
• Edit will bring up an Edit window for the object. The Edit window will

vary depending on what type of object is being edited.
• Convert Into allows you to transform one object into another, retaining the

same dimensions.
• Cut will cut the object(s) from its current page/place and make them

available to be pasted in another place.
• Copy will make a copy of the selected object(s) and keep them stored in the

computers memory until they are pasted or another item is copied.
• Save will save a copy of the object(s). This can then be imported elsewhere

using Edit Import....
• Delete will delete the object(s). This can also be done by pressing the

Delete key while editing the object(s).
• Locked allows you to lock an item on the page so it cannot be moved by

dragging with the mouse. See section 5.8 for more details.
• Generate will perform any actions required to make the output for the

object(s). See section8 for more details.
• Send to back will send the selected item(s) behind all the rest of the items

on the page.
• Send back one will send the selected item(s) behind the next item behind

it.
• Bring forward one will bring the selected item(s) in front of the next item

in front of it.
• Bring to front will bring the selected item(s) in front of all other items on

the page.
• Move to page will move the selected item(s) to the same location(s) on a

chosen page.
• Align Page Left will align the selected item(s) horizontally with the left

hand side of the page.
• Align Page Centre will centre the selected item(s) horizontally on the

page.
• Align Page Right will align the selected item(s) horizontally with the right

hand side of the page.
• Align Page Top will align the selected item(s) vertically with the top of the

page.
• Align Page Middle will centre the selected item(s) vertically on the page.
• Align Page Bottom will align the selected item(s) vertically with the

bottom of the page.
Also note that some of these options are also available through the Edit menu.

When multiple items are selected, you also get the following options on the
popup menu

• Align Left will align the selected items horizontally with the left
most selected item.

• Align Centre will centre the selected items horizontally with respect
to the left most and right most selected items.

• Align Right will align the selected items horizontally with the right
most selected item.

• Align Top will align the selected items vertically with the top most
selected item.

• Align Middle will centre the selected items vertically with respect to
the top most and bottom most selected items.

• Align Bottom will align the selected items vertically with the
bottom most selected item.

• Distribute Page Vertical will evenly distribute the selected items
vertically on the page.

• Distribute Page Horizontal will evenly distribute the selected
items horizontally on the page.

• Distribute Vertical will evenly distribute the selected items
vertically between the top most and bottom most selected items.

• Distribute Horizontal will evenly distribute the selected items
horizontally between the left most and right most selected items.

User manual Version 18.0, April 2021 REPORTER

Page 5.7

5.5 Copying objects and using the clipboard

If you want to copy the object to another page, select the item and use the
Copy option from the Edit menu. This copies the object onto the
’clipboard’.

Once you have an object on the clipboard you can Paste it onto any page in
the template (including the page that you copied the object from). If you
paste the object back onto the same page the object will be offset slightly. If
you paste the object onto a different page it will be placed in the same
position on the page.

You can also right click on the page at any point and then select Paste
item here. This will paste the item at the current cursor location.

Alternatively you can save the object to a file by using the Save clipboard
function. Currently only a single object can be saved. Objects saved from
REPORTER should be given the extension .oro (REPORTER Object).

Empty clipboard will remove any objects from the clipboard.

To import an object (that has previously been exported from the clipboard)
use the Import item... option in the Edit menu.

REPORTER User manual Version 18.0, April 2021

Page 5.8

5.6 Reordering items on the page

The order in which items are drawn on the page can be changed by 2 different ways in REPORTER. The order is
important as it determines the order in which scripts, programs etc will be run. For more details see section8.1.

The first method can be used when editing objects. Once an item is selected you can right click with the mouse and use
the ordering options in the popup to change the object.

One way of thinking about the object order is to think of a series of ’layers’ or transparencies in a stack. Each ’layer’ or
transparency contains one object. The order in which the transparencies are stacked changes the order in which things
are seen. This is exactly the same as layers in various photo editing software.

Send to back will make the object the first object drawn on the page (back layer)
Send back one will move the object back a layer
Bring forward one will move the object forward a layer
Bring to front will make the object the last object drawn on the page (top layer)

User manual Version 18.0, April 2021 REPORTER

Page 5.9

The second method is to use the reorder items... option in the Page
menu. This brings up a window as shown below. The object stacking order
is shown. Clicking on an entry highlights that entry with a green selection
box.

You can use the Move up and Move down options to change the stacking
order of the selected item. Once the objects are in the order you want OK
will update the page.

Cancel will abort the operation without making any changes.

REPORTER User manual Version 18.0, April 2021

Page 5.10

5.7 Search and replace

The search and replace function allows to to search for a text string (or
variable) in all objects in the template and replace it with another string (or
variable).

For example, you may make a template which contains D3PLOT objects
that have the directories hard wired instead of using a variable for the
directory. If you want to generalise the template you can use Search and
Replace... to replace every instance of the directory name in the template
with a variable.

Enter the search and replace strings in the dialog box.
You can insert a variable if required by right clicking in
the text box and selecting Insert Variable.

Each time REPORTER finds an instance of the
string in an object in the template a confirmation
dialog will be mapped giving you the option to
replace or skip the string. The object will be selected
on the screen so you can see which object you are
replacing in and a brief text description wil be given
for the object and field that you are looking at.

Cancel will abort the search and replace operation.
Pressing Yes will do the replace, pressing No will
skip this instance. If you want to just replace all
instances without confirming each one in turn then
press Yes to All.

User manual Version 18.0, April 2021 REPORTER

Page 5.11

5.8 Locking items

It may be useful to ’lock’ objects on the page so that they cannot be moved by
dragging. The Locked option in the context menu (available by right clicking on a
selected item) allows you to do this.

To lock at object first select it and then click on the Locked option. If an object is
locked it will be shown with a tick symbol. It can be unlocked by clicking on
Locked again.

Multiple objects can be locked or unlocked at the same time. Toggling the Locked
option will change the locked property of all of the selected items.

Once an item has been locked it cannot be dragged on the page. It can still be moved by using the arrow keys and the
size and/or position can be altered in the edit panel.

You can see which items are locked in design view. A locked item will be drawn with a small padlock symbol.

REPORTER User manual Version 18.0, April 2021

Page 5.12

6. Advanced objects
This section covers the more advanced items you can use in your REPORTER templates, including:

• D3PLOT, T/HIS and PRIMER items – note that from version 17.0 onwards, REPORTER has been fully
integrated with D3PLOT and T/HIS to give you a more seamless reporting workflow. See 7. REPORTER
Integration for details.

• Placeholder items
• File and Library items
• Tables and Autotables
• Programs and Scripts
• Note items

6.1 D3PLOT objects

D3PLOT items allow you to include
output from D3PLOT in your
template.

There are two different ways of using
D3PLOT items. The first (and by far
the easiest) is to use the Capture...
button to create the object. The second
is to use an existing D3PLOT
command file to create the output from
D3PLOT.

If the Image output type is chosen, the
Cropping... button can be used to
crop away parts of the image from the
top, bottom, left and right before
showing it. See section 5.4.2 for more
details.
The Justify buttons in the Image
properties section allow you to
change the justification of the image in
the box on the page. REPORTER will
not change the aspect ratio of the
image. By default the image will be
placed centrally in the box and
enlarged as much as possible to still fit
in the box. The Justify buttons can be
used to alter the justification in the box
if necessary.

There are four different options for the type of output generated from D3PLOT.
• Image indicates that the output is a static file.
• GIF indicates that the output is an animated GIF.
• Movie indicates that the output is an MP4 movie.
• Blank indicates that the D3Plot object will not create any output on the page

Playback of animated D3PLOT Items of the GIF and Movie types can be
controlled in the same manner as animated Image Items.

From version 13.0 of REPORTER it is possible to specify the size or aspect ratio of the image created from D3PLOT.
This can be changed in the Image properties section. If you want to specify a particular aspect ratio or graphics size
you can change this. The available options for Size are:

• Free size

User manual Version 18.0, April 2021 REPORTER

Page 6.1

• Fit object box
• 4:3 aspect ratio
• 16:9 aspect ratio
• 16:10 aspect ratio
• Custom aspect ratio
• Fixed size

The default option from version 17.0 onwards is Fit object box. With this option, D3PLOT will capture an image
using a graphics window with the same aspect ratio as the object’s dimensions in REPORTER.

In previous versions of REPORTER, the default option was Free size. With this option, the size of the graphics
window is calculated by D3PLOT. The actual size will depend on what resolution the monitor is and what scale factors
you have chosen for the user interface. This can cause problems if the template is created on one type of display (e.g. a
16:9 monitor) but played back on a different ratio monito (e.g. a 4:3 ratio monitor) as the image size can change and so
the output from REPORTER can look different. To make output consistent you can use the other options:

Fit object box will make D3PLOT create a graphics window that has the same aspect ratio as the object box dragged
in REPORTER.
4:3 aspect ratio, 16:9 aspect ratio and 16:10 aspect ratio will make D3PLOT create a window with the
specified aspect ratio.
Custom aspect ratio or Fixed size allow you specify a custom width and height. Fixed size will make D3PLOT
create an image with the specified width and height. Custom aspect ratio will make D3PLOT create the largest
image it can with the aspect ratio width:height.

6.1.1 Using Capture to create a D3PLOT object

The easiest way to create a D3PLOT object is to use the Capture... command. If you press the button REPORTER
starts D3PLOT for you if it is not already linked. You can now open the model(s) and do whatever operations you want
inside D3PLOT such as rotating, zooming, blanking, selecting the state, setting colours, and so on. Variables can be
defined interactively by pressing the Show Variables button in the REPORTER panel in D3PLOT.

Once you are happy with the image and
variables you have in D3PLOT, press the
Capture button on the top bar of the target
window. D3PLOT will automatically create a
settings file, a properties file, a command file
and a variables file for the current image and
add them to the D3PLOT item in REPORTER.
These are embedded in the template so you do
not have to worry about packaging them with
your template file.

To produce an animated GIF or MP4 movie
instead of a static image, right-click on the
Capture button and select one of the GIF or
Movie options.
The settings used when capturing a GIF or
MP4 (e.g. frame rate, image quality) will be
taken from the Movies tab of the Images/Media
Export panel in D3PLOT.

From version 17.0 onwards, D3PLOT is linked to REPORTER so you can continue working with both programs open.
In earlier versions (and if capturing items using the old method), you would need to return to REPORTER using the
D3PLOT File menu and select => Reporter (which replaces the normal Exit command).

See 7. REPORTER Integration for more tips about how to make the most of D3PLOT linked to REPORTER.

REPORTER User manual Version 18.0, April 2021

Page 6.2

Once a D3PLOT item has been captured, the Job files textbox reflects the models used in the capture. See Working
with Variables for more information about how to make your D3PLOT item work for different models.

REPORTER automatically assigns a Image file or Movie file name for you. If required you can change this to
whatever name you require. Note that the format of the file is taken from the extension you provide. By default
D3PLOT will return a PNG (for Image type), a GIF (for GIF type), or an MP4 (for Movie type) to REPORTER. If
you wanted to create a JPEG image, change the extension in the textbox to ’.jpg’.

The Command file is greyed out as it has been automatically created by D3PLOT and does not need any editing.
However, if you wanted to add some extra dialogue commands to be done in D3PLOT when generating the object you
can use the Edit... button next to the Command File textbox to add/edit them.

You can also specify two JavaScripts to run when generating the D3PLOT object; a Pre JavaScript and a ’normal’
JavaScript. To explain why there are two possible JavaScripts we need to consider the order that D3PLOT uses when
creating the image. It is:
1. Read the ptf files
2. Run Pre JavaScript (if defined)
3. Read properties and settings files stored in REPORTER template
4. Run any extra Command file dialogue commands from REPORTER (if defined).
5. Run the ’normal’ JavaScript (if defined)
6. Read external data file (if defined)

For virtually all cases the ’normal’ JavaScript file in step 5 will do what you want. However if you use a JavaScript to
create a user defined data component then this must be run before the properties and settings files are read (as that is
where the data component for the plot is stored). In this case a Pre JavaScript has to be used.

If you want to change the image or the variables you can press Reload capture... again at any time. D3PLOT will

User manual Version 18.0, April 2021 REPORTER

Page 6.3

start again and restore the current attributes you have set. You can make any changes that you want before pressing the
Capture button as before. The old settings file, properties files and variables file will be overwritten.

6.1.2 Creating multiple images from a single D3PLOT session

From version 17.0 onwards, you can quickly capture and generate multiple images from a single D3PLOT session as
separate D3PLOT items. The old method of capturing D3PLOT items with multiple child images is no longer needed
because its main purpose was to avoid having to launch D3PLOT multiple times to generate a single template. Now
that D3PLOT and REPORTER are linked, all of the items in a template can be generated from a single session. The old
method described below is only preserved to help keep old templates working.

You are not limited to making a single image in D3PLOT. Using the Reporter Objects floating menu you can
capture as many images as you want in a single D3PLOT session. A tab will be created in the Edit D3Plot object
window for each image you capture. For example as well as making a von Mises stress image we may also want to
make an image showing plastic strain.

Each image has its own properties and settings file and optionally extra command files and/or a JavaScript. In
REPORTER an Image file is created for the second and subsequent images and these are linked to the ’parent’
D3PLOT object.

REPORTER User manual Version 18.0, April 2021

Page 6.4

To help show which objects are linked together they are coloured differently to normal objects. The first group will be
red, the second green, the third blue...

If you modify the ’parent’ D3PLOT object the ’child’ Image file objects will be added/updated/deleted as required.

6.1.3 Using datafiles to create ’blob’ plots

If a Data file is given then that is
passed to D3PLOT to create an
external data plot or ’blob’ plot. An
example plot is shown below. In a
data plot D3PLOT superimposes
data values on the 3 dimensional
shape. For example, below this is
used to show HIC values for
Euro-NCAP analyses at various
positions on the bonnet.

The easiest way of creating a data
file is to use the standard library
program in REPORTER. See
appendix B and the D3PLOT
manual for more details.

User manual Version 18.0, April 2021 REPORTER

Page 6.5

REPORTER User manual Version 18.0, April 2021

Page 6.6

6.1.4 Using a command file to create a D3PLOT object

A really old (and
not-at-all-recommended) method to
create a D3PLOT object is to create a
command file yourself in D3PLOT
(which creates the image). In this case
the Image file must correspond to the
name of the image you create in the
command file. Give the name of the
Command file and the Job file.

This method is not recommended and
is present only to keep old templates
working. Use the Capture method
instead.

6.1.5 Editing D3PLOT objects

The position and size of D3PLOT objects can be edited in exactly the same way as the simple shape objects. See section
5 for more details.

If you have created the D3PLOT object using Capture... then the text on the button will change to Reload capture...
You can modify/update the existing captures if required. See section 6.1.1 for more details.

User manual Version 18.0, April 2021 REPORTER

Page 6.7

6.2 T/HIS objects

T/HIS objects allow you to include output
from T/HIS in your template.

There are three different ways of using
T/HIS objects. The first (and by far the
easiest) is to use the Capture... button to
create a FAST-TCF script for the object
that T/HIS will run.
The second is to write your own
FAST-TCF script.
The third is to use an existing T/HIS
command file to create the output from
T/HIS.

If the Bitmap output type is chosen, the
Cropping... button can be used to crop
away parts of the image from the top,
bottom, left and right before showing it.
See section 5.4.2 for more details.
The Justify buttons in the Image
properties section allow you to change
the justification of the image in the box on
the page. REPORTER will not change the
aspect ratio of the image. By default the
image will be placed centrally in the box
and enlarged as much as possible to still fit
in the box. The Justify buttons can be
used to alter the justification in the box if
necessary.

There are three different options for the type of output generated from
T/HIS.

• Bitmap indicates that the output is an image file.
• Blank indicates that the T/HIS object will not create any output

on the page
• Text indicates that the output is text. This is only valid for the

FAST-TCF script type. This option would be used if you
wanted the output from a FAST-TCF table or HIC command
etc.

From version 13.0 of REPORTER it is possible to specify the size or aspect ratio of the image created from T/HIS. This
can be changed in the Image properties section. If you want to specify a particular aspect ratio or graphics size you
can change this. The available options for Size are:

• Free size
• Fit object box
• 4:3 aspect ratio
• 16:9 aspect ratio
• 16:10 aspect ratio
• Custom aspect ratio

REPORTER User manual Version 18.0, April 2021

Page 6.8

• Fixed size

The default option from version 17.0 onwards is Fit object box. With this option, T/HIS will capture an image using a
graphics window with the same aspect ratio as the object’s dimensions in REPORTER.

In previous versions of REPORTER, the default option was Free size. With this option, the size of the graphics
window is calculated by T/HIS. The actual size will depend on what resolution the monitor is and what scale factors
you have chosen for the user interface. This can cause problems if the template is created on one type of display (e.g. a
16:9 monitor) but played back on a different ratio monito (e.g. a 4:3 ratio monitor) as the image size can change and so
the output from REPORTER can look different. To make output consistent you can use the other options:

Fit object box will make T/HIS create a graphics window that has the same aspect ratio as the object box dragged in
REPORTER.
4:3 aspect ratio, 16:9 aspect ratio and 16:10 aspect ratio will make T/HIS create a window with the specified
aspect ratio.
Custom aspect ratio or Fixed size allow you specify a custom width and height. Fixed size will make T/HIS
create an image with the specified width and height. Custom aspect ratio will make T/HIS create the largest image
it can with the aspect ratio width:height.

6.2.1 Using Capture to create a T/HIS object

The easiest way to create a T/HIS object is to use the
Capture... command.
First make sure that the Type is set to FAST-TCF
script.
If you press the Capture... button REPORTER
starts T/HIS for you if it is not already linked. You
can now open the model(s) and do whatever
operations you want inside T/HIS to get the cruves
that you want on the screen. Once you are happy
with the graph you have in T/HIS, press the
Capture button on the top bar of the target window.
T/HIS will automatically create a FAST-TCF script
for the current graph and return it to REPORTER.
This is embedded in the template so you do not have
to worry about packaging it with your template file.

From version 17.0 onwards, T/HIS is linked to
REPORTER so you can continue working with both
programs open. In earlier versions (and if capturing
items using the old method), you would need to
return to REPORTER using the T/HIS File menu
and select Return to Reporter (which replaces the
normal Exit command).

See 7. REPORTER Integration for more tips about
how to make the most of T/HIS linked to
REPORTER.

User manual Version 18.0, April 2021 REPORTER

Page 6.9

Once a T/HIS item has been
captured, the Job file textbox
reflects the models used in the
capture. See Working with
Variables for more information
about how to make your T/HIS
item work for different models.

If you want to change the script
you can press Reload
capture... again at any time.
T/HIS will start again and
replay the FAST-TCF script.
You can make any changes that
you want before pressing the
Capture button as before. The
old FAST-TCF script will be
overwritten.

6.2.2 Using your own FAST-TCF script to create a T/HIS object

If you want to make your own FAST-TCF script in a T/HIS object then fill in the Image file and Job file yourself.
You can load an existing FAST-TCF script by using the Load... button or type in the script. In this case the Image
file must correspond to the name of the image you create in the script.

6.2.3 Using a command file to create a T/HIS object

REPORTER User manual Version 18.0, April 2021

Page 6.10

The alternative
method to create a
T/HIS object is to
create a command file
yourself in T/HIS
(which creates the
image).

Make sure that Type
is set to T/HIS
command file.

In this case the
Image file must
correspond to the
name of the image
you create in the
command file. Give
the name of the
Command file and
the Job file.

6.2.4 Editing T/HIS objects

T/HIS objects can be edited in exactly the same way as the simple shape objects. See section 5 for more details.

If you have created the object using the Capture... then the text on the button will change to Reload capture... You
can modify/update the existing capture if required. See section 6.2.1 for more details.

6.3 PRIMER objects

PRIMER objects allow you to include output from PRIMER in your template. To create one select the
Primer tool from the Tools toolbar and click and drag a rectangle on the page. The Edit Primer object
information window will then be shown.

User manual Version 18.0, April 2021 REPORTER

Page 6.11

If you want to create an image using PRIMER to put in the report (e.g. an image showing yield stress or element
timestep) select Bitmap for the Type. In this case the Cropping... button can be used to crop away parts of the image
from the top, bottom, left and right before showing it (see section 5.4.2 for more details).
The Image properties section allows you to change the justification of the image in the box on the page. REPORTER
will not change the aspect ratio of the image. By default the image will be placed centrally in the box and enlarged as
much as possible to still fit in the box. The Justify buttons can be used to alter the justification in the box if necessary.

Alternatively if you do not want any output but just want to run PRIMER to create some other sort of output or run a
JavaScript set the Type to Blank.

6.3.1 Using Capture to create a PRIMER object

From version 13.0 of REPORTER it is possible to specify the size or aspect ratio of the image created from PRIMER.
This can be changed in the Image properties section. If you want to specify a particular aspect ratio or graphics size
you can change this. The available options for Size are:

• Free size
• Fit object box
• 4:3 aspect ratio
• 16:9 aspect ratio
• 16:10 aspect ratio
• Custom aspect ratio
• Fixed size

The default option from version 17.0 onwards is Fit object box. With this option, PRIMER will capture an image
using a graphics window with the same aspect ratio as the object’s dimensions in REPORTER.

In previous versions of REPORTER, the default option was Free size. With this option, the size of the graphics
window is calculated by PRIMER. The actual size will depend on what resolution the monitor is and what scale factors
you have chosen for the user interface. This can cause problems if the template is created on one type of display (e.g. a
16:9 monitor) but played back on a different ratio monito (e.g. a 4:3 ratio monitor) as the image size can change and so
the output from REPORTER can look different. To make output consistent you can use the other options:

Fit object box will make PRIMER create a graphics window that has the same aspect ratio as the object box dragged
in REPORTER.
4:3 aspect ratio, 16:9 aspect ratio and 16:10 aspect ratio will make PRIMER create a window with the
specified aspect ratio.
Custom aspect ratio or Fixed size allow you specify a custom width and height. Fixed size will make PRIMER
create an image with the specified width and height. Custom aspect ratio will make PRIMER create the largest

REPORTER User manual Version 18.0, April 2021

Page 6.12

image it can with the aspect ratio width:height.

If you want to specify an image size it should be specified before the capture is done in PRIMER.

To start PRIMER press the Capture button. PRIMER will then automatically record a macro containing all of the
commands that you do. When you have finished do File and => Reporter to return to REPORTER.
REPORTER will then prompt you to replace any filenames in the macro with variables. You can choose which
variables you would like to replace. Alternatively you can replace any variables yourself manually later on (see below).
The Edit Primer object information window will then be updated as shown below.

REPORTER will automatically give a name for the bitmap file but you can change it to whatever you want. If required
you can edit the macro by using the Edit... button next to the Macro file textbox (which in the above image shows that
it contains 25 lines). This is useful to replace any filenames with variables if required (right click with the mouse or
press Ctrl+I in the macro to insert variables). The macro will be saved in the REPORTER template.

As well as using a macro a JavaScript can also be specified to run in PRIMER. The Edit... button next to the
JavaScript textbox can be used to load and edit a JavaScript. The JavaScript will be saved in the REPORTER
template.

If a macro contains picking, dragging or dynamic viewing commands then PRIMER needs to maintain the aspect ratio
of the graphics window so that they can be replayed correctly. If it dd not do this then the pick command would pick at
a different location and it may not work correctly.
When a macro is recorded REPORTER scans the macro for any picking, dragging or dynamic viewing commands. If
the macro does not contain any then the image size can be changed after capturing if required.
For example in the image above a macro has been recorded but as it does not contain any picking, dragging or dynamic
viewing commands the Size can be changed from Free size if required.
If the macro does contain picking, dragging or dynamic viewing commands then REPORTER will change the image
size to a fixed size and not allow it to be chnaged, to ensure that the macro will replay correctly.
For example in the image below a macro has been recorded but and it as does contain picking, dragging or dynamic
viewing commands the Size has been changed to Fixed size and cannot be changed.

User manual Version 18.0, April 2021 REPORTER

Page 6.13

6.3.2 Editing PRIMER objects

PRIMER objects can be edited in exactly the same way as the simple shape objects. See section 5 for more details.

If you want to modify an existing capture you can use Update capture. PRIMER will restart and replay the macro
you have recorded. Any new commands that you do will then get appended to the macro.

REPORTER User manual Version 18.0, April 2021

Page 6.14

6.4 Program objects

6.4.1 Text output from a program

This option allow you to specify a program from which the text that would normally outputted to the standard output
will be inserted into the report by REPORTER when the report is finally generated. The program can be written in
anything you want: C, Fortran etc,a scripting language such as Perl or Python, a shell script on unix, a batch file on
windows etc. All that matters is that output which would normally be directed to stdout is captured by REPORTER. For
more details on writing programs for REPORTER please see Appendix E.

The filename of the program/script is entered in the Program: text box or clicking on the Choose... button will bring
up a File window from which to select the program/script. You can also enter variables by right clicking in the text box
which will allow you to bring up a Insert variableswindow from which to select a variable. The various text
parameters such as font and size can also be set.

The text parameters such as font, justification, size etc can be set for the text that will be captured from the program.

If the program needs arguments then any number can be added by using the Add button.

The Conditions... button (see section11) enables the user to apply conditional formatting to the text from the program.

The OK button will exit this window and add the new program to the template. The Cancel button will exit this
window without adding anything to the report

User manual Version 18.0, April 2021 REPORTER

Page 6.15

6.4.2 Editing program objects

Program objects can be edited in exactly the same way as the simple shape objects. See section 5 for more details.

REPORTER User manual Version 18.0, April 2021

Page 6.16

6.5 File objects

6.5.1 Text files

To insert text from a file, select the File Text from the Insert menu.
The Choose... button allows the user to select the file by browsing the computer. The positioning and style of the text
can be changed.
The OK button will exit this screen and create the object/save the changes made.
The Cancel button will exit this screen without creating the object/saving the changes.

The text parameters such as font, justification, size etc can be set for the text that will be read from the file.

The text, background and fill colour and the border line style can be set using the style toolbar. See section 5.2 for more
details.

The margins for the textbox can be changed by using the Margins... button.

The Conditions... button (see section11) enables the user to apply conditional formatting to the text.

By default text is not wrapped so long lines will be clipped to the width of the object. If you want text to be wrapped
onto multiple lines use the Wrap text checkbox.

User manual Version 18.0, April 2021 REPORTER

Page 6.17

6.5.2 Image files

To insert an image from a file, select the File Image from the Insert menu or use the Image file tool from the Tools
toolbar.
The Choose... button allows the user to select the file by browsing the computer.
The Cropping... button can be used to crop away parts of the image from the top, bottom, left and right before
showing it. See section 5.4.2 for more details.

The Image properties section allows you to change the justification of the image in the box on the page. REPORTER
will not change the aspect ratio of the image. By default the image will be placed centrally in the box and enlarged as
much as possible to still fit in the box. The Justify buttons can be used to alter the justification in the box if necessary.

The positioning of the image on the page can be changed by using the Geometry section.

The OK button will exit this screen and create the object/save the changes made.
The Cancel button will exit this screen without creating the object/saving the changes.

Animated Image files

Similarly to Image Items, starting with version 18.0, Image File Items also support GIF animations and MP4 movies.

REPORTER User manual Version 18.0, April 2021

Page 6.18

6.6 Library objects

6.6.1 Library images

This option allows the user to view and
select an image from the selection held
in the image library. The resolution and
positioning of the image can also be set.
The OK button will exit this windows
and add the new object to the template.
The Cancel button will exit this
window without adding anything to the
report.

See appendix B.3 ’Standard library
images’ - to insert library images.

User manual Version 18.0, April 2021 REPORTER

Page 6.19

6.6.2 Library program/script

This option allows you to specify a program/script from the library, the output of which will be inserted into the report
by REPORTER when the report is finally generated. (See the library object appendix for more details about using the
library)

Once you have selected this option you need to click and drag to create an area in the report where the output is to
appear. Then the relevant Insert window will be brought up.

From this window you can select the program/script you want from the program list by clicking on it with the mouse.
Depending on the program/script a number of argument boxes may appear into which you need to specify any
arguments required by the script. By right clicking or pressing Ctrl+I in these you can bring up a Insert variables
window from which to select a variable to use for the argument.

The output from the program/script can be set to a variable using the Set to variable input box or Select button.
Additionally you can specify that the output from the program is not shown on the page by using the Do not show
any output on page option. This could be useful if you want to run the program to get the output as a variable but
use it later in the template (for example in a table) rather than having any output here.

The font properties can be set using the Text properties section. The text colour will be set to the current text colour

REPORTER User manual Version 18.0, April 2021

Page 6.20

setting.
The Conditions... button (see section11) enables the user to apply conditional formatting to the text.

The OK button will exit this windows and add the new object to the template. The Cancel button will exit this window
without adding anything to the report.

6.6.3 Editing library objects

Library objects can be edited in exactly the same way as the simple shape objects. See section 5 for more details.

User manual Version 18.0, April 2021 REPORTER

Page 6.21

6.7 Table objects

A table allows you to easily line things up on a page in REPORTER. To create a table drag the area on the
page that you want to be a table. The following menu is then mapped.

6.7.1 Changing the number of rows or columns in the table

By default a table will have 2 rows and 2 columns and initially each cell in the table will be blank. The number of rows
and/or columns can changed using the Rows and Columns spin boxes in the Attributes section. As the values are
changed the Cells section in the menu will be updated accordingly.

Alternatively a row or column can be added or deleted at any position in the table by right clicking on a cell or header in
the Cells section and using the Insert or Delete options in the context menu.

REPORTER User manual Version 18.0, April 2021

Page 6.22

6.7.2 Using the ’Fix overall table size...’ checkbox

By ticking the ’Fix overall table size while adding/deleting/resizing rows and columns’ checkbox in the Attributes
section, the overall table size remains fixed no matter what cell/row/column operations are performed. E.g. if the
checkbox is ticked and a row is added to the table using the spinbox, the height of all others rows are reduced (scaling
proportionally) to maintain the overall table height. The height of the newly added row is equal to that of the adjacent
row.

When the checkbox is unticked, cell/row/column operations are able to change the overall table size. E.g. if the
checkbox is unticked and a row is added to the table using the spinbox, the height of all other rows are unchanged. The
height of the newly added row is equal to that of the adjacent row and the overall height of the table increases by this
amount.

The checkbox is ticked by default when first creating a table (such that the table remains within the bounding box
drawn on the page), and unticked by default when editing an existing table.

It is important to note that this checkbox affects operations as they are performed within the edit window, not at the
point at which ’OK’ is pressed. Ticking or unticking the checkbox should therefore occur prior to any cell/row/column
operations to obtain the desired functionality.

6.7.3 Changing the margins for cells in the table

The margins for the cells in the table
can be changed using the margins
button in the Attributes section.

6.7.4 Seeing what is in each cell

The attributes section of the
menu shows a simplified view
of the table in a spreadsheet
form in the Cells section. Cells
which have text present in them
are shown using the correct font,
styling, font colour and size so
you can quickly see you have
the correct settings.

User manual Version 18.0, April 2021 REPORTER

Page 6.23

6.7.5 Changing cells

To change a cell (or cells) click on the cell in the simplfified view (or multiple select using Shift and/or Ctrl). The
selected cells are highlighted in the simplified view and the Cell properties section of the menu becomes active.

The font can be changed with the Font... button and hyperlinks and conditional formatting applied to the cell text using
the Hyperlink... and Conditions... buttons.

By default all cells will have the same with and height but you can use the Width and Height spinboxes to alter the
width of this cell (and hence the width of all cells in the same column) and the height(and hence the height of all cells in
the same row). To reset widths and/or heights back to be the same use the Reset heights and Reset widths buttons
in the Attributes section.

Instead of just using text in the generated data you can run a program instead which could be a standard library program
or an external program. In this case the output from the program will be put in the table cell instead. To use a program
change the Cell type from Text to Program using the popup. Once this is done the Choose... and Library... buttons
and the Program arguments section become active. For library programs the output from the script can be mixed
with other text.

By default the cell text is shown as <output>. This will be replaced by the output from the script. Additionally you
can prepend or append text to this to add to the cell.

6.7.6 Merging cells

REPORTER User manual Version 18.0, April 2021

Page 6.24

Cells in a table can be merged together into a single cell. Select the cells that you want to merge by either clicking and
dragging the cells to merge or by Shift or Ctrl clicking on multiple cells in the Cells section. Note that the cells you
want to merge must be a rectangular selection. Right click on the selected cells in the Cells section and choose Merge
cells from the context menu.

Cells that have been merged together can be unmerged by selecting the cell, right clicking and choosing Unmerge
cells from the context menu.

6.7.7 Cell borders

To change the border for all the cells in a table you can use the normal line thickness control in the Style toolbar. The
borders for individual cells can also be changed if required. Select the cells that you want to change the border for in the
Cells section, right click on them and select Edit borders from the context menu. This displays the Cell Borders
menu.

This menu allows you to change the cell borders for each side of the cells individually. Firsdt set the line thickness
using the Lines combobox. The Toggles and Presets can then be used to change the borders. Press OK to update the
cell borders.

6.7.8 Saving to CSV or XLSX

To save the contents of a generated table to a CSV or XLSX file (e.g. for use in Excel), use the ’When generating save
to CSV/XLSX file:’ checkboxes at the bottom of the table menu. Ticking these checkboxes activates the adjacent text
windows, into which a save location can be manually entered (or selected using the ’Choose’ buttons).

User manual Version 18.0, April 2021 REPORTER

Page 6.25

6.8 Autotable objects

An autotable object in REPORTER is a table which REPORTER will create when the report is generated. An an
example, you may want to run multiple analyses and produce a summary table with one line in a table for each analysis.
The autotable object allows you to do this.

The above image shows the menu to create a table for a set of pedestrian headform analyses. We want to create a table
with 5 columns (as shown below) ; the impact zone, the x, y, and z impact points and the calculated HIC.

REPORTER User manual Version 18.0, April 2021

Page 6.26

To do this we would run each of the analyses and post-process them with a REPORTER template. Each analysis would
calculate the ZONE, X, Y, Z and HIC and store them as variables. These variables would then be saved to a file called
reporter_variables. The autotable object in the summary template can then pick up these
reporter_variables files and use them to create the table rows. One row will be created for each file that is read.

6.8.1 Selecting variables files for the table

To create the autotable you need to select where REPORTER will read the reporter_variables files from. This
is done in the Attributes section.

In this example REPORTER will look for any reporter_variables files recursively from the directory
/data/DEMO/CONFERENCE/PEDESTRIAN_HEAD/NCAP_RUNS_2. Alternatively you can select a file which will
contain a list of directories for REPORTER to look for any reporter_variables files. Note that for the file case
REPORTER does not look recursively from that directory, it looks in that directory only.

6.8.2 Setting the header and generated row heights

To set the height of the header row and any rows which are generated by REPORTER use the Header height and
Generated data height options in the Geometry section.

6.8.3 Adding columns to the table

To add a column to the table use the Add button in the Column properties section.

User manual Version 18.0, April 2021 REPORTER

Page 6.27

This will create a new column with the default name Column 1. This is what will be shown as the column header.
You can change the name in the Name: textbox and change the font used with the Font... button.

Once the column has been created you can decide how the data should be generated. Continuing the example above the
first column is the zone so we change the column name to ZONE. The individual analyses that were post-processed by
REPORTER saved the zone for the analysis in the variable ZONE, so for the generated data we want to input the text
%ZONE% which means the value of variable ZONE. REPORTER will first look for any variables in the
reporter_variables file. If it finds the variable then the value will be used. If REPORTER cannot find a variable
in the reporter_variables file it will then look for a variable with the same name in the current template and use
that value.

REPORTER User manual Version 18.0, April 2021

Page 6.28

The font can be changed with the Font... button and hyperlinks (e.g. see the ZONE column in the above example
output) and conditional formatting (e.g. see the HIC column in the above example output) applied using the
Hyperlink... and Conditions... buttons.

Instead of just using text in the generated data you can run a program instead which could be a standard library program
or an external program. In this case the output from the program will be put in the table instead.

You can add as many columns to the table as necessary in exactly the same way.

6.8.4 Using the ’Fix overall table width...’ checkbox

The functionality of the ’Fix overall table width while adding/deleting/resizing columns’ checkbox is similar to that of
the ’Fix overall table size...’ checkbox for tables, except that the autotable checkbox only affects columns. The checkbox
has no affect on row height (or overall autotable height); these are instead controlled through the various height options
in the Geometry section.

User manual Version 18.0, April 2021 REPORTER

Page 6.29

6.9 Script objects

Script objects are JavaScripts that REPORTER can run using an embedded JavaScript interpreter. REPORTER also
extends JavaScript by defining a number of classes for things specific to REPORTER. See appendix D for a reference
to these classes.

To insert a script select the script tool and then click and drag an area on the page. This will draw the area that the script
will occupy and then map the script window:

You can load a script into the window with the Load... button and save the script to file with the Save... button.
Scripts do not make any output on the page themselves (i.e. the area on the page that the script occupies will not have
anything drawn on it from the script) but they can create output indirectly. For example, a script could create a bitmap
using the Image class in REPORTER and then this bitmap could be imported with an image file object.

Scripts do become visible on the page if you select ’show as button in presentation view’. If this checkbox is selected,
then the script will run when the user clicks on the button. If you also select ’do not run when template or page is
generated’, the script will only be run when the button is clicked.

You can select one Script object in your template to be run automatically when the template is opened. REPORTER
will only automatically run the first Script object it finds with this checkbox selected.

As a simple example, the script above prints text to the logfile window using the LogPrint function. This doesn’t do
anything useful in itself, but shows how you can produce useful diagnostic messages. This generates the following
output in the logfile window.

REPORTER User manual Version 18.0, April 2021

Page 6.30

For more information on scripting please see chapter13.

6.10 Note objects

Note objects are used to add simple notes to your REPORTER template. They are only displayed in design view. To
add a note when in design view, click on the note icon and click on the position on the page you wish to add a note. The
following window will be mapped:

The name is what is displayed on the screen. The note is what is displayed when you hover the mouse over the note on
the screen:

User manual Version 18.0, April 2021 REPORTER

Page 6.31

6.11 Placeholder objects

Placeholder items are used in many of the library templates provided with REPORTER. If you choose one of the
templates from the Standard tab, you will see Placeholder items are used to predefine the page layout. Then,
depending on what you want to add to the page, the Placeholder item can be converted into any other item type.

When using D3PLOT and T/HIS to capture plots and graphs, select a Placeholder item and then click Capture in
D3PLOT or T/HIS. The Placeholder item will automatically be replaced by a D3PLOT or T/HIS item respectively.

You can also convert Placeholder items into PRIMER items, Tables, or indeed any other item type. Double-click on a
Placeholder item to edit it, and then use the Convert into... drop-down menu to choose another type of item. When
you click OK, the item will be converted.

REPORTER User manual Version 18.0, April 2021

Page 6.32

7. REPORTER Integration
This section describes how to work with D3PLOT, T/HIS and REPORTER to quickly and easily create reports from
results.

7.1 Linking the Programs

REPORTER can be opened from D3PLOT and T/HIS using the REPORTER button in the top-right toolbar panel. This
opens a linked session of REPORTER, allowing reports to be interactively created and edited. Both D3PLOT and
T/HIS can be opened from inside REPORTER too, using the program buttons in the top bar of REPORTER.
REPORTER can be connected to both D3PLOT and T/HIS at the same time and the D3PLOT → T/HIS link is also
supported. Graphs in T/HIS are treated the same as graphs in a D3PLOT → T/HIS linked session.

7.2 Item Tree

Once a template is opened in REPORTER, all items in the template will appear in the Item Tree in the REPORTER
panel in D3PLOT or T/HIS. Selecting an item in the Item Tree will select the corresponding item in REPORTER and
vice-versa.

The Item Tree can include items of all types in REPORTER, such as textboxes and images, as well as D3PLOT, T/HIS
and PRIMER items. Only Placeholder items, D3PLOT items and T/HIS items can be overwritten with new D3PLOT or
T/HIS items. Placeholder items exist to allow a layout to be created for the report before populating it and can be
converted into any other item type.

7.3 Capture

Windows and graphs can be captured into REPORTER, saving an image together with additional information to allow

User manual Version 18.0, April 2021 REPORTER

Page 7.1

the capture to be reloaded later. For D3PLOT windows, this is a properties and settings file. For T/HIS graphs, this is a
FAST-TCF script. Graphs captured in the D3PLOT → T/HIS link are treated exactly the same as graphs in T/HIS, so
the resulting items will be identical.

Note that in the version 17 method, only single windows and graphs can be captured. The intention being that the
windows and graphs are easily captured individually and laid out in REPORTER with greater flexibility.

In order to capture a window, first select the target item in REPORTER, either selecting it directly in REPORTER or
using the item tree. You can capture into a new item by selecting I+ Add Item in the item tree. Once the item is
selected, the Resize button on the top bar of the window can be used to resize the window to match whatever image
size is specified on the selected REPORTER item, such as Fit object box. Finally, either press Capture on the top
bar of the target window or select the window in the Active window list in the REPORTER panel and press Capture
at the top of the panel. This will send the information to REPORTER and the image will appear on the item.

REPORTER User manual Version 18.0, April 2021

Page 7.2

7.3.1 Capturing Movies

From version 18.0, MP4 movies and animated GIFs can be captured with a D3PLOT Item in REPORTER in place of a
static image. The process for Capture is unchanged: just right-click on the Capture button in D3PLOT (either in the
REPORTER panel or at the top of the target window) to reveal the new Movie (MP4) and GIF options.

When selecting an existing D3PLOT Item in the REPORTER Item Tree, the Update Capture button will always update
to switch to that Item type (Image, Movie, or GIF). Left-clicking the Update Capture button will then replace the
current capture with one of the same type without the need to use the drop-down menu again. The drop-down menu
can be used if switching type (e.g. PNG Image to MP4 Movie) is desired.

Settings such as frame rate and quality are determined by their current status in the D3PLOT Images -> Write ->
Movies panel so be sure to check these before conducting Capture.

7.4 Reload

Existing REPORTER items can be reloaded back into D3PLOT or T/HIS. Items captured from graphs in the D3PLOT
→ T/HIS link are treated the same as items captured from standalone T/HIS. As such, they can each be reloaded either
into D3PLOT or T/HIS.

User manual Version 18.0, April 2021 REPORTER

Page 7.3

First select the item in REPORTER that you want to reload:

Then either press reload at the top of the target window, or select New Window in the Active window list:

REPORTER User manual Version 18.0, April 2021

Page 7.4

This will clear the target window, open the relevant models, not opening them again if they are already open in the
session, then load the stored item information, reproducing the capture.

User manual Version 18.0, April 2021 REPORTER

Page 7.5

7.4.1 Reload Models

The models used in an existing item are listed in the Reload models list. The models will be listed as ‘Item Mn’,
where n is the index of the model in the item, not of the model in the session. If the model is also open in the current
session, then the model ID in the current session will be displayed in brackets.

Each entry in the list has a popup attached, allowing the model to replaced either by a model in the current session or by
browsing for a model. This will not change the models stored in the item, but instead when the item is reloaded into the
current session the replacement models will be used. The resulting window will then need to be captured, either into a
new item or to overwrite the original.

REPORTER User manual Version 18.0, April 2021

Page 7.6

7.5 Generate

Once a complete template has been created, it can be generated using File → Generate in REPORTER. This will
generate in an existing session if there is one, otherwise a new session will be started. T/HIS items will be generated in
standalone T/HIS, unless the T/HIS link is already open in D3PLOT, in which case they will generate in the link. It is
faster to generate in standalone T/HIS.

7.6 Variables

Variables can be added to both D3PLOT and T/HIS items, allowing data related to the capture to be made available in
REPORTER. The REPORTER panel can be undocked and expanded to display the variables list by selecting Show
Variables.

For T/HIS items, variables can be added containing properties of any of the curves in the selected graph or all the
curves combined using the All Curves option. By default, T/HIS items will have variables for the MAX and MIN
values taken over all curves in the selected graph. When selecting the curve for a newly created variable using the curve
popup, curves are referred to as ‘ICn’, meaning ‘Item Curve n’, where n is the index of the curve in the selected graph.
The curve label and number in the current session are also displayed in the popup.

For D3PLOT items, variables can be added for the MAX and MIN values of any of the plotted data components on any
of the models. By default, D3PLOT items will have variables for the MAX and MIN values of all plotted data
components for each model in the selected window.

Variables can be added using the + button and deleted using the X button next to the row.

Initially, variables will appear under ‘New Variables’ until the item is captured, when they will move to ‘Existing
Variables’. Variables will be given default names based on their item number, variable type and model/curve that they
relate to. However, these names and descriptions can be manually edited.

For D3PLOT items, the Entity ID and Entity Type tickboxes can be used to create additional variables to contain this
information. These will have the same name as the original variable with either "_ENT_ID" or "_ENT_TYPE"
appended.

For T/HIS items, the Add variables containing curve label tickbox will create an additional variable containing

User manual Version 18.0, April 2021 REPORTER

Page 7.7

the curve label of the relevant curve, with "_LABEL" appended to the name.

Example of a D3PLOT item with two exsiting variables, referring to models in Window 1:

Example of a T/HIS item with two new variables and two existing variables, referring to curves in Graph 1:

7.7 Exceptions to the Version 17 Method and Existing
Templates from Version 16 and Earlier

There are some item types that are not yet supported in the new version 17 method. In this case, the version 16 method
will be used and nothing will have changed. These are:

• T/HIS JavaScript items
• Items containing multiple graphs/windows

Any item can be captured and generated using the version 16 method by selecting the Capture and generate this
item using the old method option in the object information in REPORTER.

Existing version 16 and earlier templates should work exactly as they used to. All items will use the version 17 method
unless they meet one of the specified exceptions above. This gives some additional benefits:

• When generating the report, all supported items will be generated in the same session, without opening the same
models multiple times. This will make the process faster.

• The report can be edited interactively using all the perks of the version 17 method.

REPORTER User manual Version 18.0, April 2021

Page 7.8

8. Generating and outputting reports

8.1 Effect of object order on generating a report.

The order the various objects are layed out on a page relates to the order in which they will be processed by
REPORTER when it generates a report. So if you have a program/script that creates a variable in it’s output, that
program/script will need to be on the same page or an earlier page than the object that first uses the generated variable.
If it is on the same page it also needs to be earlier in the order of objects on the page than any objects that uses that
variable.

The following series of example shows what will and won’t work. In all the examples Object 1 (red) and Object 2
(cyan) both use a variable (VAR1) generated by Script 1 (green) as an input.

In this case Object 1 is on an earlier page than Script 1 so the variable VAR1 hasn’t been created yet. In this situation
REPORTER will give a warning and uses a blank for the variable VAR1 in Object 1. Object 2 however comes after
Script 1 so the variable VAR1 has been created and Object 2 can be generated normally

In this case Object 1 is on the same page as Script 1, but comes before it in the order of items on the page so there
variable VAR1 hasn’t been created yet. In this situation REPORTER will give a warning and uses a blank for the
variable VAR1 in Object 1. Object 2 however comes after Script 1in the order of items on the page, so the variable
VAR1 has been created, and Object 2 can be generated normally.

User manual Version 18.0, April 2021 REPORTER

Page 8.1

8.2 Generating reports

Once a report template has been created a report can be generated by
selecting the Generate option in the File menu.

Generating a file causes all of the objects on the page to perform any
necessary actions to create the output for that object. For example:

• Text objects could expand variables into the actual values
• File objects would read the text/image file and show it
• Program objects would be "run" to generate the output.
• Tables will be created
• etc.

If any objects are to be created from D3PLOT or T/HIS then
REPORTER will start the relevant program to produce the object and
then insert the object into the report. REPORTER will also run any
specified programs/scripts and insert the output into the report as
required.

During report generation feedback is given in the status bar showing what REPORTER is doing. For example in the
image below REPORTER is currently generating output for object ’oasys21’ on page 1 and the report generation is 29%
complete.

You can stop report generation at any time by pressing the Stop button in the status bar.

To switch between the the design view (showing the report template) and the presentation view
(showing the final report) you use the Design buttons

REPORTER User manual Version 18.0, April 2021

Page 8.2

The images below show an example of a report template before and after generating the page.

Design view before generating report:

Presentation view after generating report:

User manual Version 18.0, April 2021 REPORTER

Page 8.3

8.2.1 Using the cursor in presentation mode

When you first go into presentation mode after generating a template the cursor mode changes to the "hand"
cursor. In this mode you cannot select or edit any objects. The cursor is used for following hyperlinks. This is
likely to be extended to other functions in future releases of REPORTER.

You can change the mode back to the select mode in which case all of the normal operations which you can
do in design mode can be done including editing. Additionally if you choose any of the other modes you can
create new objects even though you are in presentation mode.

8.3 Outputting a generated report

REPORTER can create various types of output by using the various
write option in the File menu. Currently the types are:

• Write Report – write the file as a report (images etc included
with the template)

• Write PDF – write an Adobe PDF file
• Write HTML – write an HTML web page
• Write PowerPoint – write a Microsoft PowerPoint file

directly
• Print – print the report with a printer

The Write options can also be accessed by selecting the appropriate
file type from the Save As menu (see below).

8.3.1 Printing

On Windows, the Print command will bring up the standard windows printer dialog.

REPORTER User manual Version 18.0, April 2021

Page 8.4

On unix, it will bring up the dialog.

Extra options can be given by
pressing the Options >> button.

The Copies tab allows you to choose
what pages should be printed and
how many copies.

The Options tab allows you to
choose double sided printing and
black and white or colour output.

User manual Version 18.0, April 2021 REPORTER

Page 8.5

The Properties button allows you to
set the page size and margins.

8.3.2 PDF files

Write PDF will save the report as an Adobe PDF file. Select the name of the PDF file you want to write.

8.3.3 HTML output

Write HTML will save the report as a HTML file for the web. Select the name of the HTML file you want to write.
REPORTER will then create a HTML page using frames containing the report. There will be a html HTML for each
page in the report and a contents page. All the necessary images and files will be placed in a subdirectory of the main
HTML file which is called <name>.html_files. So for example if you create a file example.html,
REPORTER will create a directory called example.html_files as well and put any extra files in there. So if you
want to move the html file to somewhere else remember to move example.html and the directory
example.html_files.

8.3.4 PowerPoint files

Writing PowerPoint files directly

REPORTER can write PowerPoint files directly for Windows and Linux. Select Write PowerPoint and give the name
of the PowerPoint file you want to create. REPORTER will write the file.

Notes on PowerPoint output

When you use textboxes, text files and tables in REPORTER the output is clipped to the size of the object defined on
the page. PDF and HTML output also support this but it is not possible to control the size of a ’textbox’ in PowerPoint
(in PowerPoint a table is made up of a collection of ’textboxes’). When writing PowerPoint output be aware of the
following limitations.
1. If the text is too wide to fit in the ’textbox’ it will automatically be wrapped onto multiple lines by PowerPoint.
2. If the combined height of the text, the top margin and the bottom margin is greater than the height of the textbox

REPORTER User manual Version 18.0, April 2021

Page 8.6

PowerPoint will increase the height of the textbox to make it high enough.

If the Powerpoint output is not aligned correctly or is not what you see in REPORTER it is likely to be caused by these
problems. Adjusting the size of the object, the text size or the margins will help to fix any problems.

User manual Version 18.0, April 2021 REPORTER

Page 8.7

8.4 Combining output from multiple reports

If REPORTER generates several templates and saves them as reports (see section 3.4 for more details) then it is
sometimes useful to combine the output into a single pdf, html or pptx file. The easiest way to do this is to use the
REPORTER options in the SHELL. See the SHELL manual for more details.

It can also be done on the command line in REPORTER by using the -combine command line argument. For
example, if you wanted to combine the output from 3 reports to a pdf file and a PowerPoint file this could be done with
the command:

reporter18 .exe -combine report1.orr report2.orr report3.orr -pdf=combined.pdf
-pptx=combined.pptx -exit

8.5 Animation support for output file formats

From version 18.0, animation playback has been added to the D3PLOT, Image, and Image File Items in REPORTER.
Currently both animated GIFs and MP4 movies are supported. Due to development constraints, not all types of
REPORTER output are capable of playing back this content in this first release. This is summarised in the following
table:

GIF MP4

Export to PowerPoint Y Y

Embed in Templates (.ort) and Reports (.orr) Y N

Export to PDF or HTML N N

For some extra information on each of these:
• Our top development priority was to be able to export both GIF and MP4 to PowerPoint, which is supported.
• Animated GIFs and MP4 movies will appear as static images in PDF and HTML.
• Although MP4 cannot be embedded, an MP4 Image Item in a Template or Report will still load the .mp4 file if

saved with a valid filepath.

We hope to address some of these limitations (particularly embedding MP4 in Templates and Reports) in future
versions of REPORTER.

REPORTER User manual Version 18.0, April 2021

Page 8.8

9. Working with Variables
A main feature of REPORTER is that you create a template from which a report can be generated. This allows you to
create a standard template for a project and then use that template to automatically create a report for a number of model
runs. This is mainly achieved through the use of variables.

Variables are defined with a name and a value which can be a number or a text string, for example.

Variable Name Value
CURRENT_PAGE 2

DEFAULT_DIR /data/test/ tube1

DEFAULT_JOB tube_test1
The main advantage of using variables when defining the various objects in the report template is that rather than
having to go through the report and change all the various filenames and directory paths when you want to generate a
report from a new model, all you need to do is change the variables. This can be done manually by editing the template
in REPORTER, or you could insert a program/script into the template that would calculate and define all the necessary
variables when REPORTER generates a report.

9.1 User defined variables

For example, if you want to create a report template that has a number of images that are created by a D3PLOT object.
If you want to use the template to generate reports for a number of models, the problem is that the various filenames and
directory paths will be different for each model. e.g:

Model Directory Path Job Name

Crush Tube 1 /data/test/tube1 tube_test1

Crush Tube 2 /data/test/tube2 tube_test2

Crush Tube 3 /data/test/tube3 tube_test3
To get round this problem you can use a variable for the directory path called DEFAULT_DIR and a variable for the job
name called DEFAULT_JOB. When inserting the D3PLOT objects (see Section 6 for more detail about inserting
D3PLOT objects) use the variables for the directory path and job name. The variables need to be enclosed by % signs to
distinguish them from the rest of the text string.

User manual Version 18.0, April 2021 REPORTER

Page 9.1

When generating a report for Crush Tube 2 model, the variables would be defined as follows:

Variable Name Value
DEFAULT_DIR /data/test/tube2

DEFAULT_JOB tube_test2
When REPORTER generates the report it will substitute in the values of the relevant variables, so the two text strings
would become:

Bitmap File /data/test/tube2/def.bmp

Job File /data/test/tube2/tube_test2.ptf

To generate a report for one of the other templates, all you need to do is change the value of DEFAULT_DIR and
DEFAULT_JOB.

9.2 Predefined variables

REPORTER already has a number of variables defined. They are:

Variable Description

CURRENT_PAGE The current page in the report (can be used when a report is generated)

TIME The current time (can be used when a report is generated)

DATE The current date (can be used when a report is generated)

DEFAULT_DIR A default directory for a job

REPORTER User manual Version 18.0, April 2021

Page 9.2

DEFAULT_JOB A default jobname

REPORTER_HOME The directory REPORTER is installed in

REPORTER_TEMP A temporary working directory

TOTAL_PAGES The total number of pages (can be used when a report is generated)

TEMPLATE_DIR The template directory (useful for locating files relative to the current template)

9.3 Formatting TIME and DATE variables

To add the date to each page you can insert a text object (see Section 5 for more detail on text objects) with the relevant
variables substituted in (e.g. see the image below).

The default formatting for the date variable is such that if the day were Saturday 1st February 2020, %DATE% would
be generated as Sat Feb 1 2020.

For the time variable, if it were 56 seconds past the 34th minute of the 12th hour of the day then %TIME% would be
generated as 12:34:56.

Formatting can be changed for individual instances of the %DATE% and %TIME% variables by using bracketed
arguments. For example, %DATE(ddd MMM d yyyy)% provides the default formatting described above. Other options
are given in the tables below. Any input characters not included in these tables will be treated as regular text. This
allows for further formatting customisation (e.g. %DATE(ddd-MMM/d.yyyy)% for Sat-Feb/1.2020).

For the %DATE% variable, formatting expressions and output are as follows:

Expression Output

d The day as a number without a leading zero (1 to 31)

dd The day as a number with a leading zero (01 to 31)

ddd The abbreviated localised day name (e.g. ’Mon’ to ’Sun’)

dddd The full localised day name (e.g. ’Monday’ to ’Sunday’)

M The month as a number without a leading zero (1 to 12)

MM The month as a number with a leading zero (01 to 12)

User manual Version 18.0, April 2021 REPORTER

Page 9.3

MMM The abbreviated localised month name (e.g. ’Jan’ to ’Dec’)

MMMM The full localised month name (e.g. ’January’ to ’December’)

yy The year as a two digit number (00 to 99)

yyyy The year as a four digit number

Similarly, for the %TIME% variable:

Expression Output

h The hour without a leading zero (0 to 23 or 1 to 12 if AM/PM)

hh The hour with a leading zero (00 to 23 or 01 to 12 if AM/PM)

H The hour without a leading zero (0 to 23, even with AM/PM)

HH The hour with a leading zero (00 to 23, even with AM/PM)

m The minute without a leading zero (0 to 59)

mm The minute with a leading zero (00 to 59)

s The second without a leading zero (0 to 59)

ss The second with a leading zero (00 to 59)

z The millisecond without a leading zero (0 to 999)

zzz The millisecond with a leading zero (000 to 999)

AP or A Interpret as an AM/PM time. ’AP’ must be either ’AM’ or ’PM’

ap or a Interpret as an AM/PM time. ’ap’ must be either ’am’ or ’pm’

9.4 Creating and editing variables

Variables can be viewed, edited, and created by using the Edit... option in the Variables menu. Selecting this option
will bring up the Variables window.

REPORTER User manual Version 18.0, April 2021

Page 9.4

Some of the variable such as CURRENT_PAGE and REPORTER_HOME are standard variables that are predefined
by REPORTER. and these cannot be edited or deleted, other user defined variables can be edited or deleted as you
chose.

You can create a new variable by
selecting New. Then in the New
variable box at the bottom of the
window enter the necessary details into
the text boxes.

• Name - enter the variable name you want to use to refer to this variable. Variable names should only use letter
(A-Z) or numbers (0-9) and underscores. REPORTER will automatically convert the name into uppercase and
replace any spaces with underscores when the new variable is created.

• Description - enter the description for the variable. This is only for reference and is not actually used by
REPORTER. However, it is strongly recommended that you give meaningful descriptions for variables.

• Value - enter the value for the variable. This can be any text string or number you want.
• Type - the variable type allows you to give an indication what the variable will be used for. The following types

are predefined in REPORTER.
• Directory
• Expression
• File(absolute)
• File(basename)
• File(extension)
• File(tail)

User manual Version 18.0, April 2021 REPORTER

Page 9.5

• General
• Number
• String

Additionally you can give your own variable types if it helps you to manage variables. The Directory and
File types also allow you to choose a directory/file interactively using the Browse... button. The different
File types allow you to extract certain parts of the filename from the file you choose. For example selecting a
file ’/data/demo/test.key’ by using Browse... would result in the following:

Variable type Part of file that is extracted

File(absolute) /data/demo/test.key

File(basename) test

File(extension) key

File(tail) test.key

• Temporary - tick the box if the variable should be temporary or not. This makes no difference to how the
variable is used in REPORTER, however for convenience temporary variables can be removed from the
template at any point by using the Delete temporary variables option in the Variables menu.

• Format - the format settings allow you to specify how the variable value is displayed within the REPORTER
presentation view. Available options are:

• Floating point number - displays a number variable as a floating point number. The number of decimal
places can be specified using the precision setting.

• Scientific number - displays a number variable as a scientific number. The number of decimal places can
be specified using the precision setting.

• General number - this uses the shorter of the floating point or scientific methods above..
• Integer - displays a number variable as an integer.
• Uppercase - displays a string type variable in uppercase.
• Lowercase - displays a string type variable in lowercase.

The setting used here is applied to everywhere the variable is displayed in the report, unless a local format
setting is used. The format setting does not change the underlying value of the variable.

You then click on the OK button to store this new variable. The Cancel button will just exit you from this window.

The only variables which can be edited are the user defined ones you create yourself. To edit a variable select the
Variable option in the File menu to bring up the Variables window. You can edit the description or value of a
variable by clicking on the relevant description or value in the variable list and pressing Edit. You cannot edit the
variable name. If you want to rename the variable you will have to delete the existing variable and re-create it using the
new name.

For more information on doing simple maths with variables (by using the expression type) see section9.12.

9.5 Creating a variable using D3PLOT

The Reporter Objects floating menu allows you to define values to be returned to REPORTER as variables by
pressing the Variables button (see section 6.1.1), which launches the Reporter Variables floating menu. Variables
are limited to the maximum and minimum values displayed on the lefthand side of the D3PLOT window with the
corresponding entity type and entity id as additional variables that can be selected if required. Note that variables will
only be available for selection in this panel if max/min values are set to be shown in the Data Panel and the plot is a data
plot.

To create a variable first select the window containing the required value using the drop-down menu, then select the
correct model using the drop-down menu. The variable type can be selected from the Variable Type drop-down
menu. Default names and descriptions are then created for the value variable and the corresponding entity id and entity
type variables. By default the entity id and entity type variables are not exported to REPORTER. To export them tick
the appropriate box. The variable names and descriptions can be edited and the variable name can also be selected using
the drop-down menu, which contains a list of the user-defined variables in REPORTER.

You should note that although the variables menu will prevent variable names being duplicated within a single
D3PLOT session, care should be taken to avoid duplicating variable names across more than one D3PLOT session as
REPORTER will only hold a single value for each variable name.

REPORTER User manual Version 18.0, April 2021

Page 9.6

9.6 Creating a variable using T/HIS

The Variables menu can be launched by pressing the button within the FASTTCF Script menu in T/HIS.

In the Variables menu variables can be defined interactively. These variables are exported to REPORTER on exit from
a T/HIS REPORTER session.

User manual Version 18.0, April 2021 REPORTER

Page 9.7

Variable Output or Tabular Output are selected at the top of the menu. Each output request is defined on a row of
the table. The curve and variable type are selected using the drop down menu. A default variable name is generated and
can be manually edited or a name can be selected from variable names that are present in Reporter. Additional value
fields are populated with default values if required and these can be edited. The output description is also populated
with default text that can be edited. The output type is selected using the drop down menu. Curve Lock prevents the
curve that the variable refers to from being deleted. If a curve is not locked and is deleted, then any variables associated
with that curve will also be deleted.

9.7 Creating a variable using an external program/script

Rather than using the Variables window to create and define a variable it is also possible to use a program/script to
create a variable. (See Appendix E for some examples of programs/scripts)

When REPORTER generates a report and it runs an external program/script, any output lines that take the form

VAR <NAME> VALUE="<value>" DESCRIPTION="<description>"
or
VAR <NAME> VALUE="<value>"

will not inserted into the report as text but will be used to create a variable where
• <NAME> - will become the variable name
• <value> - will become the value of the variable
• <description> - will become the variable description

here are a couple of examples

Program/Script Output Variable Name Description Value

VAR DEFAULT_DIR VALUE="/data/test" DEFAULT_DIR (none) /data/test

VAR SPEED VALUE="1000" DESCRIPTION="Impact Speed" SPEED Impact speed 1000

So if you inserted a program/script object "Text output from a program/script" (see Section 9 for more detail on
inserting program/script objects) that’s output was

VAR SPEED VALUE="1000"

then REPORTER would create a variable called SPEED with the value 1000, and because there is no other output then
the inserted text object would come up blank when the report was generated. If the output however was

VAR SPEED VALUE="1000"
Impact Speed: %SPEED%

then REPORTER would create a variable called SPEED with the value 1000, and also create the following text object
with the new variable SPEED substituted in.

Impact Speed: 1000

By default any variables that you read from an external program/script will be marked as "temporary". If you do not
want the variable to be temporary then the variable name can appended with ’!’ and this will tell REPORTER not to
mark it as temporary. Alternatively ’#’ can be used to mark the variable as temporary (although this is not needed as it is
the default). For example the following two lines would both mark the variable SPEED as temporary (the default)

VAR SPEED VALUE="1000"
VAR SPEED# VALUE="1000"

The following line would mark the variable SPEED as not being temporary.

REPORTER User manual Version 18.0, April 2021

Page 9.8

VAR SPEED! VALUE="1000"

9.8 Creating a variable using a FAST-TCF script

Rather than using the Variables window to create and define a variable it is also possible for a FAST-TCF script to
create and define variables. You can create a variable in FAST-TCF from one of the following curve results. (See the
FAST-TCF section of the T/HIS manual for more details)

Property output keyword

Minimum x minx

Maximum x maxx

Minimum y min

X at minimum y xatmin

Y at minimum x yatmin

Minimum y in window t1 t2 minw

X at minimum y in window t1 t2 xminw

Maximum y max

X at maximum y xatmax

Y at maximum x yatmax

Maximum y in window t1 t2 maxw

X at maximum y in window t1 t2 xmaxw

Average in window t1 t2 ave

Hic hic

Hicd hicd

3ms 3ms

Y at X yatx

X when Y is passed after gate time xygate

X at first non-zero Y xnonz

X at last non-zero Y xfail

Y value at last non-zero Y yfail

TTI tti
The values for these results need to have already been calculated in the script before you use them to create a variable.
The syntax to create a variable takes one of these two forms:

var <NAME> <curve> <result> <description>
or
var <NAME> <curve> <result>

• <NAME> - will become the variable name
• <curve> - is the curve tag or number
• <result> - is the result type (min,max,ave,hic,hicd,3ms)
• <description> - will become the variable description

REPORTER will set the value of the variable to be the value of the result type for the specified curve. Here are a couple
of examples

FAST-TCF data REPORTER data
FAST-TCF script Curve

No.
Value of the result (Result
Type)

Variable
Name

Description Value

var DEFORM 1 ave 1 20 (ave) DEFORM (none) 20

var SPEED 2 max Impact
Speed

2 1000 (max) SPEED Impact
speed

1000

The variable defined in REPORTER will be marked as temporary.

User manual Version 18.0, April 2021 REPORTER

Page 9.9

9.9 Creating a variable from the command line

Variables can be defined in REPORTER when starting from the command line with the -var option. For example to
define variable DEFAULT_DIR you could do:

reporter18 .exe -varDEFAULT_DIR=/data/test/tube1

If the variable contains spaces then it must be quoted.

reporter18 .exe -varDEFAULT_DIR="C:\directory with spaces\tube1"
By default variables defined on the command line will not be temporary. You can change this and also specify the
variable type on the command line if required. For more details see appendix A.

9.10 Creating a variable from javascript

You can create variables from javascript scripts in REPORTER with the Variable constructor. For example

var fred = new Variable(reporter.currentTemplate, "DEFAULT_DIR", "current model
directory", "/data/test1");

By default any variable that is made will be marked as temporary but this can be changed. For more details see the
Variable javascript reference.

9.11 Deleting variables

9.11.1 Deleting a variable

You can delete an user defined variable in the Variables window by clicking on the Delete button when the relevant
variable is selected. Please note that this will delete the variable from the list without bringing up any conformation box.
However the variable will not be deleted until OK is pressed in the main variables menu.

Predefined variables cannot be deleted.

9.11.2 Deleting all temporary variables

Any temporary variables can be deleted by using the Delete temporary variables command in the Variables
menu. Please note that this will delete the tempoarary variables without any conformation.

REPORTER User manual Version 18.0, April 2021

Page 9.10

9.12 Inserting a variable

Certain inputs for such things as
filenames, text, and program/script
arguments can use variables rather than a
straight text string. You can insert a
variable at the current cursor position by
right clicking on the text box

From the popup menu select Insert
variable.

An Insert variable window from which you can select the variable will then be brought up.

User manual Version 18.0, April 2021 REPORTER

Page 9.11

From this window you select the variable you want from the list and click on the OK button to insert the variable and
exit this window. The Cancel button will exit this window with out inserting a variable.

Note in this panel you can set a local format setting for the variable. This is a format that is applied to this instance of
variable when viewed in presentation model. The available options are:

• Floating point number - displays a number variable as a floating point number. The number of decimal places
can be specified using the precision setting.

• Scientific number - displays a number variable as a scientific number. The number of decimal places can be
specified using the precision setting.

• General number - this uses the shorter of the floating point or scientific methods above..
• Integer - displays a number variable as an integer.
• Uppercase - displays a string type variable in uppercase.
• Lowercase - displays a string type variable in lowercase.

This local format setting overrides any global format setting for this variable specified on the main variables panel.
However, the format set here is only applied to this instance of the variable.

When entered into a text string the variable needs to be enclosed by % signs put at either end of the variable name to

REPORTER User manual Version 18.0, April 2021

Page 9.12

distinguish it from the rest of the text string. In this example the variable CURRENT_PAGE has appeared in the text box
as%CURRENT_PAGE% .

9.12.1 Manually inserting a variable

It is also possible for you to manually enter a variable in by simply typing in the variable name enclosed by % signs.
When the report is generated the %CURRENT PAGE% part of the text string will be replaced with the value of the
variable. If a local format is set, this will be displayed within the % signs.

9.12.2 Controlling the precision/decimal places of a variable

The precision of a variable can be set in the Insert variable window when inserting it. See the section above on
variable format. Alternatively the precision can be set when typing in the variable.

For example, for a variable called ACCELERATION, if a local format of a two decimal place floating point number is
specified, the variable ACCELERATION will appear as %ACCELERATION(2f)%. When generated, this will
appear as the formatted value. A complete list of the formats is available in the table below.

Format Example Input
string

Output
string

Fixed %NAME(2f)% 1234.5678
12.345678

1234.56
12.35

Exponential / scientific %NAME(2e)%1234.5678
12.345678

1.23e+03
1.23e+01

General. uses exponential format or fixed format (whichever is the most
concise)

%NAME(2g)%1234.5678
12.345678

1.23e+03
12

Integer %NAME(i)% 1234.5678
12.345678

1235
12

Lower case %NAME(s)% Reporter reporter
Upper case %NAME(S)% Reporter REPORTER

9.13 Using variables in D3PLOT and T/HIS command files
and FAST-TCF scripts.

It is also possible to use variables in a D3PLOT or T/HIS command file or FAST-TCF script that is referred to by a
D3PLOT or T/HIS object inserted in the template (see Section 6 for more details on inserting D3PLOT and T/HIS
objects).

9.13.1 Command files

For a command file you will need to first create the command file using an actual value for the variable and then
manually edit the command file to replace this value with the variable name enclosed in % signs.

Example

For example, if you have a simple T/HIS command file that reads in a THF file, creates a curve of x displacement for
node 30, and then creates a bitmap image of the curve.
READ 31 3 2 3 0 0 0 0
THF 32 3 2 11 0 0 0 0
cube5.thf 4 3 6 5 0 0 0 0
Nodes 4 3 2 12 0 0 0 0
Node 30 3 4 3 14 0 0 0 0
APPLY 5 3 2 2 0 0 0 0
PLOT 1 3 2 1 0 0 0 0
IMAGES 31 3 2 15 0 0 0 0
cube5.bmp 38 3 6 12 0 0 0 0
CAPTURE 38 3 2 25 0 0 0 0

I you want to use the variable DEFAULT_JOB for the filenames instead of cube5, and the variable NODE instead of the
node number 30. manually edit the command file to give the following. (Note that the position of the numbers on the
right hand side should not modified)
READ 31 3 2 3 0 0 0 0

User manual Version 18.0, April 2021 REPORTER

Page 9.13

THF 32 3 2 11 0 0 0 0
%DEFAULT_JOB%.thf 4 3 6 5 0 0 0 0
Nodes 4 3 2 12 0 0 0 0
Node %NODE% 3 4 3 14 0 0 0 0
APPLY 5 3 2 2 0 0 0 0
PLOT 1 3 2 1 0 0 0 0
IMAGES 31 3 2 15 0 0 0 0
%DEFAULT_JOB%.bmp 38 3 6 12 0 0 0 0
CAPTURE 38 3 2 25 0 0 0 0

9.13.2 FAST-TCF scripts

For a FAST-TCF script when you enter the script you need to replace the relevant parts with the variable name
enclosed in % signs

Example

For example, a simple FAST-TCF script that will do the same thing as the T/HIS command file above.
node 30 disp x tag XDISP
bitmap cube5.bmp XDISP

So to make the same changes as the T/HIS command file above (substituting in the variables DEFAULT_JOB and
NODE) gives the following.
Node%NODE% disp x tag XDISP
bitmap %DEFAULT_JOB%.bmp XDISP

REPORTER User manual Version 18.0, April 2021

Page 9.14

9.14 Saving all the variables to a file after generating a
report

After REPORTER generates a report, it can automatically save any variables to a file. The file will be called
reporter_variables. This can be very useful for processing multiple analyses. For example, you could perform
several analyses which all dump their variables to a file, and then a summary template could create a table using these
files (see section 6 .5 for more details).

At the bottom of the variables window there is a checkbox to turn on this option. You can then give a directory to save
the variables into.

You can select the directory or use a variable if required. The directory defaults to %DEFAULT_DIR% and is on by
default.

9.15 Variable expressions

Sometimes it is useful to do some simple maths on variables in REPORTER. Creating a script to do something this
simple is tedious. If you use the Expression variable type then REPORTER will evaluate this when required to
produce the result. For example assume that you have 2 variables, FORCE and AREA and you want to calculate a stress.
You can do this by:
1. Make a new variable STRESS.
2. Set the type to Expression.
3. Give the value %FORCE%/%AREA% (see secion9.3 for more details) by either typing directly or using the right

mouse button and Inserting variables with the menu.

Then if you have some text in the report such as "The stress is %STRESS%" REPORTER will evaluate the stress as
required.

The expression can contain +, -, / and * to do addition, subtraction, division and multiplication respectively and can use
brackets to enforce which order the expression is evaluated in. The expression is actually evaluated as a JavaScript
program so more complex expressions can be formed by using the standard JavaScipt functions (e.g. the Math class).
e.g. the following are all valid expressions

• %FORCE%/%AREA%
• Math.sqrt(%X%*%X% + %Y%*%Y%)
• Math.min(%X%, %Y%) * Math.sin(Math.PI)

9.15.1 Rounding values in variable expressions

User manual Version 18.0, April 2021 REPORTER

Page 9.15

As the expression is evaluated as a JavaScript program (see the previous section) we can use some of the core functions
in JavaScript to alter the variable value. For example, in our example of calculating a variable STRESS from an
expression %FORCE%/%AREA% this could have a large number of significant figures in the result.

E.g. if FORCE=10 and AREA=3 then stress is 3.33333333333333 which is far more significant figures than we require.

We can use the core JavaScript function toFixed() to change the number of digits to appear after the decimal point. If
we wanted 2 decimal places then we could change the expression to

(%FORCE% / %AREA%).toFixed(2)

which would change the value of STRESS to 3.33.

Other useful functions are:
• toExponential(n) which formats the number in exponential (scientific) notation with n digits after the decimal

point.
• toPrecision(n) which formats the number with n significant figures.

REPORTER User manual Version 18.0, April 2021

Page 9.16

10. Hyperlinks
REPORTER currently allows you to create hyperlinks from the following object types

• Text objects
• Image objects
• Table cells
• D3Plot images with external data plots (’blob’ plots).

10.1 Adding basic hyperlinks

Objects that support hyperlinks will have a Hyperlink... button. Pressing it maps the hyperlink window.

REPORTER can write HTML and pdf and can also save a generated report. As all of these formats support hyperlinks
you cannot give a single hyperlink that will work for all of the formats. For this reason REPORTER allows you to give
different links for each type. For example in the image below the link is different for each type. If you do not want links
for a particular type then leave it blank.

Hyperlinks can be relative or absolute (if you use a relative hyperlink then it is relative to the current document).

10.2 Adding hyperlinks in D3PLOT external data (blob) plots

The data file which D3PLOT uses to create blob plots supports hyperlinks. This enables the user to be able to click on
one of the data values on the image and open the report for that data point. The easiest way to create a data file for
D3PLOT is with one of the D3PLOT data file library scripts. e.g. below shows the script for generating a data file from
reporter_variables files.

User manual Version 18.0, April 2021 REPORTER

Page 10.1

Arguments 7, 8 and 9 allow you to give your hyperlinks in exactly the same way as a basic hyperlink.

REPORTER User manual Version 18.0, April 2021

Page 10.2

11. Conditional formatting
Conditional formatting can be used in REPORTER to change how text is displayed, depending on if a specific
condition has been met. This is very similar to the conditional formatting in Microsoft Excel, but REPORTER can use
as many conditions as you wish per object instead of the limit of 3 imposed by Excel.

Conditional formatting is currently supported for the following object types:
• Text
• Programs/scripts returning text
• Text files
• Table cells
• Text boxes

For example you may want to change the colour of a number in a report depending on the value.
Red if the value is greater than 100
Blue if the number is between 50 and 100
Green if the number is less than 50

This is very easy to do in REPORTER.

11.1. Adding a condition

To add a condition for an object, press the Condition button. This will start the conditional formatting window.

Conditions can be added and removed by using the Add and Remove buttons. If you have more than one condition,
they are tested in the order shown. If the first condition passes the test then that is used, otherwise the second is tested
etc. If none of the conditions pass the default font properties for the object are chosen. As the order that they are
evaluated is important you can use the Move up and Move down buttons to change the order.

Once a condition has been added it is given a default name and the condition type is initially set to ’is equal to’

Choose the condition type that you want (see the next section for details) and give the necessary values. For example in
the image below the condition will be true if the value is a number between 10.0 and 100.0.

User manual Version 18.0, April 2021 REPORTER

Page 11.1

Once you have the correct condition type, the Format... button can be used to select the font properties that you want
to assign for this condition. In the window (shown below) you can set the font, the style, justification, font size and
colour properties.

When you change the font properties, the preview updates to show what the text will look like for this condition.
Additionally you can rename the condition to a more meaningful name if required. e.g. in the image below we have
made a condition called Danger which will format the text in bold red if the value is a number between 10 and 100.

This process can be repeated as necessary to add as many conditions as you wish.

11.2. Condition types

REPORTER User manual Version 18.0, April 2021

Page 11.2

Condition
type

Description

is equal to Treats the value as a string. Strips leading and trailing white space from the string and compares it
to the conditon value. TRUE if the strings are identical. This can also be used to compare integers
but should not be used to compare floating point numbers.

is not equal to As above, but TRUE if the strings are different

is greater than Treats the value as a real number. It first tries to convert the value and the condition value to real
numbers. If this fails the condition is FALSE. If it succeeds then the condition is TRUE if the value
is greater than the condition value.

is less than As above, but TRUE if the value is less than the condition value.

is between As above, but TRUE if the value is between the two condition values.

is not between As above, but TRUE if the value is not between the two condition values.

contains string Treats the value as a string. TRUE if the value contains the condition string.

does not
contain string

Treats the value as a string. TRUE if the value does not contain the condition string.

matches regex Treats the value as a regular expression. TRUE if the regular expression matches.

does not
match regex

Treats the value as a regular expression. TRUE if the regular expression does not match.

11.2.1 Regular expressions

REPORTER understands most of the basic operators of perl regular expressions. This section gives a brief introduction
into regular expressions (or regexps). For more details please see a suitable book on regular expressions such as
Programming Perl.

Regexps are built up from expressions, quantifiers, and assertions. The simplest form of expression is simply a
character, e.g. x or 5. An expression can also be a set of characters. For example, [ABCD], will match an A or a B or a
C or a D. As a shorthand we could write this as [A-D]. If we want to match any of the captital letters in the English
alphabet we can write [A-Z]. A quantifier tells the regexp engine how many occurrences of the expression we want,
e.g. x{1,1} means match an x which occurs at least once and at most once. We’ll look at assertions and more complex
expressions later.

We’ll start by writing a regexp to match integers in the range 0 to 99. We will require at least one digit so we will start
with [0-9]{1,1} which means match a digit exactly once. This regexp alone will match integers in the range 0 to 9. To
match one or two digits we can increase the maximum number of occurrences so the regexp becomes [0-9]{1,2}
meaning match a digit at least once and at most twice. However, this regexp as it stands will not match correctly. This
regexp will match one or two digits within a string. To ensure that we match against the whole string we must use the
anchor assertions. We need ^ (caret) which when it is the first character in the regexp means that the regexp must match
from the beginning of the string. And we also need $ (dollar) which when it is the last character in the regexp means
that the regexp must match until the end of the string. So now our regexp is ^[0-9]{1,2}$. Note that assertions, such as
^ and $, do not match any characters.

If you’ve seen regexps elsewhere they may have looked different from the ones above. This is because some sets of
characters and some quantifiers are so common that they have special symbols to represent them. [0-9] can be replaced
with the symbol \d. The quantifier to match exactly one occurrence, {1,1}, can be replaced with the expression itself.
This means that x{1,1} is exactly the same as x alone. So our 0 to 99 matcher could be written ^\d{1,2}$. Another way
of writing it would be ^\d\d{0,1}$, i.e. from the start of the string match a digit followed by zero or one digits. In
practice most people would write it ^\d\d?$. The ? is a shorthand for the quantifier {0,1}, i.e. a minimum of no
occurrences a maximum of one occurrence. This is used to make an expression optional. The regexp ^\d\d?$ means
"from the beginning of the string match one digit followed by zero or one digits and then the end of the string".

Our second example is matching the words ’mail’, ’letter’ or ’correspondence’ but without matching ’email’, ’mailman’,
’mailer’, ’letterbox’ etc. We’ll start by just matching ’mail’. In full the regexp is, m{1,1}a{1,1}i{1,1}l{1,1}, but since
each expression itself is automatically quantified by {1,1} we can simply write this as mail; an ’m’ followed by an ’a’
followed by an ’i’ followed by an ’l’. The symbol ’|’ (bar) is used for alternation, so our regexp now becomes
mail|letter|correspondence which means match ’mail’ or ’letter’ or ’correspondence’. Whilst this regexp will find the
words we want it will also find words we don’t want such as ’email’. We will start by putting our regexp in parentheses,

User manual Version 18.0, April 2021 REPORTER

Page 11.3

(mail|letter|correspondence). Parentheses have two effects, firstly they group expressions together and secondly they
identify parts of the regexp that we wish to capture. Our regexp still matches any of the three words but now they are
grouped together as a unit. This is useful for building up more complex regexps. It is also useful because it allows us to
examine which of the words actually matched. We need to use another assertion, this time \b "word boundary":
\b(mail|letter|correspondence)\b. This regexp means "match a word boundary followed by the expression in parentheses
followed by another word boundary". The \b assertion matches at a position in the regexp not a character in the regexp.
A word boundary is any non-word character such as a space a newline or the beginning or end of the string.

For our third example we want to replace ampersands with the HTML entity ’&’. The regexp to match is simple: &, i.e.
match one ampersand. Unfortunately this will mess up our text if some of the ampersands have already been turned into
HTML entities. So what we really want to say is replace an ampersand providing it is not followed by ’amp;’. For this
we need the negative lookahead assertion and our regexp becomes: &(?!amp;). The negative lookahead assertion is
introduced with ’(?!’ and finishes at the ’)’. It means that the text it contains, ’amp;’ in our example, must not follow the
expression that preceeds it.

Characters and Abbreviations in regular expressions

Element Meaning

c Any character represents itself unless it has a special regexp meaning. Thus c matches the character c.

\c A character that follows a backslash matches the character itself except where mentioned below. For
example if you wished to match a literal caret at the beginning of a string you would write \^.

\a This matches the ASCII bell character (BEL, 0x07).

\f This matches the ASCII form feed character (FF, 0x0C).

\n This matches the ASCII line feed character (LF, 0x0A, Unix newline).

\r This matches the ASCII carriage return character (CR, 0x0D).

\t This matches the ASCII horizontal tab character (HT, 0x09).

\v This matches the ASCII vertical tab character (VT, 0x0B).

\xhhhh This matches the Unicode character corresponding to the hexadecimal number hhhh (between 0x0000 and
0xFFFF). \0ooo (i.e., \zero ooo) matches the ASCII/Latin-1 character corresponding to the octal number
ooo (between 0 and 0377).

. (dot) This matches any character (including newline).

\d This matches a digit.

\D This matches a non-digit.

\s This matches a whitespace.

\S This matches a non-whitespace.

\w This matches a word character

\W This matches a non-word character

Sets of Characters

Square brackets are used to match any character in the set of characters contained within the square brackets. All the
character set abbreviations described above can be used within square brackets. Apart from the character set
abbreviations and the following two exceptions no characters have special meanings in square brackets.

^ The caret negates the character set if it occurs as the first character, i.e. immediately after the opening square
bracket. For example, [abc] matches ’a’ or ’b’ or ’c’, but [^abc] matches anything except ’a’ or ’b’ or ’c’.

- The dash is used to indicate a range of characters, for example [W-Z] matches ’W’ or ’X’ or ’Y’ or ’Z’.

REPORTER User manual Version 18.0, April 2021

Page 11.4

Using the predefined character set abbreviations is more portable than using character ranges across platforms and
languages. For example, [0-9] matches a digit in Western alphabets but \d matches a digit in any alphabet.

Quantifiers

By default an expression is automatically quantified by {1,1}, i.e. it should occur exactly once. In the following list E
stands for any expression. An expression is a character or an abbreviation for a set of characters or a set of characters in
square brackets or any parenthesised expression.

E? Matches zero or one occurrence of E. This quantifier means "the previous expression is optional" since it
will match whether or not the expression occurs in the string. It is the same as E{0,1}. For example dents?
will match ’dent’ and ’dents’.

E+ Matches one or more occurrences of E. This is the same as E{1,MAXINT}. For example, 0+ will match ’0’,
’00’, ’000’, etc.

E* Matches zero or more occurrences of E. This is the same as E{0,MAXINT}. The * quantifier is often used
by a mistake. Since it matches zero or more occurrences it will match no occurrences at all. For example if
we want to match strings that end in whitespace and use the regexp \s*$ we would get a match on every
string. This is because we have said find zero or more whitespace followed by the end of string, so even
strings that don’t end in whitespace will match. The regexp we want in this case is \s+$ to match strings
that have at least one whitespace at the end.

E{n} Matches exactly n occurrences of the expression. This is the same as repeating the expression n times. For
example, x{5} is the same as xxxxx. It is also the same as E{n,n}, e.g. x{5,5}.

E{n,} Matches at least n occurrences of the expression. This is the same as E{n,MAXINT}.

E{,m} Matches at most m occurrences of the expression. This is the same as E{0,m}.

E{n,m} Matches at least n occurrences of the expression and at most m occurrences of the expression.

(MAXINT is implementation dependent but will not be smaller than 1024.)

If we wish to apply a quantifier to more than just the preceding character we can use parentheses to group characters
together in an expression. For example, tag+ matches a ’t’ followed by an ’a’ followed by at least one ’g’, whereas (tag)+
matches at least one occurrence of ’tag’.

Note that quantifiers are "greedy". They will match as much text as they can. For example, 0+ will match as many zeros
as it can from the first zero it finds, e.g. ’2.0005’.

Assertions

Assertions make some statement about the text at the point where they occur in the regexp but they do not match any
characters. In the following list E stands for any expression.

^ The caret signifies the beginning of the string. If you wish to match a literal ^ you must escape it by writing
\^. For example, ^#include will only match strings which begin with the characters ’#include’. (When the
caret is the first character of a character set it has a special meaning, see Sets of Characters.)

$ The dollar signifies the end of the string. For example \d\s*$ will match strings which end with a digit
optionally followed by whitespace. If you wish to match a literal $ you must escape it by writing \$.

\b A word boundary. For example the regexp \bOK\b means match immediately after a word boundary (e.g.
start of string or whitespace) the letter ’O’ then the letter ’K’ immediately before another word boundary (e.g.
end of string or whitespace). But note that the assertion does not actually match any whitespace so if we
write (\bOK\b) and we have a match it will only contain ’OK’ even if the string is "Its OK now".

\B A non-word boundary. This assertion is true wherever \b is false. For example if we searched for \Bon\B in
"Left on" the match would fail (space and end of string aren’t non-word boundaries), but it would match in
"tonne".

(?=E) Positive lookahead. This assertion is true if the expression matches at this point in the regexp. For example,
const(?=\s+char) matches ’const’ whenever it is followed by ’char’, as in ’static const char *’. (Compare with
const\s+char, which matches ’static const char *’.)

User manual Version 18.0, April 2021 REPORTER

Page 11.5

(?!E) Negative lookahead. This assertion is true if the expression does not match at this point in the regexp. For
example, const(?!\s+char) matches ’const’ except when it is followed by ’char’.

REPORTER User manual Version 18.0, April 2021

Page 11.6

12. Fonts

12.1 Supported Fonts

REPORTER supports most fonts, giving you
control over the look of your reports, and
allowing you to create templates that match
your organisation’s branding. The following
font types are supported:

• TrueType fonts and collections (.ttf and
.ttc files)

• OpenType fonts and collections (.otf and
.otc files)

• Certain Type1 fonts (Printer Font Binary
.pfb files and their .pfm metrics files)

The fonts that appear in REPORTER’s font
dialogs depend on the fonts available on your
operating system. REPORTER searches the
following locations for fonts:

On Windows:
• %WINDIR%\Fonts (typically

C:\Windows\Fonts)

On Linux:
• /usr/share/fonts
• /usr/share/X11
• /usr/local/share/fonts

When REPORTER launches, it scans these
locations for font files, processes the files it
finds, and then writes the data to a cache file
located at $OA_HOME/reporter_font_cache.
On subsequent launches, REPORTER should
load more quickly, because thereafter it only
needs to process newly installed fonts.

12.2 Legacy Fonts

In addition, the four legacy fonts are always supported regardless of operating system:
• Courier
• Helvetica
• Symbol
• Times

User manual Version 18.0, April 2021 REPORTER

Page 12.1

This means that REPORTER templates created using earlier versions (before REPORTER 16.0, when only these four
fonts were available) should continue to work as normal.

12.3 Font Mapping

Font mapping is a method of providing suitable alternatives if a requested font is unavailable on your system. For
example, another user may share with you a REPORTER template containing selected fonts that were available on their
system, but not on yours. Alternatively, you might create a template on your Windows computer, and then generate it in
batch on a Linux server that has a different set of fonts installed.

12.3.1 Font Substitution Dialog

If you open a REPORTER template containing fonts that are missing from your system, a Font Substitution dialog will
appear:

In the example above, the font Forte is available on the system, but the style Normal is not available, so Forte Italic is
being offered as a replacement. The font Fortissimo Unique cannot be found on the system, so Arial is being offered as
a replacement. If you want to change the default replacement, you can select a different font from the drop-down list,
and check or uncheck the Bold and Italic buttons. Note that for some fonts, certain style combinations might be
unavailable. In the example above, Forte Bold is unavailable so the Bold button is disabled.

Below the list of missing font/style combinations, there is an option to ‘Preserve original fonts and styles when saving
this template’ (selected by default). When selected, the original font names and styles will be written when the template
is saved. This is useful when you want to work on or edit another user’s template without irreversibly changing the
original fonts. It is also useful if you regularly create a template on Windows but then generate it on a Linux server.
When run in batch, ‘Preserve original fonts and styles when saving this template’ is switched on by default, meaning
that your original Windows font names will be used in any report and PowerPoint files generated (useful if you
normally then view the output back on Windows).

If you want to save the Font Substition dialog replacements as permanent changes to your template, simply uncheck the
‘Preserve original fonts and styles when saving this template’ option.

12.3.2 Font Mapping Table

REPORTER User manual Version 18.0, April 2021

Page 12.2

REPORTER uses a font mapping table to determine which font to offer as a suitable replacement for any given font. An
extract from the font mapping table is shown below:

font-family generic replacement replacement 2
Arial Special sans-serif Arial Helvetica
Airal Unicode MS sans-serif Arial Helvetica
Bahnschrift sans-serif
Baskerville Old Face serif
Batang serif
BatangChe serif
Bauhaus 93 fantasy
Beesknees ITC fantasy
Bell MT serif Bitstream Charter
Berlin Sans FB sans-serif
Bernard MT Condensedserif
Bon Apetit MT monospace
Book Antiqua serif Palatino Linotype DejaVu Serif
Bookman serif Bookman Old Style
Bookman Old Style serif Bookman
Bookshelf Symbol symbol
Bradley Hand ITC cursive
The font mapping table supplied in the REPORTER installation was compiled from lists of common font mapping
alternatives for Windows and Linux. For some fonts, one or two specifically named fonts are given as replacement and
replacement 2. Often, these are alternatives within a font family (e.g. Arial Unicode MS → Arial) or typical Linux
replacements for typical Windows fonts (e.g. Bell MT → Bitstream Charter). All of the fonts in the mapping table have
a generic replacement type. This can be one of:

• cursive
• fantasy
• monospace
• sans-serif
• serif
• symbol

These generic categories are the same as the widely recognised Cascading Style Sheets (CSS) font-family property
generic categories, with the addition of symbol (an extra generic cateogry added in REPORTER to aid support of the
legacy font Symbol).

If REPORTER encounters a missing font, it will search first for the replacement font, and then the replacement 2 font
(if either is specified). If neither of those fonts are available, it will search for the generic default. These are:

generic Windows Linux
cursive Monotype Corsiva URW Chancery L
fantasy Impact Impact
monospaceCourier New Courier 10 Pitch
sans-serif Arial Liberation Sans
serif Times New RomanNimbus Roman No9 L
symbol Symbol Standard Symbols L
Failing that, it will use the generic sans-serif default (Arial on Windows, Liberation Sans on Linux). This will happen if
the requested font is not featured in the font mapping table, or if one of the generic defaults is not installed.

The generic default fonts listed above can be customised via Oasys preferences (the oa_pref file).

The font mapping table is stored in CSV format at $OA_INSTALL/reporter_library/fonts/font_mapping.csv. Please
contact Oasys Ltd if you encounter repeated font substitution issues. Alternatively, you can edit it to customise your
own font mappings. You can also specify a font mapping CSV file at an alternative location to the installation location
by using the preference reporter*font_mapping_table.

12.4 Fonts in report output

Fonts are handled slightly differently in each of the supported output formats (PowerPoint, HTML and PDF).

12.4.1 PowerPoint

Font names and styles in the REPORTER template are written to the PowerPoint file. When the file is opened,

User manual Version 18.0, April 2021 REPORTER

Page 12.3

Microsoft PowerPoint will use the requested font name if available. If it is unavailable (e.g. if the PowerPoint file was
created by a user with access to different fonts from you) then PowerPoint will try to use a suitable alternative, or will
revert to the default font. This behaviour is no different from normal PowerPoint use.

If you create a template on Windows but then generate it in batch on a Linux server, ‘Preserve original fonts and styles
when saving this template’ is switched on by default. This means that your original Windows font names will be used in
the PowerPoint output (useful when the PowerPoint is viewed back on a Windows computer).

12.4.2 HTML

Font names in the REPORTER template are written to the font-family property in the HTML file using the information
in the font mapping table. For example, if you have selected Times New Roman, the following may appear in HTML:

font-family:"Times New Roman","Times","Nimbus Roman No9 L",serif;

Your web/HTML browser will try to display the text in Times New Roman, followed by the alternative fonts listed
(using similar logic to REPORTER). In this way, compatibility between systems is preserved as far as possible.

12.4.3 PDF

PowerPoint and HTML files just contain the names of the fonts used. However, fonts are only supported properly by
PDF readers if the relevant subset of the font file itself is embedded in the PDF file. When REPORTER writes PDF
output, it will only embed fonts with the appropriate permission bits. If you encounter an error when writing PDF files,
check that the fonts you have selected do not have licence restrictions on embeddability.

REPORTER User manual Version 18.0, April 2021

Page 12.4

13. Scripting
REPORTER has a JavaScript interpreter embedded in it to enable you to perform complex operations through scripts.
There are currently 3 ways to run a script in REPORTER.

• Running a library script installed in the /library/scripts directory.
• Inserting a script object onto a page. This does not create any direct output itself, but can create output which

other objects in the template use.
• Running a script from the command line with the -script option.

While most people associate JavaScript with web pages and html it is a full-featured programming language.
Additionally JavaScript is not Java! JavaScript is completely unrelated to Java.

Hopefully, enough people are familiar enough with JavaScript through the internet to be able to use it in REPORTER.
JavaScript has all of the functionality you would expect from a programming language, such as:

• variables (strings, numbers, booleans, objects, arrays)
• functions
• control flow statements such as if, while, do, for, switch etc.
• objects
• arrays
• regular expressions
• maths functions (sin cos, log, sqrt etc)

Additionally, REPORTER extends JavaScript by defining several new object classes specifically for REPORTER. A
detailed reference on these classes is given the JavaScript class reference appendix. Over time this functionality may be
extended. If you need to do something which is not possible with the current functionality then contact Oasys Ltd.

This chapter is not intended to be an introduction or a tutorial for JavaScript. There are many resources on the web for
that. However a few examples are given to show the sort of things that are possible with scripts. Additionally, there are
several good books on JavaScript. Highly recommended is JavaScript, The Definitive Guide by David Flanagan,
published by O’Reilly, ISBN: 0-596-00048-0.

In REPORTER 17.0 and earlier the implementation supported ECMAScript 5 features of JavaScript. In REPORTER
18.0 the implementation has been upgraded to support ECMAScript 6 (and newer) features of JavaScript.

Probably the best way to see what sort of things are easily possible in REPORTER using JavaScript is to look at the
library scripts which are given out with REPORTER in the /library/scripts directory. For more details of the scripts see
the library scripts appendix.

13.1 Example scripts

Example 1: Percent change in two values

Problem

Take two input variables VALUE and VALUE_BASE
Calculate new variable PERCENT = 100*(VALUE - VALUE_BASE) / VALUE_BASE)
Check if VALUE_BASE=0 and if so don’t do the division but set PERCENT to 100

Solution
var percent;

// Get variable values from template
var value = reporter.currentTemplate.GetVariableValue("VALUE");
var base_value = reporter.currentTemplate.GetVariableValue("VALUE_BASE");

// Check that the variables exist
if (value == null) throw Error("no VALUE variable\n");
if (base_value == null) throw Error("no VALUE_BASE variable\n");

// Extract numbers from variables
var v = parseFloat(value);

User manual Version 18.0, April 2021 REPORTER

Page 13.1

var bv = parseFloat(base_value);

// Check that the variables are valid numbers
if (isNaN(v)) throw Error("VALUE " + value + " is not a valid number\n");
if (isNaN(bv)) throw Error("VALUE_BASE " + base_value + " is not a valid
number\n");

// Check for zero (very small) base value
if (Math.abs(bv) < 1.0e-20)

percent = 100;
else

percent = 100*((v-bv)/bv);

// Create new variable PERCENT
var pvar = new Variable(reporter.currentTemplate, "PERCENT",

"Percent change", percent.toFixed(2));

Discussion

Variables in REPORTER are stored in each template so to get the values of the variables VALUE and VALUE_BASE we
need to get the template that we are using. The easiest way to do this is to use the currentTemplate property of the
reporter object that is created when REPORTER starts. Once we have the template there is a method
GetVariableValue that allows us to get a variable value.

GetVariableValue returns the value of the variable as a string or null is the variable does not exist. We can easily
check for this and terminate with an error if the variable is missing.

We want to get the numerical values of the variables and check if they are valid numbers. The standard javascript
functions parseFloat() and isNaN()allow us to do this.

To check if the value is zero (or very small) we use the standard Math.abs() function and calculate a value
accordingly.

To create a new variable we use the Variable constructor. This takes the template, the variable name, description and
value as arguments. Finally, maths in javascript is performed in double precision so the value we calculated will be
given to many significant figures. We are not interested in this so we use the standard Number.toFixed() function
to limit the number of decimal places to 2.

The source code for this example is available here.

Example 2: Magnitude from the three vector components

Problem

Given three variables X, Y and Z calculate the vector magnitude and store it in a variable LENGTH.

Solution
// Get variable values from template
var x = reporter.currentTemplate.GetVariableValue("X");
var y = reporter.currentTemplate.GetVariableValue("Y");
var z = reporter.currentTemplate.GetVariableValue("Z");

// Check that the variables exist
if (x == null) throw Error("no X variable\n");
if (y == null) throw Error("no Y variable\n");
if (z == null) throw Error("no Z variable\n");

// Extract numbers from variables
var X = parseFloat(x);
var Y = parseFloat(y);
var Z = parseFloat(z);

// Check that the variables are valid numbers
if (isNaN(X)) throw Error("X " + x + " is not a valid number\n");
if (isNaN(Y)) throw Error("Y " + y + " is not a valid number\n");

REPORTER User manual Version 18.0, April 2021

Page 13.2

if (isNaN(Z)) throw Error("Z " + z + " is not a valid number\n");

// Calculate magnitude
var length = Math.sqrt(X*X + Y*Y + Z*Z);

// Check for valid magnitude
if (isNaN(length)) throw Error("Bad vector magnitude\n");

// Create new variable LENGTH
var lvar = new Variable(reporter.currentTemplate, "LENGTH",

"vector magnitude", length);

Discussion

This is done using very similar methods to example 1. The only differences here are using the function Math.sqrt()
and we do not use the standard Number.toFixed() function as the length could be smaller than 2 decimal places.
Instead we could use Number.toPrecision() or Number.toExponential() if we wanted to format the
result instead of leaving it with several decimal places.

The source code for this example is available here.

Example 3: Setting a character variable according to the result of a
calculation

Problem

Input variable = PERCENT
If (abs(PERCENT) < 5.0) then new variable RESULT = ’OK’
otherwise ’not OK’

Solution
var result;

// Get variable value from template
var percent = reporter.currentTemplate.GetVariableValue("PERCENT");

// Check that the variable exist
if (percent == null) throw Error("no PERCENT variable\n");

// Extract number from variable
var p = parseFloat(percent);

// Check that the variable is a valid number
if (isNaN(p)) throw Error("PERCENT " + percent + " is not a valid number\n");

// Check for less than 5
if (Math.abs(p) < 5.0)

result = "OK";
else

result = "not OK";

// Create new variable RESULT
var rvar = new Variable(reporter.currentTemplate, "RESULT",

"is it OK?", result);

Discussion

This uses exactly the same methods as examples 1 and 2. The only difference is that the value used in the Variable
constructor is a character string, not a number.

The source code for this example is available here.

User manual Version 18.0, April 2021 REPORTER

Page 13.3

Example 4: Reading a T/HIS curve file and operating on it

Problem

input variables = CURVE_FILE and GATE_TIME.
read the T/HIS curve file, calculate average y-value of all points that occur after x-value=GATE_TIME. Return the
average in a new variable Y_AVERAGE

Solution
var count, line, x, y, X, Y, ytot, ny;

// Get variable values from template
var curveFile = reporter.currentTemplate.GetVariableValue("CURVE_FILE");
var gateTime = reporter.currentTemplate.GetVariableValue("GATE_TIME");

// Check that the variables exist
if (curveFile == null) throw Error("no CURVE_FILE variable\n");
if (gateTime == null) throw Error("no GATE_TIME variable\n");

// Check curve file exists
if (!File.Exists(curveFile)) throw Error("Curve file " + curveFile + " does not
exist\n");

// Check gateTime is a valid number
var t = parseFloat(gateTime);
if (isNaN(t)) throw Error("Gate time " + gateTime + " is not a valid number\n");

// create a new File object
var file = new File(curveFile, File.READ);

// Zero variables
count = 0;
ytot = 0;
ny = 0;

// Keep reading lines from the file until we get to the end of the file
while ((line = file.ReadLine()) != File.EOF)
{

if (line.charAt(0) == ’$’)
continue;

else if (line.match(/CONTINUE/))
break;

else
{

count++;

// Skip the four title lines at the top of the curve file
if (count > 4)
{

// strip leading and trailing apaces
line = line.replace(/^\s+/, "");
line = line.replace(/\s+$/, "");
result = line.match(/([0-9eE+\-\.]+)\s*,?\s*([0-9eE+\-\.]+)/);
if (result != null)
{

x = result[1];
y = result[2];

// Extract numbers
X = parseFloat(x);
Y = parseFloat(y);

// Check that they are valid numbers
if (isNaN(X)) throw Error("X " + x + " is not a valid

number\n");
if (isNaN(Y)) throw Error("Y " + y + " is not a valid

number\n");

REPORTER User manual Version 18.0, April 2021

Page 13.4

// If greater than gate time then include value
if (X > t)
{

ny++;
ytot += Y;

}
}

}
}

}

// Close the file
file.Close();

// If we have read any values calculate average and set variable
if (ny)
{

ytot /= ny;
// Create new variable LENGTH

var ave = new Variable(reporter.currentTemplate, "Y_AVERAGE",
"average Y value", ytot);

}

Discussion

This example uses the File class which REPORTER defines to read the T/HIS curve file. The function
File.Exists() can be used to test if a filename is valid. Then the File constructor, ReadLine() and
Close() functions are used to read the data from the file.

To extract the xy data pairs from the file we use a regular expression. This is perhaps the most complicated part of the
program. We want to be able to read x and y values that can be separated by a comma, one or more spaces, or both. If
we break the expression ([0-9eE+\-\.]+)\s*,?\s*([0-9eE+\-\.]+) into it’s constituent parts we get:

([0-9eE+\-\.]+). The [] groups characters that we allow to match. - and . have special meanings so they have
to be escaped with a \ character. So this means we are allowing any of the characters 0123456789eE+-. to match.
The [] specifies a single character so we use + to mean one or more. Finally, using () captures the expression so we
can extract the value that matched. So this will match values such as ’10’, ’1.2345’, ’1.0e+05’, ’-23.4’

\s*,?\s*. The \s matches a single space. A * means that it will try to match 0 or more spaces (as many as are
present). The , matches a comma and the ? means match either 0 or 1 of them. So this expression means "Match 0 or
more spaces followed by 0 or 1 commas followed by 0 or more spaces".

More details on regular expressions can be found in the Conditional formatting chapter as these can use regular
expressions.

Once we have extracted the data values with the regular expression we can easily calculate the average and make a new
variable using the techniques in the first 3 examples.

The source code for this example is available here.

User manual Version 18.0, April 2021 REPORTER

Page 13.5

REPORTER User manual Version 18.0, April 2021

Page 13.6

A. Command line arguments and oa_pref
options

A.1 Command line arguments

The following command line arguments are available in REPORTER. Unless stated otherwise, all command line
options are evaluated in the order that they are given.

Argument Description

file.orr or
-file=file.orr

Opens REPORTER file "file.orr"

-pdf=file.pdf Creates a pdf file "file.pdf"

-html=file.html Creates a HTML file "file.html"

-print=printer Prints report to printer

-varNAME[!#][::type]=value[::description] Creates a variable "NAME" in REPORTER with value
"value" and description "description".
::description and ::type can be omitted. If the
type is omitted it defaults to "General".
By default variables defined on the command line will
not be marked as temporary. If the variable name is
suffixed by ’#’ then the variable will be temporary. ’!’
can also be used to mark the variable as not being
temporary (although this is not needed as it is the
default).

-pptx=file.pptx (or -ppt=file.pptx) Create PowerPoint file "file.pptx".

-log=logfile Save the logfile REPORTER produces in the file
"logfile" as plain text after processing all the command
line options.

-loghtml=logfile Save the logfile REPORTER produces in the file
"logfile" as HTML after processing all the command
line options.

-generate Generate a report (previously read with -file
argument). Note: this is not required if you use any of
the -ps, -pdf, -html, or -pptx options (they do
this automatically)

-report=file.orr Saves generated report (previously read with -file
argument) to file.orr

-script=script.js Runs javascript script script.js.

-argfile=argfile Reads command line arguments from file argfile,
one argument per line. This could be useful if you want
to read lots of variables on the command line and you
reach the command line length limit.

-exit Automatically exit after processing all other command
line options

-iconise Start REPORTER iconised. This is useful for running
reporter from scripts when you want to continue
working on something else and you do not want the
REPORTER window to interfere.

-new Create a new template.

User manual Version 18.0, April 2021 REPORTER

Page A.1

-batch Batch mode. This stops REPORTER prompting the
user. For example, normally if an error occurs when
generating REPORTER brings up a warning box
allowing the user to look at the error. Giving the
-batch argument stops this.
Note that this does NOT make REPORTER run without
the user interface (see -iconise)

-oasys_batch On Windows run D3PLOT and T/HIS without any
windows being shown.

-combine Combine multiple report output into pdf, html or pptx.

REPORTER User manual Version 18.0, April 2021

Page A.2

So for example:
reporter -file=/job/templates/example.orr /

-pdf=/local/output.pdf /
-print=printer /
-varKEYWORD=/job/keyword/example.key::example deck /
-html=/local/example.html /
-exit

Will:
1. Load the file "/job/templates/example.orr" into REPORTER
2. Install a variable called KEYWORD with value "/job/keyword/example.key" and description "example deck"
3. Create a pdf file "/local/output.pdf"
4. Print the file on printer "printer"
5. Create a HTML file "/local/example.html"
6. automatically exit

A.2 oa_pref options

The "oa_pref" preferences file.

This file contains code-specific preferences that can be used to modify the behaviour of Oasys Ltd LS-DYNA
Environment products. It is optional and, where entries (or the whole file) are omitted REPORTER will revert to its
default settings.

"oa_pref" naming convention and locations

The file is called "oa_pref"

It is looked for in the following places in the order given:
• The site-wide admin directory ($OA_ADMIN)
• The site-wide "Oasys Ltd LS-DYNA Environment" directory ($OA_INSTALL)
• The user’s home directory: $HOME (Unix/Linux) or $USERPROFILE (Windows)

The first encountered file will be used, so this file can be customised for a particular job or user at will.
Files do not have to exist in any of these locations, and if none exists the programme defaults will be used.

On Unix and Linux:

$HOME on Unix and Linux is usually the home directory specified for each user in the system password file.
The shell command "printenv" (or on some systems "setenv") will show the value of this variable if set.
If not set then it is defined as the "~" directory for the user. The command "cd; pwd" will show this.

On Windows:

$USERPROFILE on Windows is usually C:\Documents and Settings\<user id>\
Issuing the "set" command from an MS-DOS prompt will show the value of this and other variables.

Generally speaking you should put
• Organisation-wide options in the version in $OA_INSTALL,
• User-specific options in $HOME / $USERPROFILE

User manual Version 18.0, April 2021 REPORTER

Page A.3

"oa_pref" file syntax

The syntax used for Primer is:

reporter*<keyword>: <argument>

for example:

reporter*default_item_width: 10.0

The rules for formatting are:

•The <programme>*<option>: string must start at column 1;

•This string must be in lower case, and must not have any spaces in it.

•The <argument> must be separated from the string by at least one space.

•Lines starting with a "#" are treated as comments and are ignored.

"oa_pref" options valid for REPORTER

Preference Type Description Valid arguments Default
date_format <string> Format for printing default date variable Day Month Day Year,

dd/mm/yyyy, mm/dd/yyyy,
yyyy/mm/dd

Day Month
Day Year

default_item_
height

<real> Default width given to item (mm) if it is not
dragged when creating

0.0 - 999.9 10.0

default_item_
width

<real> Default height given to item (mm) if it is not
dragged when creating

0.0 - 999.9 10.0

file_names <string> Controls output file names. LSTC = d3plot,
d3thdt, d3hsp etc, OASYS/ARUP = job.ptf,
job.thf job.otf etc

OASYS, ARUP, LSTC OASYS

maximise <logical>Maximise window when REPORTER started TRUE, FALSE TRUE

oasys_batch <logical>Run D3PLOT, PRIMER and T/HIS in batch
mode from REPORTER

TRUE, FALSE FALSE

The following options control font settings in REPORTER

Preference Type Description Valid arguments Default

default_fonts
cursive_font <string> Default cursive font in REPORTER ’Monotype Corsiva’

[Windows]; ’URW Chancery L’
[Linux]

fantasy_font <string> Default fantasy font in REPORTER ’Impact’ [Windows]; ’Impact’
[Linux]

monospace_
font

<string> Default monospace font in REPORTER Courier New [Windows];
Courier 10 Pitch [Linux]

sans_serif_
font

<string> Default sans-serif font in REPORTER ’Arial’ [Windows]; ’Liberation
Sans’ [Linux]

serif_font <string> Default serif font in REPORTER ’Times New Roman’
[Windows]; ’Nimbus Roman
No9 L’ [Linux]

symbol_font <string> Default symbol font in REPORTER ’Symbol’ [Windows]; ’Standard
Symbols L’ [Linux]

blacklisted_
fonts

<string> Comma-separated list of font filenames that
will not be processed by REPORTER because
they typically take too long to load

<none>

cache_
directory

<string> Font cache file directory $OA_HOME

REPORTER User manual Version 18.0, April 2021

Page A.4

font_
mapping_
table

<string> Font cache file directory $OA_INSTALL/reporter_
library/fonts/font_mapping.csv

graphical_user_interface
group_tools <logical>Group the Tool buttons into a single button

for each category
TRUE, FALSE FALSE

gui_theme <string> Graphical User Interface (GUI) theme LIGHT, DARK,
CLASSIC,
LEGACY

LIGHT

show_labels <logical>Show labels as well as icons on the Tool
buttons

TRUE, FALSE FALSE

grid
default_grid <real> Default grid spacing (mm) 0.0 - 999.9 5.0

default_snap <real> Default snap size (mm) 0.0 - 999.9 1.0

grid_colour <string> Default grid colour (HEX RRGGBB value) A9A9A9

grid_style <string> Default grid line style DOT, CROSS,
LINE

DOT

show_grid <logical>Show grid lines on page TRUE, FALSE FALSE

snap_to_grid <logical>Snap items to grid TRUE, FALSE TRUE

The following options control the library location in REPORTER

Preference Type Description Valid
arguments

Default

library_
directory

<string>User defined library directory for
REPORTER

$OA_INSTALL/reporter_
library

The following options control how objects are edited

Preference Type Description Valid arguments Default
coordinate_
method

<string> Method used for editing object
coordinates

Opposite corners, Width and height Width and
height

default_nudge <real> Default nudge distance (mm) 0.0 - 999.9 5.0

object_
reference_
corner

<string> Corner used as reference when
editing objects

TopLeft, TopRight, BottomLeft, BottomRight BottomLeft

revert_to_
select_tool

<logical>After creating a new item, the
cursor reverts to the Select tool

TRUE, FALSE TRUE

placement <string> Location for initial window on
multi-screen display

LEFT, RIGHT, BOTTOM, TOP, LEFT_
BOTTOM, LEFT_TOP, RIGHT_BOTTOM,
RIGHT_TOP

<none>

The following options control pdf output

Preference Type Description Valid
arguments

Default

image_downsampling
pdf_image_downsample <logical>Downsample images in pdf files TRUE, FALSE FALSE

pdf_image_downsample_
resolution

<integer>Resolution to downsample images to 10 - 3000 150

pdf_image_downsample_
threshold

<real> Factor above pdf_image_downsample_resolution before
downsampling is done

1.0 - 10.0 1.5

The following options control which other Oasys Ltd LS-DYNA Environment programmes are used by REPORTER

Preference Type Description Valid arguments Default
d3plot <string> D3PLOT executable to use <none>

d3plot_args <string> Extra command line arguments to pass to
D3PLOT

<none>

User manual Version 18.0, April 2021 REPORTER

Page A.5

d3plot_properties_
parts_only

<logical>Only read parts (ignore elements) when
reading properties file

TRUE, FALSE FALSE

d3plot_properties_pre_
blank

<logical>Pre blank all parts before reading properties
file

TRUE, FALSE FALSE

primer <string> PRIMER executable to use <none>

primer_args <string> Extra command line arguments to pass to
PRIMER

<none>

this <string> T/HIS executable to use <none>
this_args <string> Extra command line arguments to pass to

T/HIS
<none>

start_in <string> Directory to start REPORTER in <none>
time_format <string> Format for printing default time variable hh:mm:ss, hh:mm:ss A,

hh:mm, hh:mm A
hh:mm:ss

use_default_vars <logical>Use default vars in filenames when capturing
if possible

TRUE, FALSE TRUE

use_file_vars <logical>Use file/directory vars in filenames when
capturing if possible

TRUE, FALSE TRUE

The following options control unicode

Preference Type Description Valid arguments Default
cjk_default <string>Default language for ambiguous CJK

Kanji
Chinese, Japanese, Korean Japanese

pdf
chinese_
characters

<string>Style for chinese characters in pdf
files

Simplified, Traditional Traditional

japanese_font <string>Font for japanese characters in pdf
files

Kozuka Mincho Pro, Kozuka
Gothic Pro

Kozuka Mincho
Pro

Editing/changing preferences

There is currently no interactive preferences editor for REPORTER. To change preferences for REPORTER please use
the interactive preferences editor in Oasys Ltd SHELL, D3PLOT, T/HIS or PRIMER or edit the preferences file by
hand.

REPORTER User manual Version 18.0, April 2021

Page A.6

B. Library objects

B.1. Standard library programs

REPORTER has a number of buit in scripts to retrieve data from the keyword or otf files. New scripts can be added as
required. See Adding scripts to the library. By default REPORTER looks for library programs in the subdirectory
reporter_library/scripts in the directory where REPORTER is installed. Other directories can be added if
required. See User defined library directories for more details.

D3PLOT data file programs

Create a D3Plot data file from
a cvs file

Create a data file which is suitable for use by D3PLOT. The data will be
extracted from a csv (comma separated value) file. See section 6.1

Create a D3Plot data file from
generated data files

Create a data file which is suitable for use by D3PLOT. The data will be
extracted from reporter_variables files. See section 6.1

Error programs

Read PRIMER error file Read an error file produced by doing a model check in PRIMER and extract the errors

Keyword file programs

The following programs retrieve information from a keyword file.

Analysis title Prints the title of the analysis from the *TITLE card.

Comments between *KEYWORD and
*TITLE

Prints any comment lines in the keyword file between the *KEYWORD
and *TITLE keywords. The $ will be removed from each line.
An optional second argument can be used to impose a maximum limit
on the number of lines printed.

Create variables for parameters used in
analysis

Extract title and LCSS curve from
*MAT_PIECEWISE_LINEAR_
PLASTICITY_TITLE cards

Include files used in analysis Prints a list of all the include files used in the analysis. By default the
full pathname of include files is written. An optional second argument
can be used to give the names relative to the master file

Initial velocity card used in analysis Prints the first line of any *INITIAL_VELOCITY cards in the
keyword file. The script will also recursively look in include files for
*INITIAL_VELOCITY cards.

Timestep from *CONTROL_TIMESTEP
card

Reads the DT2MS value from the *CONTROL_TIMESTEP card

User manual Version 18.0, April 2021 REPORTER

Page B.1

NCAP

Create a US-NCAP graph Create a graph for US-NCAP star rating using HIC and chest acceleration (3ms clip)

OTF file programs

The following programs retrieve information from an OTF file.

Mass info

Added mass at end of
analysis

Prints the mass added to the analysis by mass-scaling at the end of the analysis. This will
also look at otf files generated from restarts (otf01, otf02 etc)

Added mass at start
of analysis

Prints the mass added to the analysis by mass-scaling at the start of the analysis.

Percentage final
added mass

Prints the percentage mass added to the analysis by mass-scaling at the end of the analysis.
This will also look at otf files generated from restarts (otf01, otf02 etc)

Percentage initial
added mass

Prints the percentage mass added to the analysis by mass-scaling at the start of the analysis.

Total mass in
analysis

Prints the mass of the model at the start of the analysis

Timestep info

Mass-scaled timestep (DT2MS) echo
in OTF file

Prints the DT2MS value from the *CONTROL_TIMESTEP card echoed to
the OTF file.

Smallest initial timestep Prints the element with the smallest timestep from the 100 smallest
timesteps. The line has the form:
<element_type> <element_number> timestep =
<timestep>

Timing info

Elapsed time for analysis Prints the total elapsed time for the analysis.

Start time for analysis Prints the date and time that the analysis finished.

Problem cycle for analysis Prints the cycle in the analysis that the problem terminated.

Problem time for analysis Prints the time in the analysis that the problem terminated.

Start time for analysis Prints the date and time that the analysis started (same as Analysis date).

Terminition time(ENDTIM)
echo in OTF file

Prints the termination time from the *CONTROL_TERMINATION card echoed to
the OTF file. This will also look at otf files generated from restarts (otf01, otf02
etc).

Other OTF programs

Analysis date Prints the date and time that the analysis started

Analysis precision Prints the precision (single/double) LS-DYNA used for the analysis

Analysis title Prints the title of the analysis echoed to the OTF file.

REPORTER User manual Version 18.0, April 2021

Page B.2

CPU time for analysis Prints the total CPU time used for the analysis. This will also look at otf files generated
from restarts (otf01, otf02 etc)

Check on the quality
of the run

Looks to see if the analysis terminated normally, if the initial and final added masses, the
total energy fluctuation and hourglass energy are below (user definable) limits. Either
prints OK or NOT OK.

Hostname analysis
run on

Prints the hostname of the machine the analysis was run on.

LS-Dyna version and
revision

Prints the version and revision of LS-DYNA used to run the analysis

Normal or Error
termination message

Prints N o r m a l or E r r o r termination message from LS-DYNA.

Number of CPUs used
for analysis

Prints the number of CPUs used for the analysis

OS analysis run on Prints the operating system level of the machine the analysis was run on.

Platform analysis run
on

Prints the platform of the machine the analysis was run on.

Pedestrian

Create a contour
image of HIC for
pedestrian HIC
results in a CSV
file

Creates an image showing contours of HIC from values in a csv file. See
http://www.oasys-software.com/dyna/en/downloads/extras.shtml#pedestrianarea for more
details.

Create a contour
image of HIC for
pedestrian HIC
results in reporter
variables files

Creates an image showing contours of HIC from values in reporter variables files. See
http://www.oasys-software.com/dyna/en/downloads/extras.shtml#pedestrianarea for more
details.

Variables

Read a REPORTER variable file Read a variables file written by another REPORTER template and install the
variables from it into the current template

Read variables from a CSV file Read variables from a CSV file (one variable per row).

Read variables from a CSV file
(data in rows)

Read variables from a CSV file (one variable per column)

User manual Version 18.0, April 2021 REPORTER

Page B.3

http://www.oasys-software.com/dyna/en/downloads/extras.shtml#pedestrianarea
http://www.oasys-software.com/dyna/en/downloads/extras.shtml#pedestrianarea

B.2. Standard library pages

REPORTER comes with some standard pages which can be installed from a library. They are shown in the image
below. The pages are available in landscape and portrait versions. The information on the page is the same in either
case.

Type Description

Checking page Information for the analysis extracted from the OTF file and an energy balance plot from T/HIS.

Include Files A list of any include files that were used in the analysis

Initial velocity
and last state

Images captured from D3PLOT of the initial velocity in the analysis and of the last state.

Standard page A blank page with a standard footer

Pedestrian area
from CSV

Information and a contour plot of HIC values for pedestrian HIC analyses. See
http://www.oasys-software.com/dyna/en/downloads/extras.shtml#pedestrianarea for more details.

Pedestrian area
from variables
files

Information and a contour plot of HIC values for pedestrian HIC analyses. See
http://www.oasys-software.com/dyna/en/downloads/extras.shtml#pedestrianarea for more details.

New pages can be added as required. See Adding pages to the library.

REPORTER User manual Version 18.0, April 2021

Page B.4

http://www.oasys-software.com/dyna/en/downloads/extras.shtml#pedestrianarea
http://www.oasys-software.com/dyna/en/downloads/extras.shtml#pedestrianarea

B.3. Standard library images

REPORTER comes with some standard images which can be installed from a library. They are shown in the image
below.

New images can be added as required. See Adding images to the library.

User manual Version 18.0, April 2021 REPORTER

Page B.5

B.4 Adding pages to the library

To add a new page layout to the library you need to:
• Create a the page in REPORTER.
• Export the page, saving it with extension .orp using Page->Export... (see exporting pages for more details).
• Copy the exported page into the /library/pages/ directory of your Oasys Ltd LS-DYNA Environment

installation.

It will then be shown the next time you start REPORTER. Note that the title of the page is what will be shown in the
library page tree so make sure that the page has a sensible title. This can be changed using Page->properties... (see
Changing the page properties for more details).

So, for example, if you have a page called ’New library page’ and you put it in the /library/pages/ directory you
will get:

If you want the page to be shown in a different branch of the tree then edit the file using a text editor and change the file
as follows. The first line should look like:
<REPORTER FILETYPE=’page’ VERSION=’92’>

If I wanted a branch in the tree to be ’Arup/Example library pages/portrait’ I would change this to
<REPORTER FILETYPE=’page’ VERSION=’92’ FOLDER=’Arup/Example library
pages/portrait’>

The page would then be shown in the tree as:

REPORTER User manual Version 18.0, April 2021

Page B.6

B.5 Adding scripts to the library

REPORTER has a javascript interpreter built into it. The scripts which are available in the library are run inside
REPORTER

To add a new script to the library save it into the /library/scripts/ directory of your Oasys Ltd LS-DYNA
Environment installation. Then you need to add the following special comment at the top of the file.
/* A description of your script
PROGRAM::<script_name>
DESC::<description>
FOLDER::<folder> (optional)
RETURN::<output_type>
[+-]ARG::<description>[::<default text>] (repeat for as many arguments as
required)
EXPAND_ARGS::false (optional)
END_INFO
*/

Note the /* at the beginning and */ at the end.
The lines have the following meaning:

PROGRAM <script_name> is the name of the javascript program. It should have the extension js

DESC <description> is a description of the program/script that will appear in the Insert program
from library window

FOLDER The programs in the Insert program from library window are shown in a ’tree’ view. <folder>
indicates which folder or ’branch’ of the tree the program is shown in. This is the same as for library
pages above.

RETURN <output_type> is the type of output the program returns. Currently the only value supported is
text.

ARG <description> is the argument description that will appear in the Insert program from library
window. Optionally the line can be prefixed with a + or - sign. If a - sign is used the argument is
optional. If a + sign is used (default) the argument is mandatory. Optionally an argument can be
followed by <default_text> which will be used as a default for the argument in the window.

EXPAND_
ARGS

Normally any variables in program arguments get expanded to their actual values and so you would
omit this line. There may be instances where you do not want to expand them. In this case use the line
EXPAND_ARGS::false (e.g. see data_file_from_variables.js).

END_
INFO

This line indicates the end of the informat and must be included

For example, the following lines
/*
PROGRAM::example.js
DESC::Example program
FOLDER::examples/programs
RETURN::text
ARG::argument1::default1
ARG::argument2
-ARG::argument3::default3
END_INFO
*/

would give the output:

User manual Version 18.0, April 2021 REPORTER

Page B.7

Rules for writing scripts

As REPORTER runs the scripts internally, they have to be written in a specific way. The following guidelines should
be used for writing custom scripts for REPORTER. If these guidelines are too restrictive or you do not want to work
this way, remember that you can write external programs for REPORTER in any language you choose. See Appendix E
for more details.

• Scripts must be written in javascript! REPORTER contains a javascript interpreter. Other languages are NOT
supported.

• To output text back to REPORTER use the output function.
• See the scripting chapter for javascript scripting.
• See the Javascript class reference appendix for extra javascript classes that REPORTER defines.

The scripts in the /library/scripts directory give an indication of what is possible with internal scripts. For more
details refer to the individual scripts.

The functionality will be extended over time. If you have requests for new features contact Oasys Ltd.

B.6 Adding images to the library

To add an image to the library copy it into the /library/images directory of your Oasys Ltd LS-DYNA Environment
installation. It will then be shown next time you start REPORTER. The image should be a bmp, jpg, png or gif image.

Note that if you add images to the library and then use the image in a template, the image will not work for installations
that do not have this library image. This is fine if you are using this internally in your company, but be careful when
giving a template to another person/company. The way round tis problem is to save your template as a report once it has
been generated. When you save as a report any images are embedded to this is then portable. See Outputting a
generated report for more details.

REPORTER User manual Version 18.0, April 2021

Page B.8

B.7 User defined library directories

By default REPORTER looks for library programs in a subdirectory reporter_library/scripts in the
directory where REPORTER is installed. Extra library programs can be added to this directory using the above logic.
However, this may not be possible due to file permissions. For this reason it is possible to specify another directory for
REPORTER to use an addition to the default directory. This can be done using the library_directory oa_pref
option. If this option is set then REPORTER will also treat this directory as a user defined reporter_library
directory.

Currently only scripts are supported as user library items (i.e. images and pages are currently not supported). User
scripts should be put in a subdirectory scripts of your library_directory.
For example, if library_directory is set to /home/user/reporter_library then you should put your
scripts in /home/user/reporter_library/scripts.

In future versions of REPORTER it may be possible to have user defined pages and images.

User manual Version 18.0, April 2021 REPORTER

Page B.9

B.8 Standard library templates

A number of standard templates have been created for automotive crash test protocols, included as part of the
installation. They are located in the subdirectory reporter_library/templates in the directory where
REPORTER is installed.

The templates can be selected from File → Open Library Template.... After asking a few questions to get
information needed to generate the report, the standard templates calculate results according to the protocol, e.g.
EuroNCAP Front Impact. They can also be run in a batch mode. In addition to the standard templates for automotive
crash test protocols, there is a general LS-DYNA template that can be used for any LS-DYNA model, and a general
LS-DYNA vehicle template that can be used for any vehicle analysis.

In general, the templates contain a front summary page showing the overall score for the test, with further pages
containing tables showing individual measurements and graphs.

The reports can be written out as PDF, HTML or PPTX files as normal.

There are two generic types of templates:
• Single analysis templates (Front Impacts, Side Impacts...)
• Multiple analysis templates (Pedestrian Head Impacts, Pedestrian Leg Impacts)

The way they work is slightly different, but generally they follow the same process. The following sections will
describe how to use the templates. There is also additional documentation for the new Euro NCAP MPDB templates:

• REPORTER Instructions
• Barrier face deformation calculation
• Occupant Load Criterion calculation

The latest templates

REPORTER User manual Version 18.0, April 2021

Page B.10

Template Changes from previous version

C-NCAP MPDB 2022
Compatibility Assessment

New template. Designed to work with the Arup Cellbond MPDB Shell Model.

C-NCAP MPDB 2023
Compatibility Assessment

New template. Designed to work with the Arup Cellbond MPDB Shell Model.

C-NCAP Front ODB Impact
2018

Now includes rear passenger.

Euro NCAP Front FFB Impact
2017

Now includes front passenger.

Euro NCAP Front ODB Impact
2017

Final score calculation depends on capping limits being exceeded as opposed to
the lower performance limits from 2015.

Euro NCAP Side MDB Impact
2020

Corrections to some injury calculations and correction to the door modifier in
the overall score calculation.

Euro NCAP Side Pole Impact
2020

Corrections to some injury calculations and correction to the door modifier in
the overall score calculation.

Euro NCAP Head Impact 2020 Major overhaul: a new landscape layout, HIC area calculation is now done with
the PRIMER HIC Area Calculator, and band sensitivity results are presented.

Euro NCAP Leg Impact 2020 A new landscape layout.

Euro NCAP MPDB Impact 2020
Compatibility Assessment

New template. Designed to work with the Arup Cellbond MPDB Shell Model.

Euro NCAP MPDB Impact 2023
Compatibility Assessment

New template. Designed to work with the Arup Cellbond MPDB Shell Model.

General LS-DYNA Model

General LS-DYNA Vehicle
Model

GTR Head Impact 2020 Major overhaul: a new landscape layout, HIC area calculation is now done with
the PRIMER HIC Area Calculator, and band/area sensitivity results are
presented.

IIHS Front ODB Impact 2017 No major changes from the 2016 template.

IIHS Front ODB Impact 2017 –
Structure Only

IIHS Front SOB Impact 2017 No major changes from the 2016 template.

IIHS Front SOB Impact 2017 –
Structure Only

IIHS Side MDB Impact 2017 No major changes from the 2016 template.

IIHS Side MDB Impact 2017 –
Structure Only

JNCAP Leg Impact 2018

KNCAP Leg Impact 2019

USNCAP Front FFB Impact 2015

USNCAP Side MDB Impact 2015

User manual Version 18.0, April 2021 REPORTER

Page B.11

USNCAP Side Pole Impact 2015

Assumptions

The following assumptions are made about the models to be post-processed. If they are not true of your model then the
templates may not work correctly:

• Humanetics dummies should be used for any occupants.
• Intrusion measurements are made with springs.

Use *ELEMENT_DISCRETE with a low stiffness value on the *MAT_ SPRING_ELASTIC card.

Node 1 should be attached to the structure that is being measured and Node 2 should be attached to a nodal rigid
body where there will be no deformation (normally at the rear of the vehicle). For example, to measure the
steering column intrusion in an ODB impact:

One spring will be needed for each intrusion measurement. For the case above there are three springs overlaying
each other: one for intrusions in X, one in Y and one in Z. A vector should be used to define the orientation and
should be aligned with the X, Y or Z global axis depending on the measurement being made.

B.8.1 Single analysis templates

All the single analysis templates follow the same process, so we’ll use the EuroNCAP Front ODB Impact template as an
example for how to use them. The section will describe how to run them interactively using the menus in REPORTER,
but it is also possible to run them in batch mode.

REPORTER User manual Version 18.0, April 2021

Page B.12

Select the template

Use the File → Open Library Template menu and select a template from the Automotive tab (see 3.2 Reading an
existing template or report for more details).

Generate the template

After selecting the template REPORTER should prompt you to select the keyword file of the job you want to
post-process:

After pressing ’OK’ a file selector is mapped for you to select the keyword file.

In order to correctly extract the results needed for the protocol the template needs model information such as Node IDs,
Beam IDs, the unit system, etc. This needs to be supplied to the template either from a .CSV file or from comments
written in the keyword file after the *END keyword. The template will help you to create this information (you should
only need to do this ONCE for a particular vehicle programme so long as IDs remain the same).

The template will scan the keyword file to see if it contains the required information after the *END keyword. If it does
you will be asked if you want to use it:

If you press ’Yes’ then the next few questions will not be asked.

If you press ’No’ or the keyword file doesn’t contain the required information after the *END keyword you will be asked
if you have a .CSV file with the information instead:

If you have a .CSV file, press ’Yes’ and select it in the file selector.

If you press ’No’ REPORTER will inform you that it will start PRIMER so you can select the required information

User manual Version 18.0, April 2021 REPORTER

Page B.13

interactively:

After pressing ’OK’ PRIMER will start, the model will be read in and a window will be open for you to interactively
select the required information:

You can select the information either by picking the entities in the graphics window, typing it in to the textbox or
selecting it from a list of *DATABASE_HISTORY_XXXX entities in the popup menu. If they are defined with the _ID
option then the names will be used instead of the numbers, e.g.

After you have selected the information you can need to save it either as a .CSV file or post *END data. Next time you
use the template, perhaps on a slightly modified model, you should be able to reuse this data without having to go back
into PRIMER each time (so long as the IDs of entities you want to extract data from stay the same).

REPORTER User manual Version 18.0, April 2021

Page B.14

PRIMER will close and REPORTER will ask for the directory containing the analysis results (which may be different
to the location of your kewyord file).

Press OK and select the directory.

Finally you will be asked for a directory where REPORTER should write any images.

Press OK and select the directory.

REPORTER should now have all the information it needs. T/HIS will load and carry out the post-processing according
to the selected protocol, generating the required graphs. Once this is finished, REPORTER will ask a final question
asking you how/if you want to save the report:

If you don’t want to save the report, just press ’Cancel’. If you do, select the format(s) you want to save it in, press ’OK’
and select where you want to save it in the file selector that will pop up.

The final report should look something like this, with a front summary page showing the protocol scores in tables and
as an image; a page to change subjective modifiers that can’t be calculated automatically from the analysis; tables and
graphs showing the analysis results and protocol scores in more detail:

User manual Version 18.0, April 2021 REPORTER

Page B.15

Subjective modifiers

In general most data can be extracted automatically from the analysis results and then processed according to the
protocol. However, some data is subjective and requires the user to look at the analysis results and manually set the
values.

For example, the EuroNCAP front ODB impact test has some modifiers which are applied as penalty points to the
calculated scores, e.g. if an airbag doesn’t deploy correctly a 1 point penalty is applied.

These subjective values can be set on the second page of the report after it has been generated. This lists all the
subjective modifiers and their current value and a button to edit them:

REPORTER User manual Version 18.0, April 2021

Page B.16

Press the ’Set Modifiers’ button and then set the values in the window that pops up:

User manual Version 18.0, April 2021 REPORTER

Page B.17

After setting the values and pressing ’OK’ the template will recalculate the scores. This allows you to carry out ’what-if’
type analyses.

General LS-DYNA Model template

The General LS-DYNA Model template is a basic single analysis template that can be run for any LS-DYNA model.

As with any of the single analysis templates, REPORTER will prompt you to select the keyword file of the job you
want to post-process, the directory containing the results, and the directory to which you wish to write images. It will
then scan the *.otf (or d3hsp) file in order to provide diagnostic information in a summary table. The information
includes the LS-DYNA version used, the computation time and the termination status.

REPORTER will also use the results files to produce an energy balance plot and to produce images of the model at the
first and last plot states. These basic report data serve as a quick method for checking the succesful outcome of an
LS-DYNA simulation.

General LS-DYNA Vehicle Model template

The General LS-DYNA Vehicle Model template is the same as the General LS-DYNA Model template, with the
addition of an intrusion plot output. The intrusion plot shows the deformation of selected parts (e.g. dashboard or driver
door components) relative to fixed reference nodes (e.g. three nodes on the undamaged body structure on the far side of
the vehicle).

If you have not previously saved the information required to set up the intrusion plot, REPORTER will inform you that
it will start PRIMER so you can select the required information interactively. You will need to define:

• Vehicle Impact

REPORTER User manual Version 18.0, April 2021

Page B.18

Choose either Front Impact or Side Impact. This controls the camera angle for the intrusion plot. Front Impact
assumes that the impact is in the global +X or -X direction whereas Side Impact assumes global +Y or -Y
direction.

• Intrusion Parts

Select the parts that will be shown in the intrusion plot. Remaining parts will be blanked.
• Ref Nodes

Displacement magnitude will be plotted relative to a triad of three nodes using D3PLOT’s REFERENCE_NODE
tool (refer to 6.3.5 in the D3PLOT manual). Select three nodes on a relatively undeformed part of the structure
on the far side of the vehicle from the impact, with nodes N1 and N2 aligned with the impact direction.

B.8.2 Multiple analysis templates

For the pedestrian impact protocols multiple analyses are run with impacts on different parts of the vehicle. The scores
for each impact are combined to calculate an overall score for the test.

There are two multiple analysis type templates:
• Pedestrian headform impacts
• Pedestrian legform impacts

Generally they follow the same process, but they are different enough that we’ll go through an example of how to use
them both.

The section will describe how to run them interactively using the menus in REPORTER, but it is also possible to run
them in batch mode.

User manual Version 18.0, April 2021 REPORTER

Page B.19

Pedestrian headform

Select the template

Use the File → Open Library Template menu and select a template from the Automotive tab (see 3.2 Reading an
existing template or report for more details).

Generate the template

After selecting the template REPORTER should prompt you to select the .lst file for the adult head impacts.

The .lst file is a simple text file that lists the file locations of each model keyword file. If you use PRIMERs model build
process to create the models it is created automatically. If not, you can create it manually or as part of your own process
for building the models. The names of the models are important as they tell the template the location/zone of the
impactor. If you have used the pedestrian markup script in PRIMER, they will be named correctly.

After pressing ’OK’ a file selector is mapped for you to select the .lst file. If you do not want to process the adult head
impacts or you don’t have a .lst file, press cancel in the file selector.

In order to correctly extract the results needed for the protocol the template needs model information such as Node IDs
and the unit system etc. This needs to be supplied to the template from comments written in the .lst file and the template
will help you to create this information.

The template will scan the .lst file to see if it contains the required information. If it does you will be asked if you want
to use it:

If you press ’No’ or the .lst file does not contain the required informtion REPORTER will inform you that it will start
PRIMER so you can select the required information interactively:

After pressing ’OK’ PRIMER will start, the first model in the .lst file will be read in and a window will be open for you
to interactively select the required information. Select the information in the same way as described in the single
analysis template section.

REPORTER User manual Version 18.0, April 2021

Page B.20

On returning to REPORTER you should be prompted to select the .lst file for the child head impacts. This follows the
same process as for the adult .lst file. If you do not want to process the child head impacts or you don’t have a .lst file,
press cancel in the file selector. So long as you have selected at least one .lst file, the template should generate.

Finally you will be asked for a directory where REPORTER should write any images.

Press OK and select the directory.

REPORTER should now have all the information it needs. T/HIS will load and carry out the post-processingg
according to the selected protocol, generating the required graphs. Once this is finished, REPORTER will ask a final
question asking you how/if you want to save the report:

If you don’t want to save the report, just press ’Cancel’. If you do, select the format(s) you want to save it in, press ’OK’
and select where you want to save it in the file selector that will pop up.

The final report should look something like this, with a front summary page showing the protocol scores in tables and
as an image; a pages to set default scores; a page to set test point and blue zone scores; and pages of head acceleration
graphs for each impact point:

User manual Version 18.0, April 2021 REPORTER

Page B.21

Set default scores

Some points do not need to be tested and can be defaulted either to Green (max score) or Red (min score).

You can manually set default scores on the second page by pressing the ’Set Defaults’ button.

REPORTER User manual Version 18.0, April 2021

Page B.22

This will bring up a window where you can set the default values either to GREEN, RED or leave blank.

User manual Version 18.0, April 2021 REPORTER

Page B.23

Once you have set the values and pressed ’OK’ the scores will update automatically.

Alternatively, you can get the template to automatically default points to GREEN when the LST file is read in. This
requires a special comment ’$DG:’ before each file location. e.g.
$DG:C:\Model\A_1_1\a_1_1.key
C:\Model\A_1_2\a_1_2.key
$DG:C:\Model\A_1_3\a_1_3.key

will default the score for the 1st and 3rd model to GREEN and will not attempt to read any results for them.

This can be done automatically if you use the pedestrian markup script in PRIMER. You can select an area where you
want the points to default to green and PRIMER will add the ’DG:’ comments to the correct lines in the LST file.

Test points

The results from the analyses are scaled using a correction factor, which is calculated based on results from a number of
real world verification tests. The correction factor is calculated by dividing the actual tested total score of the
verification points by the predicted total points of these verification points.

The correction factor is then applied to all points execept for defaulted and blue points.

To specify the test points press the ’Set Test Points’ button on the third page:

REPORTER User manual Version 18.0, April 2021

Page B.24

This will bring up a window where you can enter the test point row, column and value (HIC) for up to 20 test points:

User manual Version 18.0, April 2021 REPORTER

Page B.25

Once you have set the values and pressed ’OK’ the scores will update automatically.

If no test points are specified a correction factor of 1.0 is used.

Blue zones

Some impact point locations may give unpredictable results when analysed and in these cases test data can be used
instead. These are specified as blue points, either singly or grouped together in adjacent pairs to form a blue zone. Up to
8 blue zones can be specified. The test results of the blue points are applied to each point in the zone.

To specify blue points press the ’Set Blue Zone’ button on the third page:

REPORTER User manual Version 18.0, April 2021

Page B.26

This will bring up a window where you can enter the test point row, column and value (HIC) for up to 8 blue zones:

User manual Version 18.0, April 2021 REPORTER

Page B.27

Once you have set the values and pressed ’OK’ the scores will update automatically.

Pedestrian legform

Select the template

Use the File → Open Library Template menu and select a template from the Automotive tab (see 3.2 Reading an
existing template or report for more details).

Generate the template

After selecting the template REPORTER should prompt you to select the .lst file for the lower leg impacts.

The .lst file is a simple text file that lists the file locations of each model keyword file.If you use PRIMERs model build
process to create the models it is created automatically. If not, you can create it manually or as part of your own process
for building the models. The names of the models are important as they tell the template the location/zone of the
impactor. If you have used the pedestrian markup script in PRIMER, they will be named correctly.

After pressing ’OK’ a file selector is mapped for you to select the .lst file. If you do not want to process the lower leg
impacts or you don’t have a .lst file, press cancel in the file selector.

In order to correctly extract the results needed for the protocol the template needs model information such as Node IDs
and the unit system etc. This needs to be supplied to the template from comments written in the .lst file and the template
will help you to create this information.

The template will scan the .lst file to see if it contains the required information. If it does you will be asked if you want
to use it:

REPORTER User manual Version 18.0, April 2021

Page B.28

If you press ’No’ or the .lst file does not contain the required informtion REPORTER will inform you that it will start
PRIMER so you can select the required information interactively:

After pressing ’OK’ PRIMER will start, the first model in the .lst file will be read in and a window will be open for you
to interactively select the required information. Select the information in the same way as described in the single
analysis template section.

On returning to REPORTER you should be prompted to select the LST file for the upper leg impacts. This follows the
same process as for the lower .lst file. If you do not want to process the upper leg impacts or you don’t have a .lst file,
press cancel in the file selector. So long as you have selected at least one .lst file, the template should generate.

Finally you will be asked for a directory where REPORTER should write any images.

Press OK and select the directory.

REPORTER should now have all the information it needs. T/HIS will load and carry out the post-processingg
according to the selected protocol, generating the required graphs. Once this is finished, REPORTER will ask a final
question asking you how/if you want to save the report:

If you don’t want to save the report, just press ’Cancel’. If you do, select the format(s) you want to save it in, press ’OK’
and select where you want to save it in the file selector that will pop up.

User manual Version 18.0, April 2021 REPORTER

Page B.29

The final report should look something like this, with a front summary page showing the protocol scores in tables and
as an image and pages of tabulated results and graphs for each impact point:

B.8.3 Running the templates in batch mode

As well as running the templates interactively they can also be run in batch mode, in which case the user is not
prompted with questions, but must supply the information through a command line argument.

To run a template in batch, type in the following at a command prompt:

reporter18 .exe -batch -file=template_name -varTEMPLATE_ARGS=args_filename

[Add the -pdf, -html, -pptx command line arguments to write the report out in the format you want].

Where:

template_
name

The full path and filename of the template you want to use, e.g. C:\oasys18 \reporter_
library\templates\EuroNCAP_Front_ODB_Impact_2017.ort

Note that you should enclose it in "s if the path contains any spaces.

args_
filename

The full path and filename of the arguments file, e.g. C:\my_directory\arguments_file.txt

Note that you should enclose it in "s if the path contains any spaces.
The args_filename is a CSV file containing the arguments to pass to the template in comma separated ’arg_name’,’arg_
value’ pairs. For the EuroNCAP Front ODB Impact template the file can contain the following:
KEYWORD_FILE,<keyword_filename>
CSV_FILE,<csv_filename> [OPTIONAL]
RESULTS_DIR,<results_directory> [OPTIONAL]
IMAGES_DIR,<images_directory> [OPTIONAL]

As with the interactive case where the template behaves differently depending on the users response to the questions,
the interactive case will work differently depending on what arguments are supplied, e.g.:

REPORTER User manual Version 18.0, April 2021

Page B.30

KEYWORD_FILE
specified

Post *END data in keyword
file

CSV_FILE
specified

Outcome

No - - Template will not run
Yes No No Template will not run
Yes Yes No Template will run using the post *END

data
Yes Yes Yes Template will run using the CSV file

data
Yes No Yes Template will run using the CSV file

data

If RESULTS_DIR or IMAGES_DIR are not specified then they are set to the keyword file directory.

A description for each argument is given in the table below:

Argument Description

CSV_FILE Filename of the CSV file containing the extra data (entity IDs, etc). For single analysis
templates, if CSV_FILE is not specified then the data needs to be specified in the keyword file
as post-*END data.

IMAGES_DIR Model keyword filename.

RESULTS_DIR Directory to look for results. If this is not specified the template will look for results in the same
directory as the keyword file.

ADULT_LST Adult .lst filename. For head impact templates, at least one of ADULT_LST or CHILD_LST
needs to be specified.

CHILD_LST Adult .lst filename. For head impact templates, at least one of ADULT_LST or CHILD_LST
needs to be specified.

LOWER_LEG_
LST_FILE

Lower leg .lst filename. For leg impact templates, at least one of LOWER_LEG_LST_FILE or
UPPER_LEG_LST_FILE needs to be specified.

UPPER_LEG_
LST_FILE

Upper leg .lst filename. For leg impact templates, at least one of LOWER_LEG_LST_FILE or
UPPER_LEG_LST_FILE needs to be specified.

The list of arguments required for each template is given in the table below. Note that for the single analysis templates,
CSV_FILE is required unless the input data is stored in your keyword file as post-*END data.

Template Required arguments Optional arguments

C-NCAP Front ODB Impact 2018 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

Euro NCAP Front FFB Impact 2017 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

Euro NCAP Front ODB Impact 2017 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

Euro NCAP Head Impact 2020 (At least one of ADULT_LST and
CHILD_LST)

ADULT_LST, CHILD_LST,
IMAGES_DIR

Euro NCAP Leg Impact 2020 (At least one of ADULT_LST and
CHILD_LST)

ADULT_LST, CHILD_LST,
IMAGES_DIR

Euro NCAP Side MDB Impact 2020 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

User manual Version 18.0, April 2021 REPORTER

Page B.31

Euro NCAP Side Pole Impact 2020 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

General LS-DYNA Vehicle Model KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

GTR Head Impact 2020 (At least one of ADULT_LST and
CHILD_LST)

ADULT_LST, CHILD_LST,
IMAGES_DIR

IIHS Front ODB Impact 2017 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

IIHS Front ODB Impact 2017 –
Structure Only

KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

IIHS Front SOB Impact 2017 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

IIHS Front SOB Impact 2017 –
Structure Only

KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

IIHS Side MDB Impact 2017 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

IIHS Side MDB Impact 2017 –
Structure Only

KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

JNCAP Leg Head Impact 2018 (At least one of ADULT_LST and
CHILD_LST)

ADULT_LST, CHILD_LST,
IMAGES_DIR

KNCAP Leg Head Impact 2019 (At least one of ADULT_LST and
CHILD_LST)

ADULT_LST, CHILD_LST,
IMAGES_DIR

USNCAP Front FFB Impact 2015 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

USNCAP Side MDB Impact 2015 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

USNCAP Side Pole Impact 2015 KEYWORD_FILE CSV_FILE, IMAGES_DIR,
RESULTS_DIR

REPORTER User manual Version 18.0, April 2021

Page B.32

C. FAQ
This section gives answers to some common questions which have been asked about REPORTER. Over time this FAQ
will be extended. If the answer to your question is not here then contact Oasys Ltd for support.

C.1 Running REPORTER

1.1 Can I run REPORTER from the command line?
1.2 Do I need a license to run REPORTER?
1.3 How do I get REPORTER to run automatically after my LS-DYNA job finishes?
1.4 How do I run REPORTER in batch mode?

C.2 Generating output

2.1 None of my scripts/programs work on windows

C.3 Extending REPORTER

3.1 Can I write my own scripts?
3.2 Can I add new scripts/images/pages to the library?

C.4 Other questions

4.1 Text appears to be bigger/smaller on the screen than in a postscript/pdf file
4.2 REPORTER doesn’t have xxxx capability. Can you add it?

Answers

1.1 Can I run REPORTER from the command line?
Yes you can. See appendix A for a list of command line options.

1.2 Do I need a license to run REPORTER?
To run REPORTER you need a valid license for REPORTER or alternatively a valid license for D3PLOT,
T/HIS or PRIMER. To get maximum benefit from REPORTER, D3PLOT and T/HIS are required.

1.3 How do I get REPORTER to run automatically after my LS-DYNA job finishes?
Use the Oasys Ltd shell to submit your job which has options to allow you to run REPORTER automatically.

1.4 How do I run REPORTER in batch mode?
REPORTER does not have a batch mode which means that it requires a display to be able to draw things on. In
reality this is not too much of a problem as D3PLOT will also need a display. You can give a DISPLAY that
REPORTER can display back to. This can be a computer which is left logged in or a virtual display using xvfb.
Additionally to stop REPORTER from pausing to ask for confirmations you should use the -batch command
line argument.

2.1 None of my scripts/programs work on windows
1. Do you have perl, python, Tcl (or whatever your script is written in) installed on your machine?
2. Do you have the correct file extensions and associations for this type of file. e.g. for perl the script

should be ’script.pl’ and this should be associated with the perl executable on your machine.
3. Do any of the program arguments have spaces in them? If so you may need to quote them. For example:

%MYPATH%\scripts\title.pl "C:\my directory\my file with spaces.key"

3.1 Can I write my own scripts?
Yes. See chapter13 and appendix D for more details.

3.2 Can I add new scripts/images/pages to the library?
Yes. See appendix B for more details.

User manual Version 18.0, April 2021 REPORTER

Page C.1

4.1 Text appears to be bigger/smaller on the screen than in a postscript/pdf file.
This can be a problem on Unix machines. Unlike windows machines which use true type fonts, fonts on unix
are stored as bitmaps. Only certain sizes are actually available. If you request a size that is not available the one
that is displayed could be the wrong size.
To get a list of the fonts (and sizes) on your unix machine use the command xlsfonts.
If you are trying to see how much space some text will take up in the presentation view try zooming into the
page. This may help.

4.2 REPORTER doesn’t have xxxx capability. Can you add it?
We will try. Please contact Oasys Ltd support to discuss it.

REPORTER User manual Version 18.0, April 2021

Page C.2

D. JavaScript class reference
This appendix documents the javascript classes that REPORTER uses for scripting. It is not an introduction to scripting.
See chapter13 for that.

REPORTER extends the javascript interpreter with the following new classes.

Class Description

Colour The Colour class defines colours in REPORTER.

File The File class allows you to read and write from text files in REPORTER.

Image The Image class allows you to create bitmaps in REPORTER.

Item The Item class gives access to items in REPORTER.

Page The Page class gives access to pages in REPORTER.

Reporter The Reporter class is the root class for objects, properties etc in REPORTER.

Template The Template class gives access to templates in REPORTER.

Variable The Variable class gives access to variables in REPORTER.

In addition REPORTER also adds some new methods to the global Javascript object.

User manual Version 18.0, April 2021 REPORTER

Page D.1

global class

The global class is the root object in Javascript. More...

The REPORTER JavaScript API provides many class constants, properties and methods. For Arup to be able to extend
and enhance the API in the future any constant, property or method names beginning with a lowercase or uppercase
letter are reserved.
If you need to add your own properties or methods to one of the existing classes then to avoid any potential future
conflict you should ensure that the name begins with either an underscore (_) or a dollar sign ($) or the name is prefixed
with your own unique identifier.
For example if company ’ABC’ need to add a property called ’example’ then to avoid any potential future conflict use
one of:

• _example
• $example
• ABC_example

Class functions
• Batch()
• Debug(string[Any valid javascript type])
• Exit()
• GetCurrentDirectory()
• LogError(arg1[Any valid javascript type], ...[Any valid javascript type])
• LogPrint(arg1[Any valid javascript type], ...[Any valid javascript type])
• LogWarning(arg1[Any valid javascript type], ...[Any valid javascript type])
• Output(string[Any valid javascript type])
• SetCurrentDirectory(directory[string])
• System(string[Any valid javascript type])
• debug() [deprecated]
• exit() [deprecated]
• output() [deprecated]

global properties

Name Type Description

reporter Reporter This property is deprecated in version 12.0. It is only provided to keep old scripts working. We
strongly advise against using it in new scripts. Support may be removed in future versions.
[deprecated]

Detailed Description

When Reporter is started a single global class object is created. All of the standard JavaScript functions and properties
are available from it.
In addition an instance of a Reporter class is available, from the global reporter property. The reporter object allows you
to access the properties and templates used in Reporter.

Details of functions

Batch() [static]

Description

This method can be used to test whether REPORTER is running in batch mode or not.

Arguments

No arguments

REPORTER User manual Version 18.0, April 2021

Page D.2

Return type

true/false
Example

To check if REPORTER is running in batch mode
if (Batch()) { do something }

Debug(string[Any valid javascript type]) [static]

Description

Print a string to log file for debugging. Anything that you call the debug method on will be ’printed’ to the log file
window. Note that a carriage return will automatically be added.

Arguments

Name Type Description

string Any valid javascript type The string/item that you want to debug

Return type

No return value
Example

To print string "Hello, world!" to the debug log file
Debug("Hello, world!");

Exit() [static]

Description

Stop execution and exit from script

Arguments

No arguments

Return type

No return value
Example

Exit from script with
Exit();

GetCurrentDirectory() [static]

Description

Return the current working directory for REPORTER.

User manual Version 18.0, April 2021 REPORTER

Page D.3

Arguments

No arguments

Return type

string

Example

To return the current directory
var dir = GetCurrentDirectory();

LogError(arg1[Any valid javascript type], ...[Any valid javascript type]) [static]

Description

Print an error to log file. Anything that you print will be output to the log file window in bold red text. Note that a
carriage return will automatically be added.

Arguments

Name Type Description

arg1 Any valid javascript type The string/item that you want to print

... Any valid javascript type The string/item that you want to print

Return type

No return value
Example

To give error "Error: something has gone wrong" to the log file
LogError("Error: something has gone wrong");

Any number of arguments can be given. They will be concatenated. e.g.
LogError("The value of i is ", i, " elephants");

LogPrint(arg1[Any valid javascript type], ...[Any valid javascript type]) [static]

Description

Print a string to log file. Anything that you print will be output to the log file window. Note that a carriage return will
automatically be added.
Arguments

Name Type Description

arg1 Any valid javascript type The string/item that you want to print

... Any valid javascript type The string/item that you want to print

Return type

No return value

REPORTER User manual Version 18.0, April 2021

Page D.4

Example

To print string "Hello, world!" to the log file
LogPrint("Hello, world!");

Any number of arguments can be given. They will be concatenated. e.g.
LogPrint("The value of i is ", i, " elephants");

LogWarning(arg1[Any valid javascript type], ...[Any valid javascript type])
[static]

Description

Print a warning to log file. Anything that you print will be output to the log file window in red text. Note that a
carriage return will automatically be added.

Arguments

Name Type Description

arg1 Any valid javascript type The string/item that you want to print

... Any valid javascript type The string/item that you want to print

Return type

No return value
Example

To give warning "Warning: something has gone wrong" to the log file
LogWarning("Warning: something has gone wrong");

Any number of arguments can be given. They will be concatenated. e.g.
LogWarning("The value of i is ", i, " elephants");

Output(string[Any valid javascript type]) [static]

Description

Output a string from a script. Note that a carriage return is not automatically added.

Arguments

Name Type Description

string Any valid javascript type The string/item that you want to print

Return type

No return value
Example

To output string "Hello, world!" with a carriage return:
Output("Hello, world!\n");

User manual Version 18.0, April 2021 REPORTER

Page D.5

SetCurrentDirectory(directory[string]) [static]

Description

Set the current working directory for REPORTER.

Arguments

Name Type Description

directory string The directory that you want to change to

Return type

true if successful, false if not
Example

To set the current directory to C:\temp
var status = SetCurrentDirectory("C:\\temp");

System(string[Any valid javascript type]) [static]

Description

Do a system command outside REPORTER.

Arguments

Name Type Description

string Any valid javascript type The system command that you want to do

Return type

integer (probably zero if command successful but is implementation-dependant)

Example

To make the directory "example"
System("mkdir example");

debug() [static] [deprecated]

This function is deprecated in version 12.0. It is only provided to keep old scripts working. We strongly advise against
using it in new scripts. Support may be removed in future versions.

Description

Please use Debug() instead

Arguments

No arguments

REPORTER User manual Version 18.0, April 2021

Page D.6

Return type

No return value

exit() [static] [deprecated]

This function is deprecated in version 12.0. It is only provided to keep old scripts working. We strongly advise against
using it in new scripts. Support may be removed in future versions.

Description

Please use Exit() instead
Arguments

No arguments

Return type

No return value

output() [static] [deprecated]

This function is deprecated in version 12.0. It is only provided to keep old scripts working. We strongly advise against
using it in new scripts. Support may be removed in future versions.

Description

Please use Output() instead

Arguments

No arguments

Return type

No return value

User manual Version 18.0, April 2021 REPORTER

Page D.7

Colour class

The Colour class gives access to colours in Reporter. More...

The REPORTER JavaScript API provides many class constants, properties and methods. For Arup to be able to extend
and enhance the API in the future any constant, property or method names beginning with a lowercase or uppercase
letter are reserved.
If you need to add your own properties or methods to one of the existing classes then to avoid any potential future
conflict you should ensure that the name begins with either an underscore (_) or a dollar sign ($) or the name is prefixed
with your own unique identifier.
For example if company ’ABC’ need to add a property called ’example’ then to avoid any potential future conflict use
one of:

• _example
• $example
• ABC_example

Class functions
• Black()
• Blue()
• Cyan()
• Green()
• Grey10()
• Grey20()
• Grey30()
• Grey40()
• Grey50()
• Grey60()
• Grey70()
• Grey80()
• Grey90()
• Magenta()
• None()
• RGB(red[integer], green[integer], blue[integer])
• Red()
• White()
• Yellow()

Colour properties

Name Type Description

blue (read only) integer Colour blue component (0-255)

green (read only) integer Colour green component (0-255)

name (read only) string Colour name

red (read only) integer Colour red component (0-255)

Detailed Description

The Colour class is used to define colours, either by predefined colours or by RGB values. The easiest way to set the
colour of something is to use the predefined colour methods. e.g. to set the text colour of item i to red:
i.textColour = Colour.Red();

For other colours use Colour.RGB().

REPORTER User manual Version 18.0, April 2021

Page D.8

Details of functions

Black() [static]

Description

Creates a black colour
Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to black:
i.textColour = Colour.Black();

Blue() [static]

Description

Creates a blue colour
Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to blue:
i.textColour = Colour.Blue();

Cyan() [static]

Description

Creates a cyan colour

Arguments

No arguments

Return type

Colour object

User manual Version 18.0, April 2021 REPORTER

Page D.9

Example

To set the text colour of item i to cyan:
i.textColour = Colour.Cyan();

Green() [static]

Description

Creates a green colour

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to green:
i.textColour = Colour.Green();

Grey10() [static]

Description

Creates a 10% grey colour

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to 10% grey:
i.textColour = Colour.Grey10();

Grey20() [static]

Description

Creates a 20% grey colour

Arguments

No arguments

REPORTER User manual Version 18.0, April 2021

Page D.10

Return type

Colour object

Example

To set the text colour of item i to 10% grey:
i.textColour = Colour.Grey20();

Grey30() [static]

Description

Creates a 30% grey colour

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to 30% grey:
i.textColour = Colour.Grey30();

Grey40() [static]

Description

Creates a 40% grey colour

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to 40% grey:
i.textColour = Colour.Grey40();

Grey50() [static]

Description

Creates a 50% grey colour

User manual Version 18.0, April 2021 REPORTER

Page D.11

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to 50% grey:
i.textColour = Colour.Grey50();

Grey60() [static]

Description

Creates a 60% grey colour

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to 60% grey:
i.textColour = Colour.Grey60();

Grey70() [static]

Description

Creates a 70% grey colour

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to 70% grey:
i.textColour = Colour.Grey70();

REPORTER User manual Version 18.0, April 2021

Page D.12

Grey80() [static]

Description

Creates a 80% grey colour

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to 80% grey:
i.textColour = Colour.Grey80();

Grey90() [static]

Description

Creates a 90% grey colour

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to 90% grey:
i.textColour = Colour.Grey90();

Magenta() [static]

Description

Creates a magenta colour

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to magenta:
i.textColour = Colour.Magenta();

User manual Version 18.0, April 2021 REPORTER

Page D.13

None() [static]

Description

No colour
Arguments

No arguments

Return type

Colour object

Example

To set the fill colour of item i to none:
i.fillColour = Colour.None();

RGB(red[integer], green[integer], blue[integer]) [static]

Description

Creates a colour from red, green and blue components

Arguments

Name Type Description

red integer red component of colour (0-255).

green integer green component of colour (0-255).

blue integer blue component of colour (0-255).

Return type

Colour object

Example

To set the text colour of item i to red:
i.textColour = Colour.RGB(255, 0, 0);

Red() [static]

Description

Creates a red colour
Arguments

No arguments

Return type

Colour object

REPORTER User manual Version 18.0, April 2021

Page D.14

Example

To set the text colour of item i to red:
i.textColour = Colour.Red();

White() [static]

Description

Creates a white colour
Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to white:
i.textColour = Colour.White();

Yellow() [static]

Description

Creates a yellow colour

Arguments

No arguments

Return type

Colour object

Example

To set the text colour of item i to yellow:
i.textColour = Colour.Yellow();

User manual Version 18.0, April 2021 REPORTER

Page D.15

File class

The File class allows you to read and write from text files. More...

The REPORTER JavaScript API provides many class constants, properties and methods. For Arup to be able to extend
and enhance the API in the future any constant, property or method names beginning with a lowercase or uppercase
letter are reserved.
If you need to add your own properties or methods to one of the existing classes then to avoid any potential future
conflict you should ensure that the name begins with either an underscore (_) or a dollar sign ($) or the name is prefixed
with your own unique identifier.
For example if company ’ABC’ need to add a property called ’example’ then to avoid any potential future conflict use
one of:

• _example
• $example
• ABC_example

Class functions
• ConvertSeparators(filename[string])
• Copy(source[string], dest[string])
• Delete(filename[string])
• Directory(filename[string])
• Exists(filename[string])
• FindFiles(directory[string], pattern[string], recursive[boolean])
• IsAbsolute(filename[string])
• IsDirectory(filename[string])
• IsFile(filename[string])
• Mkdir(name[string])
• Move(source[string], dest[string])
• SimplifyName(filename[string])
• Size(filename[string])

Member functions
• Close()
• FindLineContaining(contain1[string], contain2 (optional)[string], contain3 (optional)[string], ... containn

(optional)[string])
• FindLineMatching(regex[RegExp])
• FindLineStarting(start1[string], start2 (optional)[string], start3 (optional)[string], ... startn (optional)[string])
• Flush()
• ReadChar()
• ReadLine()
• ReadLongLine()
• Seek(position[integer])
• Write(string[Any valid javascript type])

File constants

Name Description

File.APPEND Flag to open file for appending

File.EOF Flag to indicate end of file

File.READ Flag to open file for reading

File.WRITE Flag to open file for writing

Detailed Description

The File class allows you to read text and write text to files. There are various functions available that allow to to find
lines matching specific strings or regular expressions when reading.
Additionally, there are a number of utility functions to check if a file exists or is a directory etc.

REPORTER User manual Version 18.0, April 2021

Page D.16

Constructor

new File(filename[string], mode[constant])

Description

Create a new File object for reading and writing text files.

Arguments

Name Type Description

filename string Filename of the file you want to read/write. If reading, the file must exist. If writing, the file will
be overwritten if it already exists

mode constant The mode to open the file with. Can be File.READ, File.WRITE or File.APPEND

Return type

File object

Example

To create a new file object to read file "/data/test/file.txt"
var f = new File("/data/test/file.txt", File.READ);

Details of functions

Close()

Description

Close a file opened by a File object.

Arguments

No arguments

Return type

No return value
Example

To close File object f.
f.Close();

ConvertSeparators(filename[string]) [static]

Description

Convert directory separators to the correct type for this operating system

User manual Version 18.0, April 2021 REPORTER

Page D.17

Arguments

Name Type Description

filename string Filename you want to convert separators on.

Return type

string filename

Example

e.g. on windows the filename "c:/test/file.key" would be converted to "c:\test\file.key" by
var converted = File.ConvertSeparators("c:/test/file.key");

Copy(source[string], dest[string]) [static]

Description

Copy a file

Arguments

Name Type Description

source string Source filename you want to copy.

dest string Destination filename you want to copy source file to. Note that if a file with the name dest already
exists it will not be overwritten. Delete the file first with File.Delete().

Return type

true if copy successful, false otherwise.

Example

To copy the file "/data/test/file.txt" to "/data/test/file.txt_backup"
var copied = File.Copy("/data/test/file.txt", "/data/test/file.txt_backup");

Delete(filename[string]) [static]

Description

Delete a file
Arguments

Name Type Description

filename string Filename you want to delete.

Return type

true if successful, false if not

REPORTER User manual Version 18.0, April 2021

Page D.18

Example

To delete the file "/data/test/file.txt"
var deleted = File.Delete("/data/test/file.txt");

Directory(filename[string]) [static]

Description

Extract directory name from an absolute filename

Arguments

Name Type Description

filename string Absolute filename you want to extract directory from.

Return type

string directory

Example

To extract the directory "/data/test/" from file "/data/test/file.key"
var directory = File.Directory("/data/test/file.key");

Exists(filename[string]) [static]

Description

Check if a file exists
Arguments

Name Type Description

filename string Filename you want to check for existance.

Return type

true/false
Example

To see if the file "/data/test/file.key" exists
if (File.Exists("/data/test/file.key")) { do something }

FindFiles(directory[string], pattern[string], recursive[boolean]) [static]

Description

Find any files in a directory (and subdirectories if required) matching a pattern

User manual Version 18.0, April 2021 REPORTER

Page D.19

Arguments

Name Type Description

directory string Directory to look for files in

pattern string Pattern to use to find matching files

recursive boolean If Reporter should look for files recursively or not

Return type

array filenames

Example

To find all of the files matching the pattern "*.key" recursively from directory /data/test
var filelist = File.FindFiles("/data/test/", "*.key", true);

FindLineContaining(contain1[string], contain2 (optional)[string], contain3
(optional)[string], ... containn (optional)[string])

Description

Reads a line from a file which contains contain, opened for reading by a File object. To enable this function to be as fast
as possible a maximum line length of 256 characters is used. If you expect a file to have lines longer than 256 characters
then use ReadLongLine which allows lines of any length. If one argument is used then the line must contain that string.
If more than one argument is used then lines which contain argument1 OR argument2 OR argument3 will be returned

Arguments

Name Type Description

contain1 string String which matching lines must contain (maximum length of 256 characters).

contain2 (optional) string alternative string which matching lines must contain (maximum length of 256
characters).

contain3 (optional) string alternative string which matching lines must contain (maximum length of 256
characters).

... containn
(optional)

string alternative string which matching lines must contain (maximum length of 256
characters).

Return type

string read from file or File.EOF if end of file

Example

Loop, reading lines from File object f which contain ’example’.
var line;
while ((line = file.FindLineContaining("example")) != File.EOF)
{
}

REPORTER User manual Version 18.0, April 2021

Page D.20

FindLineMatching(regex[RegExp])

Description

Reads a line from a file opened for reading by a File object. To enable this function to be as fast as possible a maximum
line length of 256 characters is used. If you expect a file to have lines longer than 256 characters then use
ReadLongLine which allows lines of any length. Note that this may be much slower than FindLineStarting or
FindLineContaining, especially if the regular expression is very complicated.

Arguments

Name Type Description

regex RegExp Regular expression which matching lines must match with.

Return type

string read from file or File.EOF if end of file

Example

Loop, reading lines from File object f which contain digits.
var line;
var regex = new RegExp("\\d+");
while ((line = file.FindLineMatching(regex)) != File.EOF)
{
}

FindLineStarting(start1[string], start2 (optional)[string], start3 (optional)[string],
... startn (optional)[string])

Description

Reads a line from a file which starts with start, opened for reading by a File object. To enable this function to be as fast
as possible a maximum line length of 256 characters is used. If you expect a file to have lines longer than 256 characters
then use ReadLongLine which allows lines of any length. If one argument is used then the line must start with that
string. If more than one argument is used then lines which start argument1 OR argument2 OR argument3 will be
returned

Arguments

Name Type Description

start1 string String which matching lines must start with (maximum length of 256 characters).

start2 (optional) string alternative string which matching lines must start with (maximum length of 256
characters).

start3 (optional) string alternative string which matching lines must start with (maximum length of 256
characters).

... startn
(optional)

string alternative string which matching lines must start with (maximum length of 256
characters).

Return type

string read from file or File.EOF if end of file

User manual Version 18.0, April 2021 REPORTER

Page D.21

Example

Loop, reading lines from File object f which start ’example’.
var line;
while ((line = file.FindLineStarting("example")) != File.EOF)
{
}

Flush()

Description

Flushes a file opened for writing by a File object.

Arguments

No arguments

Return type

No return value
Example

To flush File object f.
f.Flush();

IsAbsolute(filename[string]) [static]

Description

Check if a filename is absolute
Arguments

Name Type Description

filename string Filename you want to test if absolute.

Return type

true/false
Example

To see if the file "/data/test/file.key" is absolute
if (File.IsAbsolute("/data/test/file.key")) { do something }

IsDirectory(filename[string]) [static]

Description

Check if a filename is a directory

REPORTER User manual Version 18.0, April 2021

Page D.22

Arguments

Name Type Description

filename string Filename you want to test to see if it is a directory.

Return type

true/false
Example

To see if "/data/test" is a directory
if (File.IsDirectory("/data/test")) { do something }

IsFile(filename[string]) [static]

Description

Check if a filename is a file
Arguments

Name Type Description

filename string Filename you want to test to see if it is a file (i.e. not a directory).

Return type

true/false
Example

To see if "/data/test" is a file
if (File.IsFile("/data/test")) { do something }

Mkdir(name[string]) [static]

Description

makes a directory

Arguments

Name Type Description

name string Directory you want to create.

Return type

true if successful
Example

To make directory "/data/test" if it does not exist:
if (!File.IsDirectory("/data/test")) File.Mkdir("/data/test");

User manual Version 18.0, April 2021 REPORTER

Page D.23

Move(source[string], dest[string]) [static]

Description

Move a file
Arguments

Name Type Description

source string Source filename you want to move.

dest string Destination filename you want to move (rename) source file to. Note that if a file with the name dest
already exists it will not be overwritten. Delete the file first with File.Delete().

Return type

true if move successful, false otherwise.
Example

To move the file "/data/test/file.txt" to "/data/test/file.txt_backup"
var moved = File.Move("/data/test/file.txt", "/data/test/file.txt_backup");

ReadChar()

Description

Reads a single character from a file opened for reading by a File object.

Arguments

No arguments

Return type

character read from file or File.EOF if end of file
Example

Loop, reading characters from File object f.
var c;
while ((c = f.ReadChar()) != undefined) { ... }

ReadLine()

Description

Reads a line from a file opened for reading by a File object. To enable this function to be as fast as possible a maximum
line length of 256 characters is used. If you expect a file to have lines longer than 256 characters then use
ReadLongLine which allows lines of any length.

Arguments

No arguments

REPORTER User manual Version 18.0, April 2021

Page D.24

Return type

string read from file or File.EOF if end of file

Example

Loop, reading lines from File object f.
var line;
while ((line = file.ReadLine()) != File.EOF)
{
}

ReadLongLine()

Description

Reads a line from a file opened for reading by a File object. The line can be any length. If your file has lines shorter
than 256 characters then you may want to use ReadLine instead which is faster.

Arguments

No arguments

Return type

string read from file or File.EOF if end of file

Example

Loop, reading lines from File object f.
var line;
while ((line = file.ReadLongLine()) != File.EOF)
{
}

Seek(position[integer])

Description

Sets the file position for reading a file

Arguments

Name Type Description

position integer Position you want to seek to.

Return type

No return value
Example

To seek to position 1000 in file object f:
f.Seek(1000);

User manual Version 18.0, April 2021 REPORTER

Page D.25

SimplifyName(filename[string]) [static]

Description

Simplify the name of a file by removing //, /./ and /../

Arguments

Name Type Description

filename string Filename you want to simplify.

Return type

string filename

Example

To simplify the filename "/data/test//../file.key"
var simple = File.SimplifyName("/data/test//../file.key");

This simplifies to "/data/file.key"

Size(filename[string]) [static]

Description

Get the size of a file
Arguments

Name Type Description

filename string File you want to find the size of.

Return type

integer

Example

To find the size of file "/data/test"
var size = File.Size("/data/test");

Write(string[Any valid javascript type])

Description

Write a string to a file opened for writing by a File object

Arguments

Name Type Description

string Any valid javascript type The string/item that you want to write

REPORTER User manual Version 18.0, April 2021

Page D.26

Return type

No return value
Example

To write string "Hello, world!" to File object f
f.Write("Hello, world!\n");

To write the title of model 2 to File object f
f.Write("The title of model 2 is " + models[2].title + "\n");

User manual Version 18.0, April 2021 REPORTER

Page D.27

Image class

The Image class allows you to create bitmaps in Reporter. More...

The REPORTER JavaScript API provides many class constants, properties and methods. For Arup to be able to extend
and enhance the API in the future any constant, property or method names beginning with a lowercase or uppercase
letter are reserved.
If you need to add your own properties or methods to one of the existing classes then to avoid any potential future
conflict you should ensure that the name begins with either an underscore (_) or a dollar sign ($) or the name is prefixed
with your own unique identifier.
For example if company ’ABC’ need to add a property called ’example’ then to avoid any potential future conflict use
one of:

• _example
• $example
• ABC_example

Member functions
• Ellipse(x1[integer], y1[integer], x2[integer], y2[integer])
• Fill(x[integer], y[integer], tol (optional)[integer])
• Line(x1[integer], y1[integer], x2[integer], y2[integer])
• Load(filename[string])
• PixelCount(colour[string], tol (optional)[integer])
• Polygon(x1[integer], y1[integer], x2[integer], y2[integer], ... xn[integer], ... yn[integer])
• Polyline(x1[integer], y1[integer], x2[integer], y2[integer], ... xn[integer], ... yn[integer])
• Rectangle(x1[integer], y1[integer], x2[integer], y2[integer])
• Save(filename[string], filetype[constant])
• Star(x[integer], y[integer], r[integer])
• Text(x[integer], y[integer], text[string])

Image constants

Name Description

Image.BMP Save image as BMP

Image.JPG Save image as JPG

Image.PNG Save image as PNG

Image properties

Name Type Description

antialiasing bool Whether or not lines, shapes and text are drawn with antialiasing (true by default).

fillColour string Colour to use when filling shapes on the Image. Can be "none", a valid colour from the X
colour database (see /etc/X11/rgb.txt) e.g. "Blue", or #RRGGBB (each of R, G and B is a
single hex digit) e.g. "#0000FF" for blue.

font string Font to use when drawing text on the Image e.g. "Courier". Can be any font accessible by
REPORTER.

fontAngle integer Angle (degrees) text is drawn at on the Image. Can be between -360 and 360 degrees.

fontColour string Colour to use when drawing text on the Image. Can be "none", a valid colour from the X
colour database (see /etc/X11/rgb.txt) e.g. "Blue", or #RRGGBB (each of R, G and B is a
single hex digit) e.g. "#0000FF" for blue.

fontJustify constant Justification to use when drawing text on the Image. Can be Reporter.JUSTIFY_CENTRE,
Reporter.JUSTIFY_LEFT or Reporter.JUSTIFY_RIGHT

fontSize integer Size of font (in points) to use when drawing text on the Image

REPORTER User manual Version 18.0, April 2021

Page D.28

fontStyle constant Style of font to use when drawing text on the Image. Can be any combination of
Reporter.TEXT_NORMAL, Reporter.TEXT_BOLD, Reporter.TEXT_ITALIC and
Reporter.TEXT_UNDERLINE

height integer Height of the Image

lineCapStyle constant Style to use for the end of lines on an Image. Can be Reporter.CAP_FLAT, Reporter.CAP_
SQUARE or Reporter.CAP_ROUND

lineColour string Colour to use when drawing lines on the Image. Can be "none", a valid colour from the X
colour database (see /etc/X11/rgb.txt) e.g. "Blue", or #RRGGBB (each of R, G and B is a
single hex digit) e.g. "#0000FF" for blue.

lineJoinStyle constant Style to use for the line join at vertices of polygons and polylines on an Image. Can be
Reporter.JOIN_MITRE, Reporter.JOIN_BEVEL or Reporter.JOIN_ROUND

lineStyle constant Style to use when drawing lines on an Image. Can be Reporter.LINE_NONE, Reporter.LINE_
SOLID, Reporter.LINE_DASH, Reporter.LINE_DOT, Reporter.LINE_DASH_DOT or
Reporter.LINE_DASH_DOT_DOT

lineWidth integer Width to use when drawing lines on an Image value

width integer Width of the Image

Detailed Description

The Image class allows you to create, load and save bitmaps. There are various functions available that allow to to draw
lines, rectangles, ellipses, text etc on a bitmap.

Constructor

new Image(width (optional)[integer], height (optional)[integer],
backgroundColour (optional)[string])

Description

Create a new Image object for creating an image. If no arguments are given a null (0 pixels wide by 0 pixels high) is
made. If 2 arguments are given they are used as the width and height of the image. The third argument can be used to
define the initial background colour (the default is white).

Arguments

Name Type Description

width (optional) integer Width of image

height (optional) integer Height of image

backgroundColour
(optional)

string Initial background colour for the image (default is white). Can be "none", a valid
colour from the X colour database (see /etc/X11/rgb.txt) e.g. "Blue", or #RRGGBB
(each of R, G and B is a single hex digit) e.g. "#0000FF" for blue.

Return type

Image object

Example

To create a new image object 100 pixels wide by 50 pixels high
var img = new Image(100, 50);

User manual Version 18.0, April 2021 REPORTER

Page D.29

Details of functions

Ellipse(x1[integer], y1[integer], x2[integer], y2[integer])

Description

Draw an ellipse on an image

Arguments

Name Type Description

x1 integer X coordinate of start position for ellipse

y1 integer Y coordinate of start position for ellipse

x2 integer X coordinate of end position for ellipse

y2 integer Y coordinate of end position for ellipse

Return type

no return value
Example

To draw an ellipse with no fill and solid red border line width 2 pixels, on image ’idata’, starting at point 30, 20 and
finishing at point 100, 50
idata.lineColour = "red";
idata.fillColour = "none";
idata.lineWidth = 2;
idata.lineStyle = Reporter.LINE_SOLID;
idata.Ellipse(30, 20, 100, 50);

Fill(x[integer], y[integer], tol (optional)[integer])

Description

Fill an area in an image with a colour.

Arguments

Name Type Description

x integer X coordinate of start position for fill

y integer Y coordinate of start position for fill

tol
(optional)

integer Tolerance for colour matching (0-255). Default is 0. When filling a shape if the red, green and
blue components are within tol of the colour of pixel (x, y) the pixel will be filled with the
current fill colour.

Return type

no return value

REPORTER User manual Version 18.0, April 2021

Page D.30

Example

To fill an area of image ’idata’, starting at point 30, 20 with red:
idata.fillColour = "red";
idata.Fill(30, 20);

Line(x1[integer], y1[integer], x2[integer], y2[integer])

Description

Draw a line on an image

Arguments

Name Type Description

x1 integer X coordinate of start position for line

y1 integer Y coordinate of start position for line

x2 integer X coordinate of end position for line

y2 integer Y coordinate of end position for line

Return type

no return value
Example

To draw a blue, dashed line width 2 pixels, on image ’idata’, starting at point 30, 20 and finishing at point 100, 50
idata.lineColour = "blue";
idata.lineWidth = 2;
idata.lineStyle = Reporter.LINE_DASH;
idata.Line(30, 20, 100, 50);

Load(filename[string])

Description

Load an image file (gif, png, bmp or jpeg)

Arguments

Name Type Description

filename string Imagename you want to load.

Return type

no return value
Example

To load the image file "/data/test/image.jpg" into the image object ’idata’
idata.Load("/data/test/image.jpg");

User manual Version 18.0, April 2021 REPORTER

Page D.31

PixelCount(colour[string], tol (optional)[integer])

Description

Count the number of pixels in an image that have a specific colour.

Arguments

Name Type Description

colour string A valid colour from the X colour database (see /etc/X11/rgb.txt) e.g. "Blue", or #RRGGBB (each
of R, G and B is a single hex digit) e.g. "#0000FF" for blue

tol
(optional)

integer Tolerance for colour matching (0-255). Default is 0. When looking at pixels if the red, green and
blue components are within tol of the colour of pixel (x, y) the pixel will be counted.

Return type

Number of pixels (integer) with the colour.

Example

To count the number of red pixels in image ’idata’:
var nred = idata.PixelCount("red");

Polygon(x1[integer], y1[integer], x2[integer], y2[integer], ... xn[integer], ...
yn[integer])

Description

Draw a polygon on an image. The last point is always connected back to the first point.

Arguments

Name Type Description

x1 integer X coordinate of point 1

y1 integer Y coordinate of point 1

x2 integer X coordinate of point 2

y2 integer Y coordinate of point 2

... xn integer X coordinate of point n

... yn integer Y coordinate of point n

Alternatively you can specify a single argument which is an array of coordinates to use.

Return type

no return value

REPORTER User manual Version 18.0, April 2021

Page D.32

Example

To draw a blue polygon with a solid red border line width 2 pixels, on image ’idata’, connecting points (10,10) (20,10)
(20,20) (10,20)
idata.fillColour = "blue";
idata.lineColour = "red";
idata.lineWidth = 2;
idata.lineStyle = Reporter.LINE_DASH;
idata.Polygon(10,10, 20,10, 20,20, 10,20);

or
idata.fillColour = "blue";
idata.lineColour = "red";
idata.lineWidth = 2;
idata.lineStyle = Reporter.LINE_DASH;
var a = new Array(10,10, 20,10, 20,20, 10,20);
idata.Polygon(a);

Polyline(x1[integer], y1[integer], x2[integer], y2[integer], ... xn[integer], ...
yn[integer])

Description

Draw a line with multiple straight segments on an image

Arguments

Name Type Description

x1 integer X coordinate of point 1

y1 integer Y coordinate of point 1

x2 integer X coordinate of point 2

y2 integer Y coordinate of point 2

... xn integer X coordinate of point n

... yn integer Y coordinate of point n

Alternatively you can specify a single argument which is an array of coordinates to use.

Return type

no return value
Example

To draw a blue, dashed polyline width 2 pixels, on image ’idata’, connecting points (10,10) (20,10) (20,20) (10,20)
idata.lineColour = "blue";
idata.lineWidth = 2;
idata.lineStyle = Reporter.LINE_DASH;
idata.Polyline(10,10, 20,10, 20,20, 10,20);

or
idata.lineColour = "blue";
idata.lineWidth = 2;
idata.lineStyle = Reporter.LINE_DASH;
var a = new Array(10,10, 20,10, 20,20, 10,20);
idata.Polyline(a);

User manual Version 18.0, April 2021 REPORTER

Page D.33

Rectangle(x1[integer], y1[integer], x2[integer], y2[integer])

Description

Draw a rectangle on an image

Arguments

Name Type Description

x1 integer X coordinate of start position for rectangle

y1 integer Y coordinate of start position for rectangle

x2 integer X coordinate of end position for rectangle

y2 integer Y coordinate of end position for rectangle

Return type

no return value
Example

To draw a rectangle with no fill and solid red border line width 2 pixels, on image ’idata’, starting at point 30, 20 and
finishing at point 100, 50
idata.lineColour = "red";
idata.fillColour = "none";
idata.lineWidth = 2;
idata.lineStyle = Reporter.LINE_SOLID;
idata.Rectangle(30, 20, 100, 50);

Save(filename[string], filetype[constant])

Description

Save an image to file (gif, png, bmp or jpeg)

Arguments

Name Type Description

filename string Imagename you want to save.

filetype constant Type you want to save as. Can be: Image.BMP, Image.JPG or Image.PNG

Return type

no return value
Example

To save the image object ’idata’ to file "/data/test/image.jpg" as a jpeg
idata.Save("/data/test/image.jpg", Image.JPG);

REPORTER User manual Version 18.0, April 2021

Page D.34

Star(x[integer], y[integer], r[integer])

Description

Draw a star on an image

Arguments

Name Type Description

x integer X coordinate of centre of star

y integer Y coordinate of centre of star

r integer Radius of star

Return type

no return value
Example

To draw a blue star with yellow fill, on image ’idata’, centred at point 30, 20 with radius 10
idata.lineColour = "blue";
idata.fillColour = "yellow";
idata.Star(30, 20, 10);

Text(x[integer], y[integer], text[string])

Description

Draw text on an image

Arguments

Name Type Description

x integer X position for text

y integer Y position for text

text string Text to write on image

Return type

no return value
Example

To write the text ’Test’ in Helvetica 12pt bold underlined, coloured red on image ’idata’, at point 30, 20
idata.fontColour = "red";
idata.fontSize = 12;
idata.fontStyle = Reporter.TEXT_BOLD | Reporter.TEXT_UNDERLINE;
idata.Text(30, 20, "Test");

User manual Version 18.0, April 2021 REPORTER

Page D.35

Item class

The Item class gives access to items in Reporter. More...

The REPORTER JavaScript API provides many class constants, properties and methods. For Arup to be able to extend
and enhance the API in the future any constant, property or method names beginning with a lowercase or uppercase
letter are reserved.
If you need to add your own properties or methods to one of the existing classes then to avoid any potential future
conflict you should ensure that the name begins with either an underscore (_) or a dollar sign ($) or the name is prefixed
with your own unique identifier.
For example if company ’ABC’ need to add a property called ’example’ then to avoid any potential future conflict use
one of:

• _example
• $example
• ABC_example

Class functions
• GetAll(page[Page])
• GetFromName(page[Page], name[string])

Member functions
• DeleteColumn(column[integer])
• DeleteRow(row[integer])
• Generate()
• GetCellProperties(row[integer], column[integer])
• GetColumnProperties(column[integer], header[constant])
• GetColumnWidth(row[integer])
• GetCondition(index[integer])
• GetCondition(index[integer], column[integer])
• GetCondition(index[integer], row[integer], column[integer])
• GetGeneratedData(row_index[integer], column_index[integer])
• GetRowHeight(row[integer])
• InsertColumn(column[integer])
• InsertRow(row[integer])
• MergeCells(topLeftRow[integer], topLeftColumn[integer], rows[integer], columns[integer])
• SetCellProperties(properties[object], row[integer], column[integer])
• SetColumnProperties(properties[object], column[integer], header[constant])
• SetColumnWidth(column[integer], width[real])
• SetCondition(condition[integer], properties[object])
• SetCondition(condition[integer], column[integer], properties[object])
• SetCondition(condition[integer], row[integer], column[integer], properties[object])
• SetRowHeight(row[integer], height[real])
• UnmergeCells(row[integer], column[integer])

Item constants

Name Description

Item.ARROW Arrow item

Item.AUTO_TABLE Automatic table item

Item.D3PLOT D3Plot item

Item.ELLIPSE Ellipse item

Item.IMAGE Image item

Item.IMAGE_FILE Image file item

Item.LIBRARY_IMAGE Library image item

Item.LIBRARY_PROGRAM Library program item

Item.LINE Line item

REPORTER User manual Version 18.0, April 2021

Page D.36

Item.NOTE Note item

Item.PLACEHOLDER Placeholder item

Item.PRIMER Primer item

Item.PROGRAM Program item

Item.RECTANGLE Rectangle item

Item.SCRIPT Script item

Item.TABLE Table item

Item.TEXT Text item

Item.TEXTBOX Textbox item

Item.TEXT_FILE Text file item

Item.THIS T/HIS item

Item properties

Name Type Description

active logical If item is active or not. Inactive items will be skipped during report/page/item
generation.

autotableType constant Autotable type (whether the data is sourced from a file or a directory). Can be
Reporter.AUTO_TABLE_DIRECTORY or Reporter.AUTO_TABLE_FILE. Valid
for item type Item.AUTO_TABLE.

bottomMargin real Bottom margin width. Valid for item types Item.TEXTBOX, Item.TEXT_FILE,
Item.TABLE and Item.AUTO_TABLE

columns (readonly) integer The number of columns in the table. Valid for item types Item.TABLE and
Item.AUTO_TABLE

conditions
(readonly)

integer The number of conditions assigned to the item. Valid for item types
Item.PROGRAM, Item.TEXT_FILE, Item.TEXT and Item.TEXTBOX

embed logical If image is embedded or not. Valid for item types Item.IMAGE

file string File or directory for item. Valid for item types:
Item.AUTO_TABLE
Item.D3PLOT
Item.IMAGE
Item.IMAGE_FILE
Item.PRIMER
Item.PROGRAM
Item.TEXT_FILE
Item.THIS

fillColour Colour
object

Colour of fill for the item.
Valid for item types Item.RECTANGLE, Item.ELLIPSE, Item.TEXTBOX,
Item.PROGRAM and Item.TEXT_FILE

fontName string Font for the item e.g. "Courier". Can be any font accessible by REPORTER.
Valid for item types Item.TEXT, Item.TEXTBOX, Item.PROGRAM and
Item.TEXT_FILE

fontSize integer Font size for the item (6 <= fontSize <= 72).
Valid for item types Item.TEXT, Item.TEXTBOX, Item.PROGRAM and
Item.TEXT_FILE

fontStyle constant Font style for the item. Can be a combination of Reporter.TEXT_NORMAL,
Reporter.TEXT_BOLD, Reporter.TEXT_ITALIC or Reporter.TEXT_
UNDERLINE
Valid for item types Item.TEXT, Item.TEXTBOX, Item.PROGRAM and
Item.TEXT_FILE

User manual Version 18.0, April 2021 REPORTER

Page D.37

generatedRowHeight real The height of each generated row in an Autotable. Valid for item type Item.AUTO_
TABLE.

headerHeight real The height of the header in an Autotable. Valid for item type Item.AUTO_TABLE.

height real Height for "rectangular" items (absolute difference between y and y2)

justify constant Text justification for the item. Can be Reporter.JUSTIFY_CENTRE,
Reporter.JUSTIFY_LEFT or Reporter.JUSTIFY_RIGHT combined with
Reporter.JUSTIFY_TOP, Reporter.JUSTIFY_MIDDLE or Reporter.JUSTIFY_
BOTTOM
Valid for item types Item.TEXT, Item.TEXTBOX, Item.PROGRAM and
Item.TEXT_FILE

leftMargin real Left margin width. Valid for item types Item.TEXTBOX, Item.TEXT_FILE,
Item.TABLE and Item.AUTO_TABLE

lineColour Colour
object

Colour of outline for the item.
Valid for item types Item.LINE, Item.ARROW, Item.RECTANGLE,
Item.ELLIPSE, Item.TEXTBOX, Item.D3PLOT, Item.PRIMER, Item.THIS,
Item.PROGRAM, Item.TEXT_FILE, Item.IMAGE_FILE, Item.TABLE and
Item.AUTO_TABLE.

lineStyle constant Style of outline for the item. Can be Reporter.LINE_NONE, Reporter.LINE_
SOLID, Reporter.LINE_DASH, Reporter.LINE_DOT, Reporter.LINE_DASH_
DOT or Reporter.LINE_DASH_DOT_DOT
Valid for item types Item.LINE, Item.ARROW, Item.RECTANGLE,
Item.ELLIPSE, Item.TEXTBOX, Item.D3PLOT, Item.PRIMER, Item.THIS,
Item.PROGRAM, Item.TEXT_FILE and Item.IMAGE_FILE.

lineWidth real Width of outline for the item in mm.
Valid for item types Item.LINE, Item.ARROW, Item.RECTANGLE,
Item.ELLIPSE, Item.TEXTBOX, Item.D3PLOT, Item.PRIMER, Item.THIS,
Item.PROGRAM, Item.TEXT_FILE, Item.IMAGE_FILE, Item.TABLE and
Item.AUTO_TABLE

name string Name of the Item

rightMargin real Right margin width. Valid for item types Item.TEXTBOX, Item.TEXT_FILE,
Item.TABLE and Item.AUTO_TABLE

rows (readonly) integer The number of rows in the table. Valid for item type Item.TABLE

saveCSV bool Whether or not a CSV file of the table contents is written when the item is
generated. Valid for item types Item.TABLE and Item.AUTO_TABLE

saveCSVFilename string The path and filename of the CSV file written when the item is generated. Valid for
item types Item.TABLE and Item.AUTO_TABLE

saveXlsx bool Whether or not a Excel file of the table contents is written when the item is
generated. Valid for item types Item.TABLE and Item.AUTO_TABLE

saveXlsxFilename string The path and filename of the Excel file written when the item is generated. Valid for
item types Item.TABLE and Item.AUTO_TABLE

script string The script source text for the item.
Only valid for item type Item.SCRIPT

text string The text for the item.
Valid for item types Item.TEXT, Item.TEXTBOX, Item.PROGRAM, Item.TEXT_
FILE and Item.SCRIPT

textColour Colour
object

Colour of text for the item.
Valid for item types Item.TEXT, Item.TEXTBOX, Item.PROGRAM and
Item.TEXT_FILE

topMargin real Top margin width. Valid for item types Item.TEXTBOX, Item.TEXT_FILE,
Item.TABLE and Item.AUTO_TABLE

type (read only) constant type of the Item. Can be Item.LINE, Item.TEXT etc.

REPORTER User manual Version 18.0, April 2021

Page D.38

width real Width for "rectangular" items (absolute difference between x and x2)

x real X coordinate

x2 real Second X coordinate for "rectangular" items

y real Y coordinate

y2 real Second Y coordinate for "rectangular" items

Detailed Description

The Item class allows you to access the items in templates that Reporter currently has open.

Constructor

new Item(page[Page], type[constant], name (optional)[string], x
(optional)[real], x2 (optional)[real], y (optional)[real], y2 (optional)[real])

Description

Create a new Item. The name and coordinates arguments are optional. Item.TABLE items are constructed with two
rows and two columns by default. If you require only one row or column, use DeleteRow and DeleteColumn.

Arguments

Name Type Description

page Page Page to create item in

type constant Item type. Can be Item.LINE, Item.ARROW, Item.RECTANGLE, Item.ELLIPSE, Item.TEXT,
Item.TEXTBOX, Item.IMAGE, Item.PROGRAM, Item.D3PLOT, Item.PRIMER, Item.THIS,
Item.TEXT_FILE, Item.IMAGE_FILE, Item.LIBRARY_IMAGE, Item.LIBRARY_
PROGRAM, Item.TABLE, Item.AUTO_TABLE, Item.SCRIPT, Item.NOTE or
Item.PLACEHOLDER.

name
(optional)

string Name of item

x
(optional)

real X coordinate

x2
(optional)

real Second X coordinate for "rectangular" items

y
(optional)

real Y coordinate

y2
(optional)

real Second Y coordinate for "rectangular" items

Return type

Item object

Example

To create a new blank Item object:
var i = new Item();

User manual Version 18.0, April 2021 REPORTER

Page D.39

Details of functions

DeleteColumn(column[integer])

Description

Delete a column from a table. Valid for item type Item.TABLE and Item.AUTO_TABLE.

Arguments

Name Type Description

column integer The index of the column to delete. Note that indices start from 0.

Return type

No return value
Example

To delete the second column from table item i:
i.DeleteColumn(1);

DeleteRow(row[integer])

Description

Delete a row from a table. Valid for item type Item.TABLE.

Arguments

Name Type Description

row integer The index of the row to delete. Note that indices start from 0.

Return type

No return value
Example

To delete the second row from table item i:
i.DeleteRow(1);

Generate()

Description

Generate an item.
Arguments

No arguments

REPORTER User manual Version 18.0, April 2021

Page D.40

Return type

No return value
Example

To generate item i:
i.Generate();

GetAll(page[Page]) [static]

Description

Get all of the items on a page.

Arguments

Name Type Description

page Page Page to get items from.

Return type

Array of Item objects

Example

To get all of the items on page p:
var items = Item.GetAll(p);

GetCellProperties(row[integer], column[integer])

Description

Get the properties of the specified cell. Valid for item type Item.TABLE and Item.AUTO_TABLE.

Arguments

Name Type Description

row integer The row index of the cell of interest. Note that indices start from 0.

column integer The column index of the cell of interest. Note that indices start from 0.

Return type

Object with the following properties:

Name Type Description

bottomBorderWidth real Cell bottom border width. Can be 0.0, 0.1, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0.
Other values will result in no border.

colspan integer Number of columns this cell spans (for merged cells). 1 if not merged. Use
columnMergeOrigin to find top-left cell.

column (read only) integer The column index

columnMergeOrigin integer The column index of the top-left cell in this merge cell group (if cell not merged
then == column).

User manual Version 18.0, April 2021 REPORTER

Page D.41

conditions integer Number of conditions assigned to this cell.

fillColour Colour
object

Fill colour

fontName string Font name (e.g. "Courier").

fontSize integer Font size (between 6 and 72).

fontStyle integer Font style. See Text style constants for details.

height real Cell height. Modifying this property will modify the height of all cells in the row.

hyperlinkHTML string Hyperlink destination for HTML.

hyperlinkPDF string Hyperlink destination for PDF.

hyperlinkReport string Hyperlink destination for Report or page within Report.

justify integer Text justification for the item. Same rules as justify property of Item Class.

output string The output text from a Program or Library Program cell.

prefix string Prefix text to appear before Library Program output.

program string Path and filename for a Program cell, or the filename (e.g. title.js) for a Library
Program cell.

programArgs Array of
strings

Program arguments

rightBorderWidth real Cell right border width. Can be 0.0, 0.1, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0.
Other values will result in no border.

row (read only) integer The cell row index.

rowMergeOrigin integer The row index of the top-left cell in this merge cell group (if cell not merged then
== row).

rowSpan integer Number of rows this cell spans (for merged cells). == 1 if not merged. Use
rowMergeOrigin to find top-left cell.

suffix string Suffix text to appear after Library Program output.

text string The cell text. For Program and Library Program cells, use the prefix, output and
suffix properties.

textColour Colour
object

Colour of text

topBorderWidth real Cell top border width. Can be 0.0, 0.1, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0.
Other values will result in no border.

type integer Can be Item.TEXT,Item.LIBRARY_PROGRAM or Item.PROGRAM.

variable string REPORTER variable for library program output.

width real Cell width. Modifying this property will modify the width of all cells in the
column.

Example

To get the properties of the top-left cell in a table:
i.GetCellProperties(0, 0);

GetColumnProperties(column[integer], header[constant])

Description

Get an autotable column properties. Valid for item type Item.AUTO_TABLE.

REPORTER User manual Version 18.0, April 2021

Page D.42

Arguments

Name Type Description

column integer The index of the column of interest. Note that indices start from 0.

header constant An argument to signify to get the properties of the header or the generated rows. Can be
Reporter.AUTO_TABLE_HEADER or Reporter.AUTO_TABLE_ROWS.

Return type

Object with the following properties:

Name Type Description

conditions integer Number of conditions assigned to this cell.

fillColour Colour object Fill colour

fontName string Font name (e.g. "Courier").

fontSize integer Font size (between 6 and 72).

fontStyle integer Font style. Same rules as fontStyle property of

hyperlinkHTML string Hyperlink destination for HTML.

hyperlinkPDF string Hyperlink destination for PDF.

hyperlinkReport string Hyperlink destination for Report or page within Report.

justify integer Text justification for the item. Same rules as justify property of Item Class.

program string Path and filename for a Program cell, or the filename (e.g. title.js) for a Library
Program cell.

programArgs Array of
strings

Program arguments

text string The cell text. For Program and Library Program cells, use the prefix, output and
suffix properties.

textColour Colour object Colour of text

type integer Can be Item.TEXT,Item.LIBRARY_PROGRAM or Item.PROGRAM.

width real Cell width. Modifying this property will modify the width of all cells in the column.

Example

Returns the column properties of the header of the first column:
i.GetColumnProperties(0, Reporter.AUTO_TABLE_HEADER);

GetColumnWidth(row[integer])

Description

Get the width of a table column. Valid for item types Item.TABLE or Item.AUTO_TABLE.

Arguments

Name Type Description

row integer The index of the column of interest. Note that indices start from 0.

User manual Version 18.0, April 2021 REPORTER

Page D.43

Return type

Integer. The width of the specified column.

Example

To get the width of the first column in a table:
i.GetColumnWidth(0);

GetCondition(index[integer])

Description

Get the conditional formatting data for an item. Valid for item types Item.TEXT_FILE, Item.PROGRAM, Item.TEXT
or Item.TEXTBOX (for Item.AUTO_TABLE and Item.TABLE, see GetCondition functions with additional arguments
below).

Arguments

Name Type Description

index integer The index of the condition to get. Note that indices start from 0. See conditions for the total number of
comditions

Return type

Object with the following properties:

Name Type Description

fillColour Colour object Fill colour

fontName string Font name (e.g. "Courier").

fontSize integer Font size (between 6 and 72).

fontStyle integer Font style. See Text style constants for details.

justify integer Text alignment for the item. See Justification constants for details.

name string Condition name

textColour Colour object Colour of text

type integer See Condition types constants for details.

value string First condition value

value2 string Second condition value (where relevant)

Example

To get the data for the 2nd condition in item i:
var condition = i.GetCondition(1);

GetCondition(index[integer], column[integer])

Description

Get the conditional formatting data for an Item.AUTO_TABLE item.

REPORTER User manual Version 18.0, April 2021

Page D.44

Arguments

Name Type Description

index integer The index of the condition to get. Note that indices start from 0.

column integer The column to get the condition from. Note that indices start from 0.

Return type

Object with the following properties:

Name Type Description

fillColour Colour object Fill colour

fontName string Font name (e.g. "Courier").

fontSize integer Font size (between 6 and 72).

fontStyle integer Font style. See Text style constants for details.

justify integer Text alignment for the item. See Justification constants for details.

name string Condition name

textColour Colour object Colour of text

type integer See Condition types constants for details.

value string First condition value

value2 string Second condition value (where relevant)

Example

To get the data for the 2nd condition from the 3rd column in autotable item i:
var condition = i.GetCondition(1, 2);

GetCondition(index[integer], row[integer], column[integer])

Description

Get the conditional formatting data for an Item.TABLE item.

Arguments

Name Type Description

index integer The index of the condition to get. Note that indices start from 0.

row integer The cell row to get the condition from. Note that indices start from 0.

column integer The cell column to get the condition from. Note that indices start from 0.

Return type

Object with the following properties:

Name Type Description

fillColour Colour object Fill colour

fontName string Font name (e.g. "Courier").

fontSize integer Font size (between 6 and 72).

User manual Version 18.0, April 2021 REPORTER

Page D.45

fontStyle integer Font style. See Text style constants for details.

justify integer Text alignment for the item. See Justification constants for details.

name string Condition name

textColour Colour object Colour of text

type integer See Condition types constants for details.

value string First condition value

value2 string Second condition value (where relevant)

Example

To get the data for the 2nd condition from the 4th row, 3rd column in table item i:
var condition = i.GetCondition(1, 3, 2);

GetFromName(page[Page], name[string]) [static]

Description

Get an Item from its name.
Arguments

Name Type Description

page Page Page to get item from

name string Item name

Return type

Item object (or null if item cannot be found)

Example

To get the item with name test on page p:
var item = Item.GetFromName(p, "test");

GetGeneratedData(row_index[integer], column_index[integer])

Description

Get the text that appears in an autotable cell once generated. Valid for item type Item.AUTO_TABLE.

Arguments

Name Type Description

row_index integer The index of the row of interest. Note that indices start from 0.

column_index integer The index of the column of interest. Note that indicies start from 0.

Return type

String: the text displayed in the specified row and column.

REPORTER User manual Version 18.0, April 2021

Page D.46

Example

Get the data from the first cell in the first row and column in an autotable.
i.GetGeneratedData(0, 0);

GetRowHeight(row[integer])

Description

Get the height of a table row. Valid for item type Item.TABLE.

Arguments

Name Type Description

row integer The index of the row of interest. Note that indices start from 0.

Return type

integer

Example

To get the height of the first row in a table:
i.GetRowHeight(0);

InsertColumn(column[integer])

Description

Insert a column into a table. Valid for item types Item.TABLE and Item.AUTO_TABLE.

Arguments

Name Type Description

column integer The index of the position where the inserted column will end up. Note that indices start from 0. If no
argument is given, a column will be added to the bottom of the table.

Return type

No return value
Example

To insert a column that will become the second column from the left of the table:
i.InsertColumn(1);

InsertRow(row[integer])

Description

Insert a row into a table. Valid for item type Item.TABLE.

User manual Version 18.0, April 2021 REPORTER

Page D.47

Arguments

Name Type Description

row integer The index of the position where the inserted row will end up. Note that indices start from 0. If no
argument is given, a row will be added to the bottom of the table.

Return type

No return value
Example

To insert a row that will become the second row from the top of the table:
i.InsertRow(1);

MergeCells(topLeftRow[integer], topLeftColumn[integer], rows[integer],
columns[integer])

Description

Merge specified cells in a table. Valid for item types Item.TABLE and Item.AUTO_TABLE.

Arguments

Name Type Description

topLeftRow integer The row index of the top-left cell in the group of cells to be merged. Note that indices start
from 0.

topLeftColumn integer The column index of the top-left cell in the group of cells to be merged. Note that indices
start from 0.

rows integer The number of rows of cells to be merged (measured from the topLeftRow position).

columns integer The number of columns of cells to be merged (measured from the topLeftColumn position).

Return type

No return value
Example

To merge the cells in first row and the first two columns in the table:
i.MergeCells(0, 0, 1, 2);

SetCellProperties(properties[object], row[integer], column[integer])

Description

Set the properties of the specified cell. Valid for item type Item.TABLE.

REPORTER User manual Version 18.0, April 2021

Page D.48

Arguments

Name Type Description

properties object Name Type Description

bottomBorderWidth
(optional)

real Cell bottom border width. Can be 0.0, 0.1, 0.5, 0.75, 1.0,
1.5, 2.0, 2.5, 3.0, 4.0, 5.0. Other values will result in no
border.

fillColour (optional) Colour
object

Fill colour

fontName (optional) string Font name (e.g. "Courier").

fontSize (optional) integer Font size (between 6 and 72).

fontStyle (optional) integer Font style. See Text style constants for details.

hyperlinkHTML
(optional)

string Hyperlink destination for HTML.

hyperlinkPDF
(optional)

string Hyperlink destination for PDF.

hyperlinkReport
(optional)

string Hyperlink destination for Report or page within Report.

justify (optional) integer Text justification for the item. Same rules as justify property
of Item Class.

prefix (optional) string Prefix text to appear before Library Program output.

program (optional) string Path and filename for a Program cell, or the filename (e.g.
title.js) for a Library Program cell.

programArgs (optional) Array of
strings

Program arguments

rightBorderWidth
(optional)

real Cell right border width. Can be 0.0, 0.1, 0.5, 0.75, 1.0, 1.5,
2.0, 2.5, 3.0, 4.0, 5.0. Other values will result in no border.

suffix (optional) string Suffix text to appear after Library Program output.

text (optional) string The cell text. For Program and Library Program cells, use
the prefix, output and suffix properties.

textColour (optional) Colour
object

Colour of text

topBorderWidth
(optional)

real Cell top border width. Can be 0.0, 0.1, 0.5, 0.75, 1.0, 1.5,
2.0, 2.5, 3.0, 4.0, 5.0. Other values will result in no border.

type (optional) integer Can be Item.TEXT,Item.LIBRARY_PROGRAM or
Item.PROGRAM.

variable (optional) string REPORTER variable for library program output.

An object containing the cell properties. Object has the following properties:

row integer The row index of the cell to be modified. Note that indices start from 0.

column integer The column index of the cell to be modified. Note that indices start from 0.

Return type

No return value

User manual Version 18.0, April 2021 REPORTER

Page D.49

Example

To set the properties of the cell object to those of the object cell_obj:
i.SetCellProperties(cell_obj, 0, 0);

SetColumnProperties(properties[object], column[integer], header[constant])

Description

Set the properties of an autotable column. Valid for item type Item.AUTO_TABLE.

Arguments

Name Type Description

properties object Set the properties of an autotable column. Valid for item type Item.AUTO_TABLE. Object has
Name Type Description

fillColour (optional) Colour
object

Fill colour

fontName (optional) string Font name (e.g. "Courier").

fontSize (optional) integer Font size (between 6 and 72).

fontStyle (optional) integer Font style. Same rules as fontStyle property of

hyperlinkHTML
(optional)

string Hyperlink destination for HTML.

hyperlinkPDF
(optional)

string Hyperlink destination for PDF.

hyperlinkReport
(optional)

string Hyperlink destination for Report or page within Report.

justify (optional) integer Text justification for the item. Same rules as justify property
of Item Class.

program (optional) string Path and filename for a Program cell, or the filename (e.g.
title.js) for a Library Program cell.

programArgs
(optional)

Array of
strings

Program arguments

text (optional) string The cell text. For Program and Library Program cells, use
the prefix, output and suffix properties.

textColour (optional) Colour
object

Colour of text

type (optional) integer Can be Item.TEXT,Item.LIBRARY_PROGRAM or
Item.PROGRAM.

the following properties:

column integer The index of the column of interest. Note that indices start from 0.

header constant An argument to signify to set the properties of the header or the generated rows. Can be
Reporter.AUTO_TABLE_HEADER or Reporter.AUTO_TABLE_ROWS.

Return type

No return value

REPORTER User manual Version 18.0, April 2021

Page D.50

Example

Sets the column properties of the header of the first column with the properties of the object column_obj.
i.SetColumnProperties(column_obj, 0, Reporter.AUTO_TABLE_HEADER);

SetColumnWidth(column[integer], width[real])

Description

Set the width of a table column. Valid for item type Item.TABLE.

Arguments

Name Type Description

column integer The index of the column of interest. Note that indices start from 0.

width real The column width.

Return type

No return value
Example

To set the width of the first column in a table to 10.0:
i.SetColumnWidth(0, 10.0);

SetCondition(condition[integer], properties[object])

Description

Set the specified condition for an item. Valid for item types Item.TEXT_FILE, Item.PROGRAM, Item.TEXT or
Item.TEXTBOX (for Item.AUTO_TABLE and Item.TABLE, see SetCondition functions with additional arguments
below).

User manual Version 18.0, April 2021 REPORTER

Page D.51

Arguments

Name Type Description

condition integer The index of the condition you wish to set. Note that indices start at 0. If a condition already exists
at the specified index, it will be replaced. To add a new condition, specify an index equal to the
number of existing conditions.

properties object The index of the condition you wish to set. Note that indices start at 0. If a condition already exists
at the specified index, it will be replaced. To add a new condition, specify an index equal to the
Name Type Description

fillColour
(optional)

Colour
object

Fill colour

fontName
(optional)

string Font name (e.g. "Courier").

fontSize (optional) integer Font size (between 6 and 72).

fontStyle (optional) integer Font style. See Text style constants for details.

justify (optional) integer Text alignment for the item. See Justification constants for
details.

name (optional) string Condition name

textColour
(optional)

Colour
object

Colour of text

type (optional) integer See Condition types constants for details.

value (optional) string First condition value

value2 (optional) string Second condition value (where relevant)

number of existing conditions. Object has the following properties:

Return type

No return value
Example

To set the conditions for the condition index 1 in item i to those of the object obj:
var obj = { name:"example", type:Reporter.CONDITION_EQUAL_TO, value:"Test",
textColour:Colour.Red() };
i.SetCondtion(1, obj);

SetCondition(condition[integer], column[integer], properties[object])

Description

Set the specified condition for an Item.AUTO_TABLE item.

REPORTER User manual Version 18.0, April 2021

Page D.52

Arguments

Name Type Description

condition integer The index of the condition you wish to set. Note that indices start at 0. If a condition already exists
at the specified index, it will be replaced. To add a new condition, specify an index equal to the
number of existing conditions.

column integer The column to set the condition for. Note that indices start from 0.

properties object The column to set the condition for. Note that indices start from 0. Object has the following
Name Type Description

fillColour
(optional)

Colour
object

Fill colour

fontName
(optional)

string Font name (e.g. "Courier").

fontSize (optional) integer Font size (between 6 and 72).

fontStyle (optional) integer Font style. See Text style constants for details.

justify (optional) integer Text alignment for the item. See Justification constants for
details.

name (optional) string Condition name

textColour
(optional)

Colour
object

Colour of text

type (optional) integer See Condition types constants for details.

value (optional) string First condition value

value2 (optional) string Second condition value (where relevant)

properties:

Return type

No return value
Example

To set the conditions for condition index 1 in the third column in item i to those of the object obj:
var obj = { name:"example", type:Reporter.CONDITION_EQUAL_TO, value:"Test",
textColour:Colour.Red() };
i.SetCondtion(1, 2, obj);

SetCondition(condition[integer], row[integer], column[integer],
properties[object])

Description

Set the specified condition for an Item.TABLE item.

User manual Version 18.0, April 2021 REPORTER

Page D.53

Arguments

Name Type Description

condition integer The index of the condition you wish to set. Note that indices start at 0. If a condition already exists
at the specified index, it will be replaced. To add a new condition, specify an index equal to the
number of existing conditions.

row integer The row to set the condition for. Note that indices start from 0.

column integer The column to set the condition for. Note that indices start from 0.

properties object The column to set the condition for. Note that indices start from 0. Object has the following
Name Type Description

fillColour
(optional)

Colour
object

Fill colour

fontName
(optional)

string Font name (e.g. "Courier").

fontSize (optional) integer Font size (between 6 and 72).

fontStyle (optional) integer Font style. See Text style constants for details.

justify (optional) integer Text alignment for the item. See Justification constants for
details.

name (optional) string Condition name

textColour
(optional)

Colour
object

Colour of text

type (optional) integer See Condition types constants for details.

value (optional) string First condition value

value2 (optional) string Second condition value (where relevant)

properties:

Return type

No return value
Example

To set the conditions for condition index 1 in the fourth row, third column in item i to those of the object obj:
var obj = { name:"example", type:Reporter.CONDITION_EQUAL_TO, value:"Test",
textColour:Colour.Red() };
i.SetCondtion(1, 3, 2, obj);

SetRowHeight(row[integer], height[real])

Description

Set the height of a table row. Valid for item type Item.TABLE and Item.AUTO_TABLE.

Arguments

Name Type Description

row integer The index of the row of interest. Note that indices start from 0.

height real The row height.

REPORTER User manual Version 18.0, April 2021

Page D.54

Return type

No return value
Example

To set the height of the first row in a table to 10.0:
i.SetRowHeight(0, 10.0);

UnmergeCells(row[integer], column[integer])

Description

Unmerge the specified cell in a table. All cells merged to the specified cell will be unmerged. Valid for item types
Item.TABLE and Item.AUTO_TABLE.
Arguments

Name Type Description

row integer The row index of the cell to be unmerged. Note that indices start from 0.

column integer The column index of the cell to be unmerged. Note that indices start from 0..

Return type

No return value
Example

To unmerge the top-left cell in a table:
i.UnmergeCells(0, 0);

User manual Version 18.0, April 2021 REPORTER

Page D.55

Page class

The Page class gives access to pages in Reporter. More...

The REPORTER JavaScript API provides many class constants, properties and methods. For Arup to be able to extend
and enhance the API in the future any constant, property or method names beginning with a lowercase or uppercase
letter are reserved.
If you need to add your own properties or methods to one of the existing classes then to avoid any potential future
conflict you should ensure that the name begins with either an underscore (_) or a dollar sign ($) or the name is prefixed
with your own unique identifier.
For example if company ’ABC’ need to add a property called ’example’ then to avoid any potential future conflict use
one of:

• _example
• $example
• ABC_example

Member functions
• DeleteItem(index[integer])
• Duplicate(index (optional)[integer])
• Generate()
• GetAllItems()
• GetItem(index[integer])
• ImportItem(filename[string])

Page properties

Name Type Description

items (read only) integer The total number of items on the page

master (read only) logical true if this is a master page object.

name string Name of the Page

Detailed Description

The Page class allows you to access the pages in templates that Reporter currently has open.

Constructor

new Page(template[Template], options (optional)[object])

Description

Create a new Page..

REPORTER User manual Version 18.0, April 2021

Page D.56

Arguments

Name Type Description

template Template Template to create page in

options
(optional)

object Options specifying various page properties, including where the page should be created. If
Name Type Description

colour
(optional)

Colour
object

Page background colour (white if omitted)

index
(optional)

integer The page index at which the new page will be inserted (indices start
from zero). You cannot create pages prior to the current page i.e. the
index must be greater than the index of the current page. If omitted, the
new page will be created immediately after the current page. Note that
the current page continues to be the page that the Script item is running
on (it does not change to the newly-created page).

name
(optional)

string Name for page (empty if omitted)

omitted, the default values below will be used. Object has the following properties:

Return type

Page object

Example

To create a new blank Page object in template t:
var page = new Page(t);

To create a new red page named "Last page" as the last page in template t:
var page = new Page(t, {name:"Last page", colour:Colour.Red(),
index:t.GetAllPages().length});

new Page(template[Template], name (optional)[string]) [deprecated]

This function is deprecated in version 17.0. It is only provided to keep old scripts working. We strongly advise against
using it in new scripts. Support may be removed in future versions.

Description

Create a new Page.

Arguments

Name Type Description

template Template Template to create page in

name (optional) string Name for page (empty if omitted)

Return type

Page object

Example

To create a new blank Page object in template t:
var page = new Page(t);

User manual Version 18.0, April 2021 REPORTER

Page D.57

Details of functions

DeleteItem(index[integer])

Description

Deletes an item from a page.

Arguments

Name Type Description

index integer The index of the item that you want to delete. Note that indices start at 0.

Return type

No return value
Example

To delete the first item of page p:
p.DeleteItem(0);

Duplicate(index (optional)[integer])

Description

Duplicate a page

Arguments

Name Type Description

index
(optional)

integer The page index that you want to insert the duplicate page at in the template. Note that indices
start at 0. If omitted the duplicate page will be put after the one that you are duplicating.

Return type

Page object

Example

To duplicate page p:
var dp = p.Duplicate();

To duplicate page p putting the duplicate as the first page in the template:
var dp = p.Duplicate(0);

Generate()

Description

Generate a page

REPORTER User manual Version 18.0, April 2021

Page D.58

Arguments

No arguments

Return type

no return value
Example

To generate page p:
p.Generate();

GetAllItems()

Description

Gets all of the items from a page.

Arguments

No arguments

Return type

Array of Item objects

Example

To get all of the items on page p:
var items = p.GetAllItems();

GetItem(index[integer])

Description

Get an item from a page.

Arguments

Name Type Description

index integer The index of the item on the page that you want to get. Note that indices start at 0.

Return type

Item
Example

To get the 1st item on page p:
p.GetItem(0);

User manual Version 18.0, April 2021 REPORTER

Page D.59

ImportItem(filename[string])

Description

Import an item from a file onto the page.

Arguments

Name Type Description

filename string File containing the object to import

Return type

Item
Example

To read an item from file "item.oro" and put it on page p:
p.ImportItem("item.oro");

REPORTER User manual Version 18.0, April 2021

Page D.60

Reporter class

The Reporter class contains constants for use in REPORTER. More...

The REPORTER JavaScript API provides many class constants, properties and methods. For Arup to be able to extend
and enhance the API in the future any constant, property or method names beginning with a lowercase or uppercase
letter are reserved.
If you need to add your own properties or methods to one of the existing classes then to avoid any potential future
conflict you should ensure that the name begins with either an underscore (_) or a dollar sign ($) or the name is prefixed
with your own unique identifier.
For example if company ’ABC’ need to add a property called ’example’ then to avoid any potential future conflict use
one of:

• _example
• $example
• ABC_example

Reporter constants

Name Description

Reporter.CapFlat This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.CAP_FLAT instead [deprecated]

Reporter.CapRound This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.CAP_ROUND instead [deprecated]

Reporter.CapSquare This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.CAP_SQUARE instead [deprecated]

Reporter.JoinBevel This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.JOIN_BEVEL instead [deprecated]

Reporter.JoinMitre This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.JOIN_MITRE instead [deprecated]

Reporter.JoinRound This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.JOIN_ROUND instead [deprecated]

Reporter.JustifyBottom This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.JUSTIFY_BOTTOM instead [deprecated]

Reporter.JustifyCentre This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.JUSTIFY_CENTRE instead [deprecated]

Reporter.JustifyLeft This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.JUSTIFY_LEFT instead [deprecated]

User manual Version 18.0, April 2021 REPORTER

Page D.61

Reporter.JustifyMiddle This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.JUSTIFY_MIDDLE instead [deprecated]

Reporter.JustifyRight This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.JUSTIFY_RIGHT instead [deprecated]

Reporter.JustifyTop This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.JUSTIFY_TOP instead [deprecated]

Reporter.LineDash This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.LINE_DASH instead [deprecated]

Reporter.LineDashDot This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.LINE_DASH_DOT instead [deprecated]

Reporter.LineDashDotDot This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.LINE_DASH_DOT_DOT instead [deprecated]

Reporter.LineDot This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.LINE_DOT instead [deprecated]

Reporter.LineNone This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.LINE_NONE instead [deprecated]

Reporter.LineSolid This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.LINE_SOLID instead [deprecated]

Reporter.TextBold This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.TEXT_BOLD instead [deprecated]

Reporter.TextItalic This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.TEXT_ITALIC instead [deprecated]

Reporter.TextNormal This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.TEXT_NORMAL instead [deprecated]

Reporter.TextUnderline This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.TEXT_UNDERLINE instead [deprecated]

Reporter.ViewDesign This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.VIEW_DESIGN instead [deprecated]

REPORTER User manual Version 18.0, April 2021

Page D.62

Reporter.ViewPresentation This constant is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Reporter.VIEW_PRESENTATION instead [deprecated]

Constants for Autotable source and row types

Name Description

Reporter.AUTO_TABLE_DIRECTORY Autotable data is generated from a directory.

Reporter.AUTO_TABLE_FILE Autotable data is generated from a file.

Reporter.AUTO_TABLE_HEADER Represents the header row in an Autotable.

Reporter.AUTO_TABLE_ROWS Represents the rows with generated data in an Autotable.

Constants for Condition types

Name Description

Reporter.CONDITION_BETWEEN Treats the value as a number. True if value is between the two
condition values

Reporter.CONDITION_CONTAINS_STRING Treats the vlue as a string. True if the value contains the string

Reporter.CONDITION_DOESNT_CONTAIN_
STRING

Treats the vlue as a string. True if the value does not contain the
string

Reporter.CONDITION_DOESNT_MATCH_
REGEX

Treats the value as a regular expression. True if the regular
expression does not match

Reporter.CONDITION_EQUAL_TO Treats the value as a string. True if the strings are equal

Reporter.CONDITION_GREATER_THAN Treats the value as a number. True if value is greater than the
condition value

Reporter.CONDITION_LESS_THAN Treats the value as a number. True if value is less than the condition
value

Reporter.CONDITION_MATCHES_REGEX Treats the value as a regular expression. True if the regular
expression matches

Reporter.CONDITION_NOT_BETWEEN Treats the value as a number. True if value is between the two
condition values

Reporter.CONDITION_NOT_EQUAL_TO Treats the value as a string. True if the strings are not equal

Constants for Justification

Name Description

Reporter.JUSTIFY_BOTTOM Bottom justification of text

Reporter.JUSTIFY_CENTRE Centre justification of text

Reporter.JUSTIFY_LEFT Left justification of text

Reporter.JUSTIFY_MIDDLE Middle justification of text

Reporter.JUSTIFY_RIGHT Right justification of text

Reporter.JUSTIFY_TOP Top justification of text

Constants for Line cap style

Name Description

User manual Version 18.0, April 2021 REPORTER

Page D.63

Reporter.CAP_FLAT A square line ending at the end point of the line

Reporter.CAP_ROUND A rounded line ending

Reporter.CAP_SQUARE A square line that extends beyond the end point of the line by half the line width

Constants for Line join style

Name Description

Reporter.JOIN_BEVEL The triangular notch where the line segments meet is filled

Reporter.JOIN_MITRE The outer edges of the line segments are extended to meet at an angle and this is filled

Reporter.JOIN_ROUND A circular arc between the two line segments is filled

Constants for Line style

Name Description

Reporter.LINE_DASH A dashed line (dashes separated by a few pixels)

Reporter.LINE_DASH_DOT A line drawn with alternate dashes and dots

Reporter.LINE_DASH_DOT_DOT A line drawn with one dash and two dots

Reporter.LINE_DOT A dotted line (dots separated by a few pixels)

Reporter.LINE_NONE Invisible line

Reporter.LINE_SOLID A simple continuous line

Constants for Text style

Name Description

Reporter.TEXT_BOLD Text drawn in a bold font

Reporter.TEXT_ITALIC Text drawn in an italic font

Reporter.TEXT_NORMAL Text drawn in a normal font

Reporter.TEXT_UNDERLINE Text drawn underlined

Constants for View

Name Description

Reporter.VIEW_DESIGN Show template in design view

Reporter.VIEW_PRESENTATION Show template in presentation view

Reporter properties

Name Type Description

currentTemplate Template This property is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Template.GetCurrent() instead [deprecated]

REPORTER User manual Version 18.0, April 2021

Page D.64

templates array This property is deprecated in version 12.0. It is only provided to keep old scripts
working. We strongly advise against using it in new scripts. Support may be removed in
future versions.
Please use Template.GetAll() instead [deprecated]

Detailed Description

The Reporter class allows you to access constants used in REPORTER.

User manual Version 18.0, April 2021 REPORTER

Page D.65

Template class

The Template class gives access to templates in Reporter. More...

The REPORTER JavaScript API provides many class constants, properties and methods. For Arup to be able to extend
and enhance the API in the future any constant, property or method names beginning with a lowercase or uppercase
letter are reserved.
If you need to add your own properties or methods to one of the existing classes then to avoid any potential future
conflict you should ensure that the name begins with either an underscore (_) or a dollar sign ($) or the name is prefixed
with your own unique identifier.
For example if company ’ABC’ need to add a property called ’example’ then to avoid any potential future conflict use
one of:

• _example
• $example
• ABC_example

Class functions
• GetAll()
• GetCurrent()

Member functions
• Close()
• DeletePage(index[integer])
• DeleteTemporaryVariables()
• EditVariables(title (optional)[string], message (optional)[string], update (optional)[boolean], variables

(optional)[array], columns (optional)[constant], alphabetical (optional)[boolean])
• ExpandVariablesInString(string[string])
• Generate()
• GetAllPages()
• GetMaster()
• GetPage(index[integer])
• GetVariableDescription(name[string])
• GetVariableValue(name[string])
• Html(filename[string])
• Pdf(filename[string])
• Ppt(filename[string]) [deprecated]
• Pptx(filename[string])
• Print(printer[string])
• Save()
• SaveAs(filename[string])
• Update()

Template properties

Name Type Description

filename
(read only)

string Filename (without path) of the Template.

name (read
only)

string This property is deprecated in version 15.0. It is only provided to keep old scripts working. We
strongly advise against using it in new scripts. Support may be removed in future versions.
Name of the Template. This property has been preserved for compatability with older scripts. It
either contains the absolute path and filename, or just the filename, depending on how the
Template was opened. Please use the filename and path properties for consistent results.
[deprecated]

pages (read
only)

integer Number of Pages in template

path (read
only)

string Absolute path (without filename) of the Template. If the Template is new and has not yet been
saved, this property will be empty.

REPORTER User manual Version 18.0, April 2021

Page D.66

variables array This property is deprecated in version 12.0. It is only provided to keep old scripts working. We
strongly advise against using it in new scripts. Support may be removed in future versions.
Array of Variable objects for this template. Please use Variable.GetAll() and
Variable.GetFromName() instead. [deprecated]

view constant Current view type (presentation or design view) for this Template. Can be: Reporter.VIEW_
DESIGN or Reporter.VIEW_PRESENTATION.

Detailed Description

The Template class allows you to access the templates that Reporter currently has open.
Note that if you want to get a list of the current templates in Reporter you should see the templates array in the reporter
object.
The currently active template is stored in the currentTemplate property of the reporter object.

Constructor

new Template(filename (optional)[string])

Description

Create a new Template. The filename argument is optional. If present it is a file to open

Arguments

Name Type Description

filename (optional) string Name of template file to open

Return type

Template object

Example

To create a new blank Template object
var template = new Template();

Details of functions

Close()

Description

Close a template.
Note that if you call this function for a Template object, the Template data will be deleted, so you should not try
to use it afterwards!.
Arguments

No arguments

Return type

no return value

User manual Version 18.0, April 2021 REPORTER

Page D.67

Example

To close template data:
data.Close();

DeletePage(index[integer])

Description

Deletes a page from a template.

Arguments

Name Type Description

index integer The index of the page that you want to delete. Note that indices start at 0.

Return type

No return value
Example

To delete the first page of template t:
t.DeletePage(0);

DeleteTemporaryVariables()

Description

Deletes any temporary variables from a template.

Arguments

No arguments

Return type

No return value
Example

To delete all the temporary variables from template t:
t.DeleteTemporaryVariables();

EditVariables(title (optional)[string], message (optional)[string], update
(optional)[boolean], variables (optional)[array], columns (optional)[constant],
alphabetical (optional)[boolean])

Description

Start a dialog to edit the template variables

REPORTER User manual Version 18.0, April 2021

Page D.68

Arguments

Name Type Description

title (optional) string Title for dialog. If omitted, null or an empty string is given then the default title will be used.

message
(optional)

string Message to show in dialog. If omitted, null or an empty string is given then the default
message will be used.

update
(optional)

boolean Whether the variables in the template will be updated with the new values if OK is pressed.
Setting this to be false allows you to check variable values before updating them from a
script. If omitted the default is true

variables
(optional)

array A list of variables to show in the dialog. If omitted, null or an empty array, all variables will
be shown

columns
(optional)

constant Columns to show in the dialog (as well as the variable value column). Can be a bitwise OR
of Variable.NAME, Variable.TYPE, Variable.DESCRIPTION, Variable.FORMAT,
Variable.PRECISION and Variable.TEMPORARY. If omitted columns will be shown for
name and description

alphabetical
(optional)

boolean Whether to sort variables in the table by alphabetical order. If false, variables are listed in
the order they are passed in the optional variables argument. If no variables are passed to the
function, all template variables will be shown in alphabetical order. If omitted, the default
value is true.

Return type

Object containing the variable names and values or null if cancel was pressed.

Example

To edit all of the variables in template:
var variables = template.EditVariables();

To edit variables TEST and EXAMPLE in template giving a title and a message, returning the edited values but not
updating them in the template:
var variables = template.EditVariables("Edit variables", "Type in the values",
false, ["TEST", "EXAMPLE");

ExpandVariablesInString(string[string])

Description

Replaces any variables in a string with their current values

Arguments

Name Type Description

string string The string you want to expand variables in.

Return type

String (string) with variables expanded. If a variable in a string does not exist it is replaced by a blank.

Example

If the variable FRED in template contains the value "test", then the following
var value = template.ExpandVariablesInString("This is a %FRED%");

will return "This is a test" in variable value.

User manual Version 18.0, April 2021 REPORTER

Page D.69

Generate()

Description

Generate a template

Arguments

No arguments

Return type

no return value
Example

To generate template data:
data.Generate();

GetAll() [static]

Description

Get all of the open templates

Arguments

No arguments

Return type

array of Template objects or null if no open templates

Example

To get all of the templates open in REPORTER:
var templates = Template.GetAll();

GetAllPages()

Description

Gets all of the pages from a template.

Arguments

No arguments

Return type

Array of Page objects

Example

To get all of the pages from template t:
var pages = t.GetAllPages();

REPORTER User manual Version 18.0, April 2021

Page D.70

GetCurrent() [static]

Description

Get the currently active template

Arguments

No arguments

Return type

Template object or null if no active template

Example

To get the current template open in REPORTER:
var current_template = Template.GetCurrent();

GetMaster()

Description

Get the master page from a template.

Arguments

No arguments

Return type

Page object

Example

To get the master page of template t:
var m = t.GetMaster();

GetPage(index[integer])

Description

Get a page from a template.

Arguments

Name Type Description

index integer The index of the page that you want to get. Note that indices start at 0.

Return type

Page object

User manual Version 18.0, April 2021 REPORTER

Page D.71

Example

To get the first page of template t:
var p = t.GetPage(0);

GetVariableDescription(name[string])

Description

Get the description for a variable

Arguments

Name Type Description

name string Variable name you want to get description for.

Return type

Variable description (string) or null if variable does not exist

Example

To get description for variable FRED in template:
var description = template.GetVariableDescription("FRED");

GetVariableValue(name[string])

Description

Get the value for a variable
Arguments

Name Type Description

name string Variable name you want to get value for.

Return type

Variable value (string) or null if variable does not exist

Example

To get value for variable FRED in template:
var value = template.GetVariableValue("FRED");

Html(filename[string])

Description

Save a template as HTML

REPORTER User manual Version 18.0, April 2021

Page D.72

Arguments

Name Type Description

filename string Filename you want to save.

Return type

no return value
Example

To save template data as file /data/test/template.html:
data.Html("/data/test/template.html");

Pdf(filename[string])

Description

Save a template as Adobe Acrobat PDF

Arguments

Name Type Description

filename string Filename you want to save.

Return type

no return value
Example

To save template data as file /data/test/template.pdf:
data.Pdf("/data/test/template.pdf");

Ppt(filename[string]) [deprecated]

This function is deprecated in version 18.0. It is only provided to keep old scripts working. We strongly advise against
using it in new scripts. Support may be removed in future versions.

Description

Save a template as PowerPoint. This function is deprecated. Use Template.Pptx instead.

Arguments

Name Type Description

filename string Filename you want to save.

Return type

no return value

User manual Version 18.0, April 2021 REPORTER

Page D.73

Example

To save template data as file /data/test/template.pptx:
data.Ppt("/data/test/template.pptx");

Pptx(filename[string])

Description

Save a template as PowerPoint

Arguments

Name Type Description

filename string Filename you want to save.

Return type

no return value
Example

To save template data as file /data/test/template.pptx:
data.Pptx("/data/test/template.pptx");

Print(printer[string])

Description

Print template on a printer

Arguments

Name Type Description

printer string Printer you want to print to.

Return type

no return value
Example

To print template data on printer myprinter:
data.Print("myprinter");

Save()

Description

Save a template

REPORTER User manual Version 18.0, April 2021

Page D.74

Arguments

No arguments

Return type

no return value
Example

To save template data:
data.Save();

SaveAs(filename[string])

Description

Save a template/report with a new name

Arguments

Name Type Description

filename string Filename you want to save. Note if you use the .orr extension the template will be saved as a report if
generated.

Return type

no return value
Example

To save template data as file /data/test/template.opt:
data.SaveAs("/data/test/template.opt");

Update()

Description

Update/redraw a template

Arguments

No arguments

Return type

no return value
Example

To update template data:
data.Update();

User manual Version 18.0, April 2021 REPORTER

Page D.75

Window class

The Window class gives access to windows for a graphical user interface. More...

The REPORTER JavaScript API provides many class constants, properties and methods. For Arup to be able to extend
and enhance the API in the future any constant, property or method names beginning with a lowercase or uppercase
letter are reserved.
If you need to add your own properties or methods to one of the existing classes then to avoid any potential future
conflict you should ensure that the name begins with either an underscore (_) or a dollar sign ($) or the name is prefixed
with your own unique identifier.
For example if company ’ABC’ need to add a property called ’example’ then to avoid any potential future conflict use
one of:

• _example
• $example
• ABC_example

Class functions
• Error(title[string], error[string], buttons (optional)[constant])
• GetDirectory(initial (optional)[string])
• GetFile(extension (optional)[string], allow new (optional)[boolean], initial (optional)[string])
• GetFiles(extension (optional)[string])
• GetInteger(title[string], message[string])
• GetNumber(title[string], message[string])
• GetOptions(title[string], message[string], options[object])
• GetString(title[string], message[string])
• Information(title[string], info[string], buttons (optional)[constant])
• Message(title[string], message[string], buttons (optional)[constant])
• Question(title[string], question[string], buttons (optional)[constant])
• Warning(title[string], warning[string], buttons (optional)[constant])

Window constants

Name Description

Window.CANCEL Show CANCEL button

Window.NO Show NO button

Window.OK Show OK button

Window.YES Show YES button

Detailed Description

The Window class is used to define several standard windows that can be used to read data, give messages and provide
feedback

Details of functions

Error(title[string], error[string], buttons (optional)[constant]) [static]

Description

Show an error message in a window.

REPORTER User manual Version 18.0, April 2021

Page D.76

Arguments

Name Type Description

title string Title for window.

error string Error message to show in window.

buttons
(optional)

constant The buttons to use. Can be bitwise OR of Window.OK, Window.CANCEL, Window.YES or
Window.NO. If this is omitted an OK button will be used.

Return type

Button pressed

Example

To show error Critical error!\nAbort? in window with title Error with Yes and No buttons:
var answer = Window.Error("Error", "Critical error!\nAbort?", Window.YES |
Window.NO);
if (answer == Window.YES) Exit();

GetDirectory(initial (optional)[string]) [static]

Description

Map the directory selector box native to your machine, allowing you to choose a directory.

Arguments

Name Type Description

initial (optional) string Initial directory to start from.

Return type

directory (string), (or null if cancel pressed).

Example

To select a directory:
var dir = Window.GetDirectory();

GetFile(extension (optional)[string], allow new (optional)[boolean], initial
(optional)[string]) [static]

Description

Map a file selector box allowing you to choose a file. See also Window.GetFiles()

User manual Version 18.0, April 2021 REPORTER

Page D.77

Arguments

Name Type Description

extension (optional) string Extension to filter by.

allow new (optional) boolean Allow creation of new file.

initial (optional) string Initial directory to start from.

Return type

filename (string), (or null if cancel pressed).

Example

To select a file using extension ’.key’:
var file = Window.GetFile(".key");

GetFiles(extension (optional)[string]) [static]

Description

Map a file selector box allowing you to choose multiple files. See also Window.GetFile()

Arguments

Name Type Description

extension (optional) string Extension to filter by.

Return type

Array of filenames (strings), or null if cancel pressed.

Example

To select multiple files using extension ’.key’:
var files = Window.GetFiles(".key");

GetInteger(title[string], message[string]) [static]

Description

Map a window allowing you to input an integer. OK and Cancel buttons are shown.

Arguments

Name Type Description

title string Title for window.

message string Message to show in window.

Return type

Integer. Value input, (or null if cancel pressed).

REPORTER User manual Version 18.0, April 2021

Page D.78

Example

To create an input window with title Input and message Input integer and return the value input:
var value = Window.GetInteger("Input", "Input integer");

GetNumber(title[string], message[string]) [static]

Description

Map a window allowing you to input a number. OK and Cancel buttons are shown.

Arguments

Name Type Description

title string Title for window.

message string Message to show in window.

Return type

Real. Value input, (or null if cancel pressed).

Example

To create an input window with title Input and message Input number and return the value input:
var value = Window.GetNumber("Input", "Input number");

GetOptions(title[string], message[string], options[object]) [static]

Description

Map a window allowing you to input various options. OK and Cancel buttons are shown.

Arguments

Name Type Description

title string Title for window.

message string Message to show in window.

options Array of
objects

Array of objects listing options that can be set. If OK is pressed the objects will be updated with
the values from the widgets. If cancel is pressed they will not. Object has the following
Name Type Description

selected
(optional)

boolean If checkbox is selected or not

text string Text to show next to option

type string Type of option. Can be "label" (plain text), "text" (a one line text
widget), "textbox" (a multi line text widget) or "checkbox" (a
checkable option)

value string Text to show for option

properties:

User manual Version 18.0, April 2021 REPORTER

Page D.79

Return type

false if cancel pressed, true if OK pressed.

Example

To create a window with title Options , message Please give the options with label, text, textbox and checkbox widgets:
var options = [

{ text:"Label example", type:"label", value:"banana" },
{ text:"Text example", type:"text", value:"single line of text"

},
{ text:"Textbox example", type:"textbox",

value:"Multiple\\nlines\\nof\\ntext" },
{ text:"Checkbox example", type:"checkbox", value:"Do this?",

selected:true }
];

ok = Window.GetOptions("Options", "Please give the options", options);

GetString(title[string], message[string]) [static]

Description

Map a window allowing you to input a string. OK and Cancel buttons are shown.

Arguments

Name Type Description

title string Title for window.

message string Message to show in window.

Return type

String. Value input, (or null if cancel pressed).

Example

To create an input window with title Input and message Input string and return the value input:
var value = Window.GetString("Input", "Input string");

Information(title[string], info[string], buttons (optional)[constant]) [static]

Description

Show information in a window.
Arguments

Name Type Description

title string Title for window.

info string Information to show in window.

buttons
(optional)

constant The buttons to use. Can be bitwise OR of Window.OK, Window.CANCEL, Window.YES or
Window.NO. If this is omitted an OK button will be used.

REPORTER User manual Version 18.0, April 2021

Page D.80

Return type

Button pressed

Example

To show information Information in window with title Example with OK and Cancel buttons:
var answer = Window.Information("Example", "Information", Window.OK |
Window.CANCEL);
if (answer == Window.CANCEL) Message("You pressed the Cancel button");

Message(title[string], message[string], buttons (optional)[constant]) [static]

Description

Show a message in a window.

Arguments

Name Type Description

title string Title for window.

message string Message to show in window.

buttons
(optional)

constant The buttons to use. Can be bitwise OR of Window.OK, Window.CANCEL, Window.YES or
Window.NO. If this is omitted an OK button will be used

Return type

Button pressed

Example

To show message Press YES or NO in window with title Example with YES and NO buttons:
var answer = Window.Message("Example", "Press YES or NO", Window.YES |
Window.NO);
if (answer == Window.NO) Message("You pressed No");

Question(title[string], question[string], buttons (optional)[constant]) [static]

Description

Show a question in a window.

Arguments

Name Type Description

title string Title for window.

question string Question to show in window.

buttons
(optional)

constant The buttons to use. Can be bitwise OR of Window.OK, Window.CANCEL, Window.YES or
Window.NO. If this is omitted Yes and No button will be used.

Return type

Button pressed

User manual Version 18.0, April 2021 REPORTER

Page D.81

Example

To show question Do you want to continue? in window with title Question:
var answer = Window.Question("Question", "Do you want to continue?");
if (answer == Window.NO) Message("You pressed No");

Warning(title[string], warning[string], buttons (optional)[constant]) [static]

Description

Show a warning message in a window.

Arguments

Name Type Description

title string Title for window.

warning string Warning message to show in window.

buttons
(optional)

constant The buttons to use. Can be bitwise OR of Window.OK, Window.CANCEL, Window.YES or
Window.NO. If this is omitted an OK button will be used.

Return type

Button pressed

Example

To show warning Title is blank\nSet to ID? in window with title Warning with Yes and No buttons:
var answer = Window.Warning("Warning", "Title is blank\nSet to ID?", Window.YES
| Window.NO);
if (answer == Window.NO) Message("You pressed No");

REPORTER User manual Version 18.0, April 2021

Page D.82

Variable class

The Variable class gives access to variables in Reporter. More...

The REPORTER JavaScript API provides many class constants, properties and methods. For Arup to be able to extend
and enhance the API in the future any constant, property or method names beginning with a lowercase or uppercase
letter are reserved.
If you need to add your own properties or methods to one of the existing classes then to avoid any potential future
conflict you should ensure that the name begins with either an underscore (_) or a dollar sign ($) or the name is prefixed
with your own unique identifier.
For example if company ’ABC’ need to add a property called ’example’ then to avoid any potential future conflict use
one of:

• _example
• $example
• ABC_example

Class functions
• GetAll(template[Template])
• GetFromName(template[Template], name[string])

Member functions
• Remove()

Variable constants

Name Description

Variable.DESCRIPTION Show variable description when editing variables with Template.EditVariables()

Variable.FORMAT Show variable format when editing variables with Template.EditVariables()

Variable.FORMAT_FLOAT Variable has floating point number format

Variable.FORMAT_GENERAL Variable has general format

Variable.FORMAT_INTEGER Variable has integer format

Variable.FORMAT_
LOWERCASE

Variable has lower case format

Variable.FORMAT_NONE Variable has no format

Variable.FORMAT_SCIENTIFIC Variable has scientific format

Variable.FORMAT_UPPERCASE Variable has upper case format

Variable.NAME Show variable name when editing variables with Template.EditVariables()

Variable.PRECISION Show variable precision when editing variables with Template.EditVariables()

Variable.READONLY Show variable readonly status when editing variables with
Template.EditVariables()

Variable.TEMPORARY Show variable temporary status when editing variables with
Template.EditVariables()

Variable.TYPE Show variable type when editing variables with Template.EditVariables()

Variable.VALUE Show variable value when editing variables with Template.EditVariables()

Variable properties

Name Type Description

description string Variable description

User manual Version 18.0, April 2021 REPORTER

Page D.83

format constant Variable format. Can be Variable.FORMAT_NONE, Variable.FORMAT_FLOAT,
Variable.FORMAT_SCIENTIFIC, Variable.FORMAT_GENERAL, Variable.FORMAT_
INTEGER, Variable.FORMAT_UPPERCASE or Variable.FORMAT_LOWERCASE

name string Variable name

precision integer Variable precision for floating point numbers.

readonly logical If Variable is read only or not.

temporary logical If Variable is temporary or not.

type string Variable type. Predefined types are "Directory", "File(absolute)", "File(basename)",
"File(extension)", "File(tail)", "General", "Number" and "String". Alternatively give your own
type. e.g. "NODE ID"

value string Variable value

Detailed Description

The Variable class allows you to access the name, description and value of a variable inside Reporter.
Note that if you want to get a list of the variables used in a Template you should see the variables array in the Template
object.
The name, description and value properties give access to the variable name, description and value respectively.

Constructor

new Variable(template[Template], name[string], description (optional)[string],
value (optional)[string], type (optional)[string], readonly (optional)[boolean],
temporary (optional)[boolean])

Description

Create a new Variable. The template and name arguments MUST be given, all others are optional

Arguments

Name Type Description

template Template Template object to create variable in

name string Name of variable

description
(optional)

string Description of variable

value
(optional)

string Variable value

type
(optional)

string Type of variable. Predefined types are "Directory", "File(absolute)", "File(basename)",
"File(extension)", "File(tail)", "General", "Number" and "String". Alternatively give your
own type. e.g. "NODE ID". If omitted default is "General"

readonly
(optional)

boolean If variable is readonly or not. If omitted default is false.

temporary
(optional)

boolean If variable is temporary or not. If omitted default is true.

Return type

Variable object

REPORTER User manual Version 18.0, April 2021

Page D.84

Example

To create a new Variable object called TEST with description ’test variable’, type of "Number" and value ’10’ which is
not readonly for template, templ
var variable = new Variable(templ, "TEST", "test variable", "10", "Number",
false);

Details of functions

GetAll(template[Template]) [static]

Description

Returns an array of Variable objects for all of the variables in a Template.

Arguments

Name Type Description

template Template Template to get the variables from

Return type

Array of Variable objects

Example

To get all the variables in template t:
var v = Variable.GetAll(t);

GetFromName(template[Template], name[string]) [static]

Description

Returns the Variable object for a variable name.

Arguments

Name Type Description

template Template Template to find the variable in

name string name of the variable you want the Variable object for

Return type

Variable object (or null if variable does not exist)

Example

To get the Variable object for variable EXAMPLE in template t:
var v = Variable.GetFromName(t, "EXAMPLE");

User manual Version 18.0, April 2021 REPORTER

Page D.85

Remove()

Description

Remove a variable
Note that if you call this function for a Variable object, the Variable data will be deleted, so you should not try to
use it afterwards!.
Arguments

No arguments

Return type

no return value
Example

To remove variable data:
data.Remove();

REPORTER User manual Version 18.0, April 2021

Page D.86

E. Writing external programs/scripts
Programs or scripts for REPORTER that do some external function can be written in any language. It is up to you if you
prefer to use a scripting language such as Perl, Python, Tcl etc or a compiled language such as C or Fortran.

Anything which a program prints to stdout (standard output) will be returned to REPORTER (the one exception to this
is returning variables which is described below)

Returning variables from programs

To return a variable back to REPORTER output a line that take the form

VAR <NAME> VALUE="<value>" DESCRIPTION="<description>"
or
VAR <NAME> VALUE="<value>"

It will not inserted into the report as text but will be used to create a variable. See section 4.4 for more details.

Accessing existing variables in REPORTER

If you only want to use one or two variables from REPORTER then they can be passed as arguments to your program.
However, if you want to access a lot of variables (or print all the variables to a file) this would not be possible.

To overcome this, REPORTER adds an extra argument to every program that it runs. This extra argument is a filename
which contains lines of the form:

VAR <NAME> VALUE="<value>" DESCRIPTION="<description>"

You can read this file and pick up all the variables from REPORTER.

Example perl program to read variables file from REPORTER

The following example shows how you could read this file.
Skeleton REPORTER Perl script showing extraction of variables fed to program
The variable file REPORTER generates will be the LAST argument
#
Variables are stored in a hash ’%vars’, each entry in the hash contains
{value} and {description}.
#
e.g. If REPORTER has a variable ’FRED’ with value ’1’ and description
’Example variable’ you can get at the variable value and description using:
#
$vars{FRED}->{value}
$vars{FRED}->{description}
#
Arguments
=========
1: Variables file
#
Miles Thornton 23/5/2002
#
%vars = ();
if ($#ARGV >= 0)
{

open (VAR, "< $ARGV[$#ARGV]") or die "Error: Cannot open variable file";
while (<VAR>)
{

chomp;
&get_var_from_string($_);

}
}
else
{

die "Error: No variable file on the command line\n";

User manual Version 18.0, April 2021 REPORTER

Page E.1

}
###
START OF YOUR PROGRAM
#
e.g. loop over variables and save them to a file
open (SAVE, "> varfile") or die "Error: Cannot open variables file";
foreach $var (sort keys %vars)
{

print SAVE "Variable $var value=$vars{$var}->{value} ",
"desc=$vars{$var}->{description}\n";

}
close (SAVE);
END OF YOUR PROGRAM
###
exit;
===================
sub get_var_from_string
===================
#
Tries to read a variable from the variable file
#
{

my $string = shift;
my ($var, $val, $desc);
if ($string =~ /VAR\s+(\w+)\s+

VALUE\s*=\s*[’"](.*?)[’"]\s*
DESCRIPTION\s*=\s*[’"](.*?)[’"]
/x)

{
$var = $1;
$val = $2;
$desc = $3;

}
elsif ($string =~ /VAR\s+(\w+)\s+

DESCRIPTION\s*=\s*[’"](.*?)[’"]\s*
VALUE\s*=\s*[’"](.*?)[’"]
/x)

{
$var = $1;
$val = $3;
$desc = $2;

}
elsif ($string =~ /VAR\s+(\w+)\s+

VALUE\s*=\s*[’"](.*?)[’"]
/x)

{
$var = $1;
$val = $2;
$desc = undef;

}
if ($var)
{

$var = uc($var);
$var =~ s/\s+/_/g;
if (exists $vars{$var})
{

$vars{$var}->{value} = $val;
$vars{$var}->{description} = $desc;

}
else
{

my $variable = {};
$variable->{value} = $val;
$variable->{description} = $desc;
$vars{$var} = $variable;

}
}

}

REPORTER User manual Version 18.0, April 2021

Page E.2

Example program: Extracting the smallest timesteps (Text
output)

These programs/scripts are designed to extract from the OTF file the 5 elements with the smallest timesteps, and write
out the data as text to the standard output. They also output the smallest timestep as a REPORTER variable called
TIMESTEP. Note that these programs/scripts are only simple examples and as such don’t have all the necessary error
checking that should be included.
They work by searching the OTF file for the text string "100 smallest timesteps" which appears towards the end of the
model initialization section, and then reading in relevant element data from this list. An example of this section of an
OTF file is shown below. The one argument for this program/script is the OTF filename (for example tube2.otf).
The LS-DYNA time step size should not exceed 0.133E-05
to avoid contact instabilities. If the step size is
bigger then scale the penalty of the offending surface.

0 t 0.0000E+00 dt 0.00E+00 flush i/o buffers
100 smallest timesteps

element timestep
shell 16620 0.66873E-06
shell 16619 0.66873E-06
shell 16612 0.66873E-06
shell 16611 0.66873E-06
shell 16572 0.66873E-06
shell 16571 0.66873E-06
shell 16564 0.66873E-06
shell 16563 0.66873E-06
shell 16520 0.66873E-06
shell 16519 0.66873E-06
shell 16512 0.66873E-06
shell 16511 0.66873E-06
shell 16504 0.66873E-06
shell 16503 0.66873E-06
shell 16472 0.66873E-06

Example programs to extract the data are shown in 4 languages:
• C
• C shell script
• Fortran
• Perl

C program/script
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_LEN 257
int main(int argc, char *argv[])
{

char line[MAX_LEN], *ptr;
int c, i, l, n = 5;
float t, tmin;
FILE *fp;
if (argc < 2)
{

printf("No otf filename\n");
exit(0);

}
if ((fp = fopen(argv[1], "r")) == NULL)
{

printf("Cannot open otf file %s\n", argv[1]);
exit(0);

}
while (fgets(line, MAX_LEN, fp))
{

if (strstr(line, "smallest timesteps"))
{

sscanf(line, "%d", &n);
if (n > 5) n = 5;
tmin = 1.0e+20;

User manual Version 18.0, April 2021 REPORTER

Page E.3

fgets(line, MAX_LEN, fp);
fgets(line, MAX_LEN, fp);
for (i=0; i<n; i++)
{

fgets(line, MAX_LEN, fp);
printf ("%s", line);

/* Remove any trailing characters */
l = strlen(line) - 1;
while ((c = line[l]) == ’ ’ || c==’\n’ || c==’\r’ || c==’\t’)

l--;
line[l+1] = ’\0’;

/* Find start of number */
l = strlen(line) - 1;
while ((c = line[l]) != ’ ’)

l--;
ptr = &line[l];
sscanf(ptr, "%e", &t);
if (t < tmin)

tmin = t;
}
printf ("VAR TIMESTEP VALUE=\"%e\"\n", tmin);
exit(0);

}
}
fclose(fp);

}

C Shell program/script
#!/bin/csh -f
#
Script to extract the 5 smallest timesteps from otf file
#
Arguments: 1: otf filename

Test to see if there is an argument
if ($#argv < 1) then

echo "No otf filename";
exit;

endif
test to see if the otf file exists
if (!(-e $argv[1])) then

echo "otf file $argv[1] does not exist";
exit;

endif
Use awk to extract the timesteps
awk ’/smallest timesteps/ { # search for smallest timestep \

n = $1; # save how many found \
getline; # skip a line \
getline; # skip a line \
if (n > 5) n = 5; # limit to 5 timesteps \
t = 1.0e+20; # initialise smallest timestep \
for (i=0; i<n; i++) # loop over lines \
{ # \
getline; # read the line \
print $0; # print it \
if ($NF < t) t = $NF; # save timestep if smaller \
} # than current smallest \

} # \
END { # \

printf ("VAR TIMESTEP VALUE=\"%e\"\n", t); # Print smallest timestep \
} # \

’ $argv[1]

Fortran program/script
c

character*80 fname,line
integer elemno(5)
real timestep(5)

REPORTER User manual Version 18.0, April 2021

Page E.4

n=iargc(1)
c
c Read in model name argument
c

call getarg(1,fname)
c
c Open model OTF file
c

open (unit=25, file=fname, status=’old’)
c
c Scan file for line with the text string
c " 100 smallest timesteps"
c
10 continue

read (25,’(a)’,end=900) line
if (line(1:23).eq.’ 100 smallest timesteps’) then

goto 20
else

goto 10
endif

c
c Read in but ignore next 2 lines of data
c
20 continue

read(25,*)
read(25,*)

c
c Read in the element no. and timestep data
c from the next five lines
c
101 format(i10)
102 format(e23.0)
c

do 30 i=1,5
read (25,’(a)’) line
read (line(7:16),101) elemno(i)
read (line(20:42),102) timestep(i)

30 continue
c
c Write out the data as a text output
c
201 format (2x,i9,5x,e11.5)
c

write (*,*) ’ Element No. Timestep ’
do 40 i=1,5
write (*,201) elemno(i),timestep(i)

40 continue
c
c Also write out the smallest timestep as
c REPORTER variable
c
301 format (’VAR TIMESTEP VALUE="’,e11.5,’"’)

write(*,301) timestep(1)
goto 999

c
900 write(*,*) ’End of file reached’
c
999 continue

stop
end

c

Perl program/script
Perl Script to extract the 5 smallest timesteps from otf file
#
Arguments: 1: otf filename
use strict;
Test to see if there is an argument
if ($#ARGV < 0)
{

User manual Version 18.0, April 2021 REPORTER

Page E.5

print "No otf filename\n";
exit;

}
test to see if the otf file exists
if (!(-e $ARGV[0]))
{

print "otf file $ARGV[0] does not exist\n";
exit;

}
open (OTF, "< $ARGV[0]");
my $n;
my $t = 1.0e+20;
while (<OTF>)
{

if (/ (\d+) smallest timesteps/)
{

$n = $1;
if ($n > 5) { $n = 5; }
<OTF>;
<OTF>;
for (my $i=0; $i<$n; $i++)
{

$_ = <OTF>;
print $_;
my @f = split;
if ($f[$#f] < $t) { $t = $f[$#f]; }

}
print "VAR TIMESTEP VALUE=\"$t\"\n";
exit;

}
}
close (OTF);

REPORTER User manual Version 18.0, April 2021

Page E.6

F. Unicode support
REPORTER has basic unicode (i.e. non-latin characters) support. This means that if you have the appropriate language
kit and fonts installed on your computer you can input and use European accented, Japanese, Korean and Chinese
characters. On Windows you can input unicode characters using the normal IME (global Input Method Editor).

The XML format that REPORTER uses to save files supports unicode.

As Japanese, Korean and Chinese have many common ideographs, but these may have different appearances depending
on the font there is a preference in REPORTER which allows you to set the default language you want to use,
reporter*cjk_default which can be either Chinese, Japanese or Korean.

Note that although REPORTER has unicode support, currently D3PLOT, T/HIS and LS-DYNA do not so you should
not use unicode characters in filenames.

F.1 Output formats that support unicode

Currently only text objects and table headers can be output with unicode characters.

HTML

Unicode is fully supported in the HTML written by REPORTER. To view the HTML a user needs the appropriate fonts
installed.

PowerPoint

Unicode is fully supported in the PowerPoint files written by REPORTER (as long as the appropriate language pack(s)
are installed).

PDF

The PDF files created by REPORTER do not embed the fonts used in the document. However, newer versions of the
acrobat reader will automatically detect that the document uses a Chinese, Japanese or Korean font and prompt the user
to download the necessary fonts.

There are two preferences which affect what fonts are used in pdf files:
Firstly for Japanese the preference reporter*japanese_font indicates what font should be used for Japanese
characters. It can be ’Kozuka Mincho Pro’ (a serif font) or ’Kozuka Gothic Pro’ (a sans serif font). The
default is ’Kozuka Gothic Pro’.
For Chinese the preference reporter*chinese_characters indicates if traditional or simplified characters
should be used. It can be Traditional or Simplified. the default is Traditional.

User manual Version 18.0, April 2021 REPORTER

Page F.1

REPORTER User manual Version 18.0, April 2021

Page F.2

Installation organisation
The version18installation can be customised to try and avoid a number of issues that often occur in large organisations
with many users.

• Large organisations generally imply large networks, and it is often the case that the performance of these
networks can be intermittent or poor, therefore it is common practice to perform an installation of the software
on the local disk of each machine, rather then having a single installation on a remote disk.

This avoids the pauses and glitches that can occur when running executable files over a network, but it also
means that all the configuration files in, or depending upon, the top level "Admin" directory have to be copied to
all machines and, more to the point, any changes or additions to such files also have to be copied to all machines.

• In larger organisations the "one person per computer" philosophy may not apply, with the consequence that users
will tend to have a floating home area on a network drive and may not use the same machine every day.

This is not usually a problem on Linux where the "home" directory is tied to the login name not the machine.
However on Windows platforms it means that %USERPROFILE%, which is typically on the local C drive of a
machine, is not a good place to consider as "home" since it will be tied to a given computer, therefore a user who
saves a file in their home directory on machine A may not be able to access it from machine B.

• In a similar vein placing large temporary files on the /tmp partition (Linux) or the C: drive (Windows) may result
in local disks becoming too full, or quotas exceeded.

This section gives only a brief summary of the installation organisation, and you should refer to the separate Installation
Guide if you want to find out more about the details of installation, licensing, and other related issues.

Version18.0 Installation structure

In version18.0 the option is provided to separate a top-level ’administration’ directory from the ’installation’ one where
the executables are located.

For large installations on many machines this allows central configuration and administration files to exist in one place
only, but executables to be installed locally on users’ machines to give better performance. Version18.0 also allows the
following items to be configured

• The location for user manuals and other documentation.
• The definition of a user’s home directory.
• The definition of the temporary directory for scratch files.

In addition parsing of the ’oa_pref’ (preferences) file will now handle environment variables, so that a generic
preference can be configured to give a user-specific result, and preferences may be ’locked’ so that those set at the
administration level cannot be changed by users.

These changes are entirely optional, and users performing a simple installation on a single machine do not need to make
any changes to their existing installation practice.

Directory Status Directory Content and purpose oa_pref file option

OA_
ADMIN_xx

Optional Top level configuration files.
(xx =18for release18.0, thus OA_ADMIN_18)

Admin level oa_pref file
Other configuration files
Timeout configuration file

User manual Version 18.0, April 2021 REPORTER

Page G.1

OA_ADMIN Optional Same as OA_ADMIN_18, provided for backwards
compatibility with earlier releases.

It is recommended that plain OA_ADMIN, without the _xx
version suffix, is not used since otherwise there is no easy way
of distinguishing between parallel installations of different
releases of the Oasys Ltd software in an installation.

If OA_ADMIN_18 is not defined then this non-release specific
version is checked.

OA_
INSTALL_
xx

Optional (xx =18for release18.0, thus OA_ADMIN_18

All executables
Installation level oa_pref file

oasys*install_
dir: <pathname>

OA_
INSTALL

Optional Same as OA_INSTALL_18.

If no "OA_ADMIN_xx" directory is used and all software is
simply placed in this "install" directory, which would be typical
of a single-user installation, then it is recommended that the _
xx version suffix is used in order to keep parallel installations
of different releases of the Oasts Ltd software separate on the
machine.

If OA_INSTALL_18 is not defined then this non-release
specific version is checked

oasys*install_
dir: <pathname>

OA_
MANUALS

Optional Specific directory for user manuals. If not defined then will
search in:
OA_ADMIN_xx/manuals (xx = major version number)
OA_INSTALL/manuals

oasys*manuals_
dir: <pathname>

OA_HOME Optional Specific "home" directory for user when using Oasys Ltd
software. If not defined will use:
$HOME (Linux)
%USERPROFILE% (Windows)

oasys*home_dir:
<pathname>

OA_TEMP Optional Specific "temporary" directory for user when using Oasys Ltd
software. If not defined will use:
P_tmpdir (Linux, typically /tmp)
%TEMP% (Windows, typically C:\temp)

oasys*temp_dir:
<pathname>

It will be clear from the table above that no Environment variables have to be set, and that all defaults will revert to
pre-9.4 behaviour. In other words users wishing to keep the status quo will find behaviour and layout unchanged if they
do nothing.

OA_INSTALL_XX
Previously the software used the OA_INSTALL (renamed from OASYS) environment variable to locate the directory
the software was installed in.

• On Windows this is no longer required as the software can work out its own installation directory. As this
environment variable is no longer required it is recommended that it is removed from machines it is currently set
on as in some cases where more than one version has been installed in different directories it can cause
problems.

• On LINUX systems the "oasys_18" script that starts the SHELL automatically sets this Environment Variable
and passes it to any application started from the SHELL. If you run applications directly from the command line
and bypass the SHELL then you should set OA_INSTALL_XX so that the software can locate manuals and other
required files.

OA_ADMIN_XX
Users wishing to separate configuration and installation directories will be able to do so by making use of the new top
level OA_ADMIN_xx directory.

REPORTER User manual Version 18.0, April 2021

Page G.2

Installation Examples

The following diagrams illustrate how the installation might be organised in various different scenarios..
a) Single user installation on one machine
There is no need to worry about separating administration and installation directories, and the
default installation of all files in and below the single installation directory will suffice.

It is suggested that the _xx version suffix of OA_INSTALL_xx is used in order to keep
parallel installations of different releases of the Oassys Ltd software separate on the machine.

b) A few machines on a small network, each user has their own machine
The top level administration directory can be installed on a
network server, possibly also locating the manuals centrally.

Each user’s machine has its own ’installation’ directory to
give good performance, but there is no need to manage
home or temporary directories centrally since each user
’owns’ their machine.

If network performance is good an alternative would be to
install executables on the central server, meaning that local
OA_INSTALL directories are not required.

c) Large corporate network
There is no need to worry about separating
administration and installation directories, and the
default installation of all files in and below the single
installation directory will suffice.

User manual Version 18.0, April 2021 REPORTER

Page G.3

Dynamic configuration using the top level oa_pref file.

A further improvement is that all environment variables below OA_ADMIN_xx may either be set explicitly, or
dynamically using the options in the oa_pref file at the top OA_ADMIN_xx level. This permits parallel installations of
different versions of the software to co-exist, with only the top level administration directory names being distinct. For
example:

Release18.0 Release18.1

Top level directory OA_ADMIN_18 Top level directory OA_ADMIN_181

oa_pref file in OA_ADMIN_18 contains:

oasys*install_dir: <pathname for 18.0
installation>
oasys*manuals_dir: <pathname for 18.0
manuals>

oasys*home_dir: <pathname for home directory>
oasys*temp_dir: <pathname for temporary files>

oa_pref file in OA_ADMIN_181 contains:

oasys*install_dir: <pathname for 18.1
installation>
oasys*manuals_dir: <pathname for18.1
manuals>

} would almost certainly be unchanged between major
} versions, although they could be different if desired

Pathnames in the oa_pref file may contain environment variables which will be resolved before being applied.

The hierarchy of oa_pref file reading

It will be clear from the above that in a large installation the "oa_pref" files have a significant role. Each piece of
software reads them in the following order:

OA_ADMIN_xx Top level configuration

OA_INSTALL_xx Installation level

OA_HOME User’s personal "home" file

Current working directory File specific to the current directory (rarely used)

The rules for reading these files are:
• If a given directory does not exist, or no file is found in that directory, then no action is taken. This is not an

error.
• A more recently read definition supersedes one read earlier, therefore "local" definitions can supersede "global"

ones (unless it was locked).
• If two of more of the directories in the table above are the same then that file is only read once from the first

instance.

Locking Preference Options

From version 9.4 onwards preference options can be locked. If a preference option is locked in a file then that
preference option will be ignored in any of the subsequent preference files that are read.

Therefore by locking a preference in a top-level file in the hierarchy above, eg in OA_ADMIN_xx, and then protecting
that file to be read-only, an administrator can set preferences that cannot be altered by users since any definitions of
that preference in their private oa_pref files will be ignored.

Preferences are locked by using a hash (#) rather than an asterisk (*) between the code name and the preference string.
For example:

REPORTER User manual Version 18.0, April 2021

Page G.4

primer*maximise: true Normal case using "*", means an unlocked preference

primer#maximise: true Locked case using "#"

These changes may be made either by editing the file manually, or by using the preferences editor.

User manual Version 18.0, April 2021 REPORTER

Page G.5

REPORTER User manual Version 18.0, April 2021

Page G.6

Licences used in software
The Oasys LS-DYNA environment Ltd software uses several third party libraries and executables. The licences for
them are given below

Apple Public Source
Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
The contents of this file constitute Original Code as defined in and
are subject to the Apple Public Source License Version 1.1 (the
"License"). You may not use this file except in compliance with the
License. Please obtain a copy of the License at
http://www.apple.com/publicsource and read it before using this file.

This Original Code and all software distributed under the License are
distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
License for the specific language governing rights and limitations
under the License.
Copyright (c) 1992 NeXT Computer, Inc. All rights reserved.

Note: the URL http://www.apple.com/publicsource cited above no longer exists, see instead
https://spdx.org/licenses/APSL-1.1.html

Draco

google/draco is licensed under the Apache License:
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Expat
Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

and Clark Cooper
Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE

FreeType

User manual Version 18.0, April 2021 REPORTER

Page H.1

http://github.com/google/draco
http://github.com/google/draco
http://github.com/google/draco
http://github.com/google/draco
http://github.com/google/draco
http://www.apache.org/licenses/LICENSE-2.0

Portions of this software are copyright The FreeType Project (www.freetype.org). All rights reserved.
The FreeType Project LICENSE

2006-Jan-27
Copyright 1996-2002, 2006 by

David Turner, Robert Wilhelm, and Werner Lemberg
Introduction
============
The FreeType Project is distributed in several archive packages;
some of them may contain, in addition to the FreeType font engine,
various tools and contributions which rely on, or relate to, the
FreeType Project.
This license applies to all files found in such packages, and
which do not fall under their own explicit license. The license
affects thus the FreeType font engine, the test programs,
documentation and makefiles, at the very least.
This license was inspired by the BSD, Artistic, and IJG
(Independent JPEG Group) licenses, which all encourage inclusion
and use of free software in commercial and freeware products
alike. As a consequence, its main points are that:
o We don’t promise that this software works. However, we will be
interested in any kind of bug reports. (‘as is’ distribution)

o You can use this software for whatever you want, in parts or
full form, without having to pay us. (‘royalty-free’ usage)

o You may not pretend that you wrote this software. If you use
it, or only parts of it, in a program, you must acknowledge
somewhere in your documentation that you have used the
FreeType code. (‘credits’)

We specifically permit and encourage the inclusion of this
software, with or without modifications, in commercial products.
We disclaim all warranties covering The FreeType Project and
assume no liability related to The FreeType Project.
Finally, many people asked us for a preferred form for a
credit/disclaimer to use in compliance with this license. We thus
encourage you to use the following text:
"""
Portions of this software are copyright <year> The FreeType
Project (www.freetype.org). All rights reserved.
"""
Please replace <year> with the value from the FreeType version you
actually use.

Legal Terms
===========
0. Definitions

Throughout this license, the terms ‘package’, ‘FreeType Project’,
and ‘FreeType archive’ refer to the set of files originally
distributed by the authors (David Turner, Robert Wilhelm, and
Werner Lemberg) as the ‘FreeType Project’, be they named as alpha,
beta or final release.
‘You’ refers to the licensee, or person using the project, where
‘using’ is a generic term including compiling the project’s source
code as well as linking it to form a ‘program’ or ‘executable’.
This program is referred to as ‘a program using the FreeType
engine’.
This license applies to all files distributed in the original
FreeType Project, including all source code, binaries and
documentation, unless otherwise stated in the file in its
original, unmodified form as distributed in the original archive.
If you are unsure whether or not a particular file is covered by
this license, you must contact us to verify this.
The FreeType Project is copyright (C) 1996-2000 by David Turner,
Robert Wilhelm, and Werner Lemberg. All rights reserved except as
specified below.

1. No Warranty

THE FREETYPE PROJECT IS PROVIDED ‘AS IS’ WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT WILL ANY OF THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY DAMAGES CAUSED BY THE USE OR THE INABILITY TO

REPORTER User manual Version 18.0, April 2021

Page H.2

https://www.freetype.org/

USE, OF THE FREETYPE PROJECT.
2. Redistribution

This license grants a worldwide, royalty-free, perpetual and
irrevocable right and license to use, execute, perform, compile,
display, copy, create derivative works of, distribute and
sublicense the FreeType Project (in both source and object code
forms) and derivative works thereof for any purpose; and to
authorize others to exercise some or all of the rights granted
herein, subject to the following conditions:
o Redistribution of source code must retain this license file
(‘FTL.TXT’) unaltered; any additions, deletions or changes to
the original files must be clearly indicated in accompanying
documentation. The copyright notices of the unaltered,
original files must be preserved in all copies of source
files.

o Redistribution in binary form must provide a disclaimer that
states that the software is based in part of the work of the
FreeType Team, in the distribution documentation. We also
encourage you to put an URL to the FreeType web page in your
documentation, though this isn’t mandatory.

These conditions apply to any software derived from or based on
the FreeType Project, not just the unmodified files. If you use
our work, you must acknowledge us. However, no fee need be paid
to us.

3. Advertising

Neither the FreeType authors and contributors nor you shall use
the name of the other for commercial, advertising, or promotional
purposes without specific prior written permission.
We suggest, but do not require, that you use one or more of the
following phrases to refer to this software in your documentation
or advertising materials: ‘FreeType Project’, ‘FreeType Engine’,
‘FreeType library’, or ‘FreeType Distribution’.
As you have not signed this license, you are not required to
accept it. However, as the FreeType Project is copyrighted
material, only this license, or another one contracted with the
authors, grants you the right to use, distribute, and modify it.
Therefore, by using, distributing, or modifying the FreeType
Project, you indicate that you understand and accept all the terms
of this license.

4. Contacts

There are two mailing lists related to FreeType:
o freetype@nongnu.org
Discusses general use and applications of FreeType, as well as
future and wanted additions to the library and distribution.
If you are looking for support, start in this list if you
haven’t found anything to help you in the documentation.

o freetype-devel@nongnu.org
Discusses bugs, as well as engine internals, design issues,
specific licenses, porting, etc.

Our home page can be found at
http://www.freetype.org

--- end of FTL.TXT ---

FFmpeg
FFmpeg is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

FFmpeg is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with FFmpeg; if not, write to the Free Software

User manual Version 18.0, April 2021 REPORTER

Page H.3

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Jpeg
The authors make NO WARRANTY or representation, either express or implied,
with respect to this software, its quality, accuracy, merchantability, or
fitness for a particular purpose. This software is provided "AS IS", and you,
its user, assume the entire risk as to its quality and accuracy.
This software is copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding.
All Rights Reserved except as specified below.
Permission is hereby granted to use, copy, modify, and distribute this
software (or portions thereof) for any purpose, without fee, subject to these
conditions:
(1) If any part of the source code for this software is distributed, then this
README file must be included, with this copyright and no-warranty notice
unaltered; and any additions, deletions, or changes to the original files
must be clearly indicated in accompanying documentation.
(2) If only executable code is distributed, then the accompanying
documentation must state that "this software is based in part on the work of
the Independent JPEG Group".
(3) Permission for use of this software is granted only if the user accepts
full responsibility for any undesirable consequences; the authors accept
NO LIABILITY for damages of any kind.
These conditions apply to any software derived from or based on the IJG code,
not just to the unmodified library. If you use our work, you ought to
acknowledge us.
Permission is NOT granted for the use of any IJG author’s name or company name
in advertising or publicity relating to this software or products derived from
it. This software may be referred to only as "the Independent JPEG Group’s
software".
We specifically permit and encourage the use of this software as the basis of
commercial products, provided that all warranty or liability claims are
assumed by the product vendor.

Libcurl
COPYRIGHT AND PERMISSION NOTICE
Copyright (c) 1996 - 2012, Daniel Stenberg, <daniel@haxx.se>.
All rights reserved.
Permission to use, copy, modify, and distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright
notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization of the copyright holder.

Libfame
libfame - Fast Assembly MPEG Encoder Library
Copyright (C) 2000-2001 Vivien Chappelier
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

REPORTER User manual Version 18.0, April 2021

Page H.4

Libgif
The GIFLIB distribution is Copyright (c) 1997 Eric S. Raymond
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Libpng
This copy of the libpng notices is provided for your convenience. In case of
any discrepancy between this copy and the notices in the file png.h that is
included in the libpng distribution, the latter shall prevail.
COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:
If you modify libpng you may insert additional notices immediately following
this sentence.
This code is released under the libpng license.
libpng versions 1.2.6, August 15, 2004, through 1.5.11, June 14, 2012, are
Copyright (c) 2004, 2006-2012 Glenn Randers-Pehrson, and are
distributed according to the same disclaimer and license as libpng-1.2.5
with the following individual added to the list of Contributing Authors

Cosmin Truta
libpng versions 1.0.7, July 1, 2000, through 1.2.5 - October 3, 2002, are
Copyright (c) 2000-2002 Glenn Randers-Pehrson, and are
distributed according to the same disclaimer and license as libpng-1.0.6
with the following individuals added to the list of Contributing Authors

Simon-Pierre Cadieux
Eric S. Raymond
Gilles Vollant

and with the following additions to the disclaimer:
There is no warranty against interference with your enjoyment of the
library or against infringement. There is no warranty that our
efforts or the library will fulfill any of your particular purposes
or needs. This library is provided with all faults, and the entire
risk of satisfactory quality, performance, accuracy, and effort is with
the user.

libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are
Copyright (c) 1998, 1999 Glenn Randers-Pehrson, and are
distributed according to the same disclaimer and license as libpng-0.96,
with the following individuals added to the list of Contributing Authors:

Tom Lane
Glenn Randers-Pehrson
Willem van Schaik

libpng versions 0.89, June 1996, through 0.96, May 1997, are
Copyright (c) 1996, 1997 Andreas Dilger
Distributed according to the same disclaimer and license as libpng-0.88,
with the following individuals added to the list of Contributing Authors:

John Bowler
Kevin Bracey
Sam Bushell
Magnus Holmgren
Greg Roelofs
Tom Tanner

libpng versions 0.5, May 1995, through 0.88, January 1996, are
Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.
For the purposes of this copyright and license, "Contributing Authors"
is defined as the following set of individuals:

Andreas Dilger
Dave Martindale

User manual Version 18.0, April 2021 REPORTER

Page H.5

Guy Eric Schalnat
Paul Schmidt
Tim Wegner

The PNG Reference Library is supplied "AS IS". The Contributing Authors
and Group 42, Inc. disclaim all warranties, expressed or implied,
including, without limitation, the warranties of merchantability and of
fitness for any purpose. The Contributing Authors and Group 42, Inc.
assume no liability for direct, indirect, incidental, special, exemplary,
or consequential damages, which may result from the use of the PNG
Reference Library, even if advised of the possibility of such damage.
Permission is hereby granted to use, copy, modify, and distribute this
source code, or portions hereof, for any purpose, without fee, subject
to the following restrictions:
1. The origin of this source code must not be misrepresented.
2. Altered versions must be plainly marked as such and must not

be misrepresented as being the original source.
3. This Copyright notice may not be removed or altered from any

source or altered source distribution.
The Contributing Authors and Group 42, Inc. specifically permit, without
fee, and encourage the use of this source code as a component to
supporting the PNG file format in commercial products. If you use this
source code in a product, acknowledgment is not required but would be
appreciated.
A "png_get_copyright" function is available, for convenient use in "about"
boxes and the like:

printf("%s",png_get_copyright(NULL));
Also, the PNG logo (in PNG format, of course) is supplied in the
files "pngbar.png" and "pngbar.jpg (88x31) and "pngnow.png" (98x31).
Libpng is OSI Certified Open Source Software. OSI Certified Open Source is a
certification mark of the Open Source Initiative.
Glenn Randers-Pehrson
glennrp at users.sourceforge.net
June 14, 2012

Libxlsxwriter
Libxlsxwriter is released under a FreeBSD license:

Copyright 2014-2016, John McNamara
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are
those of the authors and should not be interpreted as representing
official policies, either expressed or implied, of the FreeBSD Project.

Libxlsxwriter includes ‘queue.h‘ from FreeBSD and the ‘minizip‘ component of
‘zlib‘ which have the following licenses:
Queue.h from FreeBSD:

Copyright (c) 1991, 1993
The Regents of the University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

REPORTER User manual Version 18.0, April 2021

Page H.6

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Zlib has the following License/Copyright:
(C) 1995-2013 Jean-loup Gailly and Mark Adler
This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not

claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

MPEG-LA
THIS PRODUCT IS LICENSED UNDER THE
AVC PATENT PORTFOLIO LICENSE FOR THE PERSONAL USE OF A
CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE
REMUNERATION TO (i) ENCODE VIDEO IN COMPLIANCE WITH THE
AVC STANDARD ("AVC VIDEO") AND/OR (ii) DECODE AVC VIDEO
THAT WAS ENCODED BY A CONSUMER ENGAGED IN A PERSONAL
ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER
LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR
SHALL BE IMPLIED FOR ANY OTHER USE. ADDITIONAL
INFORMATION MAY BE OBTAINED FROM MPEG LA, L.L.C. SEE
HTTP://WWW.MPEGLA.COM

Openssl
LICENSE ISSUES
==============
The OpenSSL toolkit stays under a double license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts.
OpenSSL License

/* ==
* Copyright (c) 1998-2017 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright

User manual Version 18.0, April 2021 REPORTER

Page H.7

* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young’s, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright

REPORTER User manual Version 18.0, April 2021

Page H.8

* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word ’cryptographic’ can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

PCRE
PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax
and semantics are as close as possible to those of the Perl 5 language.
Release 7 of PCRE is distributed under the terms of the "BSD" licence, as
specified below. The documentation for PCRE, supplied in the "doc"
directory, is distributed under the same terms as the software itself.
The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions.
THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk
University of Cambridge Computing Service,
Cambridge, England.
Copyright (c) 1997-2008 University of Cambridge
All rights reserved.
THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.
Copyright (c) 2007-2008, Google Inc.
All rights reserved.
THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the University of Cambridge nor the name of Google
Inc. nor the names of their contributors may be used to endorse or
promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

User manual Version 18.0, April 2021 REPORTER

Page H.9

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
End

PDFHummus

Is licensed under the Apache License:
Copyright 2011 Gal Kahana PDFWriter
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

POV-Ray

Is licensed under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3, 19 November 2007 which may be
found here http://www.povray.org/povlegal.html

Oasys Ltd use the POV-Ray executable in unmodified form as a separate, stand-alone entity. We have not modified
the source code or the executable in any way.

We convey the executable as part of our installation package, and in accordance with the licence:
• Users who install POV-Ray must accept the licence terms cited above.
• We provide a download of the POV-Ray executable and source code on our website

http://www.oasys-software.com/dyna/en/

SmoothSort

Is licensed under the Creative Commons Attribution-ShareAlike 3.0 license which
may be found here:
https://creativecommons.org/licenses/by-sa/3.0/legalcode

Oasys Ltd acknowledge Wikibooks as the source of this algorithm, which is used
in unmodified form.

Spidermonkey
Mozilla Public License Version 2.0
==================================
1. Definitions

1.1. "Contributor"

means each individual or legal entity that creates, contributes to
the creation of, or owns Covered Software.

1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used
by a Contributor and that particular Contributor’s Contribution.

1.3. "Contribution"
means Covered Software of a particular Contributor.

1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code
Form, and Modifications of such Source Code Form, in each case

REPORTER User manual Version 18.0, April 2021

Page H.10

http://www.apache.org/licenses/LICENSE-2.0
http://www.povray.org/povlegal.html
http://www.oasys-software.com/dyna/en/
https://creativecommons.org/licenses/by-sa/3.0/legalcode

including portions thereof.
1.5. "Incompatible With Secondary Licenses"

means
(a) that the initial Contributor has attached the notice described

in Exhibit B to the Covered Software; or
(b) that the Covered Software was made available under the terms of

version 1.1 or earlier of the License, but not also under the
terms of a Secondary License.

1.6. "Executable Form"
means any form of the work other than Source Code Form.

1.7. "Larger Work"
means a work that combines Covered Software with other material, in
a separate file or files, that is not Covered Software.

1.8. "License"
means this document.

1.9. "Licensable"
means having the right to grant, to the maximum extent possible,
whether at the time of the initial grant or subsequently, any and
all of the rights conveyed by this License.

1.10. "Modifications"
means any of the following:
(a) any file in Source Code Form that results from an addition to,

deletion from, or modification of the contents of Covered
Software; or

(b) any new file in Source Code Form that contains any Covered
Software.

1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the
License, by the making, using, selling, offering for sale, having
made, import, or transfer of either its Contributions or its
Contributor Version.

1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU
Lesser General Public License, Version 2.1, the GNU Affero General
Public License, Version 3.0, or any later versions of those
licenses.

1.13. "Source Code Form"
means the form of the work preferred for making modifications.

1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that
controls, is controlled by, or is under common control with You. For
purposes of this definition, "control" means (a) the power, direct
or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial
ownership of such entity.

2. License Grants and Conditions

2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
(a) under intellectual property rights (other than patent or trademark)

Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and

(b) under Patent Claims of such Contributor to make, use, sell, offer
for sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.

2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a

User manual Version 18.0, April 2021 REPORTER

Page H.11

Contributor:
(a) for any code that a Contributor has removed from Covered Software;

or
(b) for infringements caused by: (i) Your and any other third party’s

modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or

(c) under Patent Claims infringed by Covered Software in the absence of
its Contributions.

This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights
to grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
in Section 2.1.
3. Responsibilities

3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients’ rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
(a) such Covered Software must also be made available in Source Code

Form, as described in Section 3.1, and You must inform recipients of
the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more
than the cost of distribution to the recipient; and

(b) You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter
the recipients’ rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty,
or limitations of liability) contained within the Source Code Form of
the Covered Software, except that You may alter any license notices to
the extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any

REPORTER User manual Version 18.0, April 2021

Page H.12

such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this
License with respect to some or all of the Covered Software due to
statute, judicial order, or regulation then You must: (a) comply with
the terms of this License to the maximum extent possible; and (b)
describe the limitations and the code they affect. Such description must
be placed in a text file included with all distributions of the Covered
Software under this License. Except to the extent prohibited by statute
or regulation, such description must be sufficiently detailed for a
recipient of ordinary skill to be able to understand it.
5. Termination

5.1. The rights granted under this License will terminate automatically
if You fail to comply with any of its terms. However, if You become
compliant, then the rights granted under this License from a particular
Contributor are reinstated (a) provisionally, unless and until such
Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the
non-compliance by some reasonable means prior to 60 days after You have
come back into compliance. Moreover, Your grants from a particular
Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non-compliance by some reasonable means, this is the
first time You have received notice of non-compliance with this License
from such Contributor, and You become compliant prior to 30 days after
Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all
end user license agreements (excluding distributors and resellers) which
have been validly granted by You or Your distributors under this License
prior to termination shall survive termination.
**
* *
* 6. Disclaimer of Warranty *
* ------------------------- *
* *
* Covered Software is provided under this License on an "as is" *
* basis, without warranty of any kind, either expressed, implied, or *
* statutory, including, without limitation, warranties that the *
* Covered Software is free of defects, merchantable, fit for a *
* particular purpose or non-infringing. The entire risk as to the *
* quality and performance of the Covered Software is with You. *
* Should any Covered Software prove defective in any respect, You *
* (not any Contributor) assume the cost of any necessary servicing, *
* repair, or correction. This disclaimer of warranty constitutes an *
* essential part of this License. No use of any Covered Software is *
* authorized under this License except under this disclaimer. *
* *
**
**
* *
* 7. Limitation of Liability *
* -------------------------- *
* *
* Under no circumstances and under no legal theory, whether tort *
* (including negligence), contract, or otherwise, shall any *
* Contributor, or anyone who distributes Covered Software as *
* permitted above, be liable to You for any direct, indirect, *
* special, incidental, or consequential damages of any character *
* including, without limitation, damages for lost profits, loss of *

User manual Version 18.0, April 2021 REPORTER

Page H.13

* goodwill, work stoppage, computer failure or malfunction, or any *
* and all other commercial damages or losses, even if such party *
* shall have been informed of the possibility of such damages. This *
* limitation of liability shall not apply to liability for death or *
* personal injury resulting from such party’s negligence to the *
* extent applicable law prohibits such limitation. Some *
* jurisdictions do not allow the exclusion or limitation of *
* incidental or consequential damages, so this exclusion and *
* limitation may not apply to You. *
* *
**
8. Litigation

Any litigation relating to this License may be brought only in the
courts of a jurisdiction where the defendant maintains its principal
place of business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions.
Nothing in this Section shall prevent a party’s ability to bring
cross-claims or counter-claims.
9. Miscellaneous

This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides
that the language of a contract shall be construed against the drafter
shall not be used to construe this License against a Contributor.
10. Versions of the License

10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular
file, then You may include the notice in a location (such as a LICENSE
file in a relevant directory) where a recipient would be likely to look
for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice

This Source Code Form is "Incompatible With Secondary Licenses", as
defined by the Mozilla Public License, v. 2.0.

Treeview
Copyright (C) 2006 Conor O’Mahony (gubusoft@gubusoft.com)
All rights reserved.
This application includes the TreeView script.

REPORTER User manual Version 18.0, April 2021

Page H.14

You are not authorized to download and/or use the TreeView source code from this
application for your own purposes. For your own FREE copy of the TreeView
script,
please visit the http://www.treeview.net Web site.
THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS
FOR A PARTICULAR PURPOSE.
If Customer is using the free version of SOFTWARE, Customer must ensure that the
"JavaScript Tree Menu" link at the top of the TreeView is visible and readable
in their
Web page or application.
Customer may not harm the GUBUSOFT intellectual property rights using any media
or via
any electronic or other method now known or later discovered.
Customer may not use the GubuSoft name, the name of the TreeView author, or the
names
of any source code contributors to endorse or promote products derived from this
SOFTWARE without specific prior written permission.
Customer may not utilize the SOFTWARE in a manner which is disparaging to
GUBUSOFT.

Win-iconv
win_iconv is a iconv implementation using Win32 API to convert.
win_iconv is placed in the public domain.
Yukihiro Nakadaira <yukihiro.nakadaira@gmail.com>

x264

The x264 software library is used under commercial license from x264, LLC

Zlib
(C) 1995-2013 Jean-loup Gailly and Mark Adler
This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not

claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

User manual Version 18.0, April 2021 REPORTER

Page H.15

http://www.treeview.net

	Preamble
	Introduction
	Development Status
	Systems supported
	Revision History
	Version 18.0
	Version 17.1
	Version 17.0
	Version 16.1
	Version 16.0
	Version 15.1
	Version 15.0
	Version 14.1
	Version 14.0
	Version 13.1
	Version 13.0
	Version 12.1
	Version 12.0
	Version 11.2
	Version 11.1
	Version 11.0
	Version 10.2
	Version 10.1
	Version 10.0
	Version 9.4.2
	Version 9.4
	Version 9.3.1
	Version 9.3 (October 2008)
	Version 9.2.3 [Build 36] (21/11/2006)
	Version 9.2.1 [Build 35] (26/7/2006)
	Version 9.2 [Build 34] (24/5/2006)
	Version 9.2 Beta 4 [Build 33] (4/4/2006)
	Version 9.2 Beta 3 [Build 30] (20/2/2006)
	Version 9.2 [Build 21] (14/11/2005)
	Version 9.0

	Text conventions used in this manual
	Typefaces

	Themes for the Graphical User Interface
	Setting the theme

	1. Setting up and running REPORTER
	1.1 Setting up REPORTER
	1.1.1 Prerequisites
	Oasys Ltd LS-DYNA Environment software

	1.1.2 REPORTER installation
	Licensing
	Troubleshooting

	1.2 Running REPORTER
	1.3. A one-minute introduction to REPORTER

	2. Menu Layout
	2.1 Basic menu layout
	File toolbar
	View toolbar
	Generate toolbar
	Page toolbar
	Animation toolbar
	Oasys link toolbar
	Design toolbar
	Tools toolbar
	Editing toolbars
	Geometry
	Style
	Font
	Paragraph
	Arrange/Align items

	2.2 Mouse and keyboard usage for the screen-menu interface
	Buttons
	Text boxes

	2.3 Using the "file filter" boxes.
	Basic UNIX file filter box
	Basic"Windows" file filter box

	2.4 Log file
	2.5 View Controls
	2.5.1 Item visibility options
	2.5.2 Design/Presentation view
	2.5.3 Assorted options
	2.5.4 Generation order
	2.5.5 Zoom
	2.5.6 Full screen view

	2.6 Running a script file
	2.7 Preferences
	2.7.1 Editing
	2.7.2 Grid
	2.7.3 Fonts and Colours
	2.7.4 Date and Time
	2.7.5 Library
	2.7.6 Oasys Items
	2.7.7 Startup
	2.7.8 Theme

	3. Opening and closing templates and reports
	3.1 Creating a new template
	3.2 Reading an existing template or report
	3.3 Reading a library template
	3.4 Editing template properties
	Properties
	Tags
	Thumbnail
	Generation

	3.5 Saving a template
	3.6 Saving a report

	4. Inserting and editing pages
	4.1 Adding a new page
	4.2 Adding a new page from the library
	4.3 Deleting pages
	4.4 Duplicating pages
	4.5 Reordering pages
	4.6 Changing the current page
	4.7 Changing the page properties
	4.8 Inserting pages from file
	4.9 Importing and exporting pages
	4.10 Page masters
	4.11 Page Setup
	4.12 Generating a single page

	5. Inserting and editing simple objects
	5.1 Using the Grid and Snap options
	5.1.1 Grid
	5.1.2 Snap

	5.2 Setting line style, thickness, colour, and fill colour
	5.2.1 Line style
	5.2.2 Line thickness
	5.2.3 Fill, Line and Text Colour

	5.3 Inserting and editing shapes, images, and text
	5.3.1 Lines and arrows
	5.3.2 Rectangles
	5.3.3 Ellipses and circles
	5.3.4 Text
	5.3.5 Textbox
	Margins

	5.3.6 Images
	Image cropping
	Animated Images

	5.4 Editing shapes, image, and text objects
	5.5 Copying objects and using the clipboard
	5.6 Reordering items on the page
	5.7 Search and replace
	5.8 Locking items

	6. Advanced objects
	6.1 D3PLOT objects
	6.1.1 Using Capture to create a D3PLOT object
	6.1.2 Creating multiple images from a single D3PLOT session
	6.1.3 Using datafiles to create 'blob' plots
	6.1.4 Using a command file to create a D3PLOT object
	6.1.5 Editing D3PLOT objects

	6.2 T/HIS objects
	6.2.1 Using Capture to create a T/HIS object
	6.2.2 Using your own FAST-TCF script to create a T/HIS object
	6.2.3 Using a command file to create a T/HIS object
	6.2.4 Editing T/HIS objects

	6.3 PRIMER objects
	6.3.1 Using Capture to create a PRIMER object
	6.3.2 Editing PRIMER objects

	6.4 Program objects
	6.4.1 Text output from a program
	6.4.2 Editing program objects

	6.5 File objects
	6.5.1 Text files
	6.5.2 Image files
	Animated Image files

	6.6 Library objects
	6.6.1 Library images
	6.6.2 Library program/script
	6.6.3 Editing library objects

	6.7 Table objects
	6.7.1 Changing the number of rows or columns in the table
	6.7.2 Using the 'Fix overall table size...' checkbox
	6.7.3 Changing the margins for cells in the table
	6.7.4 Seeing what is in each cell
	6.7.5 Changing cells
	6.7.6 Merging cells
	6.7.7 Cell borders
	6.7.8 Saving to CSV or XLSX

	6.8 Autotable objects
	6.8.1 Selecting variables files for the table
	6.8.2 Setting the header and generated row heights
	6.8.3 Adding columns to the table
	6.8.4 Using the 'Fix overall table width...' checkbox

	6.9 Script objects
	6.10 Note objects
	6.11 Placeholder objects

	7. REPORTER Integration
	7.1 Linking the Programs
	7.2 Item Tree
	7.3 Capture
	7.3.1 Capturing Movies

	7.4 Reload
	7.4.1 Reload Models

	7.5 Generate
	7.6 Variables
	7.7 Exceptions to the Version 17 Method and Existing Templates from Version 16 and Earlier

	8. Generating and outputting reports
	8.1 Effect of object order on generating a report.
	8.2 Generating reports
	8.2.1 Using the cursor in presentation mode

	8.3 Outputting a generated report
	8.3.1 Printing
	8.3.2 PDF files
	8.3.3 HTML output
	8.3.4 PowerPoint files
	Writing PowerPoint files directly
	Notes on PowerPoint output

	8.4 Combining output from multiple reports
	8.5 Animation support for output file formats

	9. Working with Variables
	9.1 User defined variables
	9.2 Predefined variables
	9.3 Formatting TIME and DATE variables
	9.4 Creating and editing variables
	9.5 Creating a variable using D3PLOT
	9.6 Creating a variable using T/HIS
	9.7 Creating a variable using an external program/script
	9.8 Creating a variable using a FAST-TCF script
	9.9 Creating a variable from the command line
	9.10 Creating a variable from javascript
	9.11 Deleting variables
	9.11.1 Deleting a variable
	9.11.2 Deleting all temporary variables

	9.12 Inserting a variable
	9.12.1 Manually inserting a variable
	9.12.2 Controlling the precision/decimal places of a variable

	9.13 Using variables in D3PLOT and T/HIS command files and FAST-TCF scripts.
	9.13.1 Command files
	Example

	9.13.2 FAST-TCF scripts
	Example

	9.14 Saving all the variables to a file after generating a report
	9.15 Variable expressions
	9.15.1 Rounding values in variable expressions

	10. Hyperlinks
	10.1 Adding basic hyperlinks
	10.2 Adding hyperlinks in D3PLOT external data (blob) plots

	11. Conditional formatting
	11.1. Adding a condition
	11.2. Condition types
	11.2.1 Regular expressions
	Characters and Abbreviations in regular expressions
	Sets of Characters
	Quantifiers
	Assertions

	12. Fonts
	12.1 Supported Fonts
	12.2 Legacy Fonts
	12.3 Font Mapping
	12.3.1 Font Substitution Dialog
	12.3.2 Font Mapping Table

	12.4 Fonts in report output
	12.4.1 PowerPoint
	12.4.2 HTML
	12.4.3 PDF

	13. Scripting
	13.1 Example scripts
	Example 1: Percent change in two values
	Problem
	Solution
	Discussion

	Example 2: Magnitude from the three vector components
	Problem
	Solution
	Discussion

	Example 3: Setting a character variable according to the result of a calculation
	Problem
	Solution
	Discussion

	Example 4: Reading a T/HIS curve file and operating on it
	Problem
	Solution
	Discussion

	A. Command line arguments and oa_pref options
	A.1 Command line arguments
	A.2 oa_pref options
	The "oa_pref" preferences file.
	"oa_pref" naming convention and locations
	On Unix and Linux:
	On Windows:

	"oa_pref" file syntax
	"oa_pref" options valid for REPORTER
	Editing/changing preferences

	B. Library objects
	B.1. Standard library programs
	D3PLOT data file programs
	Error programs
	Keyword file programs
	NCAP
	OTF file programs
	Mass info
	Timestep info
	Timing info
	Other OTF programs

	Pedestrian
	Variables

	B.2. Standard library pages
	B.3. Standard library images
	B.4 Adding pages to the library
	B.5 Adding scripts to the library
	Rules for writing scripts

	B.6 Adding images to the library
	B.7 User defined library directories
	B.8 Standard library templates
	The latest templates
	Assumptions
	B.8.1 Single analysis templates
	Select the template
	Generate the template
	Subjective modifiers
	General LS-DYNA Model template
	General LS-DYNA Vehicle Model template

	B.8.2 Multiple analysis templates
	Pedestrian headform
	Select the template
	Generate the template
	Set default scores
	Test points
	Blue zones

	Pedestrian legform
	Select the template
	Generate the template

	B.8.3 Running the templates in batch mode

	C. FAQ
	C.1 Running REPORTER
	C.2 Generating output
	C.3 Extending REPORTER
	C.4 Other questions
	Answers

	D. JavaScript class reference
	global class
	Class functions
	global properties
	Detailed Description
	Details of functions
	Batch() [static]
	Description
	Arguments
	Return type
	Example

	Debug(string[Any valid javascript type]) [static]
	Description
	Arguments
	Return type
	Example

	Exit() [static]
	Description
	Arguments
	Return type
	Example

	GetCurrentDirectory() [static]
	Description
	Arguments
	Return type
	Example

	LogError(arg1[Any valid javascript type], ...[Any valid javascript type]) [static]
	Description
	Arguments
	Return type
	Example

	LogPrint(arg1[Any valid javascript type], ...[Any valid javascript type]) [static]
	Description
	Arguments
	Return type
	Example

	LogWarning(arg1[Any valid javascript type], ...[Any valid javascript type]) [static]
	Description
	Arguments
	Return type
	Example

	Output(string[Any valid javascript type]) [static]
	Description
	Arguments
	Return type
	Example

	SetCurrentDirectory(directory[string]) [static]
	Description
	Arguments
	Return type
	Example

	System(string[Any valid javascript type]) [static]
	Description
	Arguments
	Return type
	Example

	debug() [static] [deprecated]
	Description
	Arguments
	Return type

	exit() [static] [deprecated]
	Description
	Arguments
	Return type

	output() [static] [deprecated]
	Description
	Arguments
	Return type

	Colour class
	Class functions
	Colour properties
	Detailed Description
	Details of functions
	Black() [static]
	Description
	Arguments
	Return type
	Example

	Blue() [static]
	Description
	Arguments
	Return type
	Example

	Cyan() [static]
	Description
	Arguments
	Return type
	Example

	Green() [static]
	Description
	Arguments
	Return type
	Example

	Grey10() [static]
	Description
	Arguments
	Return type
	Example

	Grey20() [static]
	Description
	Arguments
	Return type
	Example

	Grey30() [static]
	Description
	Arguments
	Return type
	Example

	Grey40() [static]
	Description
	Arguments
	Return type
	Example

	Grey50() [static]
	Description
	Arguments
	Return type
	Example

	Grey60() [static]
	Description
	Arguments
	Return type
	Example

	Grey70() [static]
	Description
	Arguments
	Return type
	Example

	Grey80() [static]
	Description
	Arguments
	Return type
	Example

	Grey90() [static]
	Description
	Arguments
	Return type
	Example

	Magenta() [static]
	Description
	Arguments
	Return type
	Example

	None() [static]
	Description
	Arguments
	Return type
	Example

	RGB(red[integer], green[integer], blue[integer]) [static]
	Description
	Arguments
	Return type
	Example

	Red() [static]
	Description
	Arguments
	Return type
	Example

	White() [static]
	Description
	Arguments
	Return type
	Example

	Yellow() [static]
	Description
	Arguments
	Return type
	Example

	File class
	Class functions
	Member functions
	File constants
	Detailed Description
	Constructor
	new File(filename[string], mode[constant])
	Description
	Arguments
	Return type
	Example

	Details of functions
	Close()
	Description
	Arguments
	Return type
	Example

	ConvertSeparators(filename[string]) [static]
	Description
	Arguments
	Return type
	Example

	Copy(source[string], dest[string]) [static]
	Description
	Arguments
	Return type
	Example

	Delete(filename[string]) [static]
	Description
	Arguments
	Return type
	Example

	Directory(filename[string]) [static]
	Description
	Arguments
	Return type
	Example

	Exists(filename[string]) [static]
	Description
	Arguments
	Return type
	Example

	FindFiles(directory[string], pattern[string], recursive[boolean]) [static]
	Description
	Arguments
	Return type
	Example

	FindLineContaining(contain1[string], contain2 (optional)[string], contain3 (optional)[string], ... containn (optional)[string])
	Description
	Arguments
	Return type
	Example

	FindLineMatching(regex[RegExp])
	Description
	Arguments
	Return type
	Example

	FindLineStarting(start1[string], start2 (optional)[string], start3 (optional)[string], ... startn (optional)[string])
	Description
	Arguments
	Return type
	Example

	Flush()
	Description
	Arguments
	Return type
	Example

	IsAbsolute(filename[string]) [static]
	Description
	Arguments
	Return type
	Example

	IsDirectory(filename[string]) [static]
	Description
	Arguments
	Return type
	Example

	IsFile(filename[string]) [static]
	Description
	Arguments
	Return type
	Example

	Mkdir(name[string]) [static]
	Description
	Arguments
	Return type
	Example

	Move(source[string], dest[string]) [static]
	Description
	Arguments
	Return type
	Example

	ReadChar()
	Description
	Arguments
	Return type
	Example

	ReadLine()
	Description
	Arguments
	Return type
	Example

	ReadLongLine()
	Description
	Arguments
	Return type
	Example

	Seek(position[integer])
	Description
	Arguments
	Return type
	Example

	SimplifyName(filename[string]) [static]
	Description
	Arguments
	Return type
	Example

	Size(filename[string]) [static]
	Description
	Arguments
	Return type
	Example

	Write(string[Any valid javascript type])
	Description
	Arguments
	Return type
	Example

	Image class
	Member functions
	Image constants
	Image properties
	Detailed Description
	Constructor
	new Image(width (optional)[integer], height (optional)[integer], backgroundColour (optional)[string])
	Description
	Arguments
	Return type
	Example

	Details of functions
	Ellipse(x1[integer], y1[integer], x2[integer], y2[integer])
	Description
	Arguments
	Return type
	Example

	Fill(x[integer], y[integer], tol (optional)[integer])
	Description
	Arguments
	Return type
	Example

	Line(x1[integer], y1[integer], x2[integer], y2[integer])
	Description
	Arguments
	Return type
	Example

	Load(filename[string])
	Description
	Arguments
	Return type
	Example

	PixelCount(colour[string], tol (optional)[integer])
	Description
	Arguments
	Return type
	Example

	Polygon(x1[integer], y1[integer], x2[integer], y2[integer], ... xn[integer], ... yn[integer])
	Description
	Arguments
	Return type
	Example

	Polyline(x1[integer], y1[integer], x2[integer], y2[integer], ... xn[integer], ... yn[integer])
	Description
	Arguments
	Return type
	Example

	Rectangle(x1[integer], y1[integer], x2[integer], y2[integer])
	Description
	Arguments
	Return type
	Example

	Save(filename[string], filetype[constant])
	Description
	Arguments
	Return type
	Example

	Star(x[integer], y[integer], r[integer])
	Description
	Arguments
	Return type
	Example

	Text(x[integer], y[integer], text[string])
	Description
	Arguments
	Return type
	Example

	Item class
	Class functions
	Member functions
	Item constants
	Item properties
	Detailed Description
	Constructor
	new Item(page[Page], type[constant], name (optional)[string], x (optional)[real], x2 (optional)[real], y (optional)[real], y2 (optional)[real])
	Description
	Arguments
	Return type
	Example

	Details of functions
	DeleteColumn(column[integer])
	Description
	Arguments
	Return type
	Example

	DeleteRow(row[integer])
	Description
	Arguments
	Return type
	Example

	Generate()
	Description
	Arguments
	Return type
	Example

	GetAll(page[Page]) [static]
	Description
	Arguments
	Return type
	Example

	GetCellProperties(row[integer], column[integer])
	Description
	Arguments
	Return type
	Example

	GetColumnProperties(column[integer], header[constant])
	Description
	Arguments
	Return type
	Example

	GetColumnWidth(row[integer])
	Description
	Arguments
	Return type
	Example

	GetCondition(index[integer])
	Description
	Arguments
	Return type
	Example

	GetCondition(index[integer], column[integer])
	Description
	Arguments
	Return type
	Example

	GetCondition(index[integer], row[integer], column[integer])
	Description
	Arguments
	Return type
	Example

	GetFromName(page[Page], name[string]) [static]
	Description
	Arguments
	Return type
	Example

	GetGeneratedData(row_index[integer], column_index[integer])
	Description
	Arguments
	Return type
	Example

	GetRowHeight(row[integer])
	Description
	Arguments
	Return type
	Example

	InsertColumn(column[integer])
	Description
	Arguments
	Return type
	Example

	InsertRow(row[integer])
	Description
	Arguments
	Return type
	Example

	MergeCells(topLeftRow[integer], topLeftColumn[integer], rows[integer], columns[integer])
	Description
	Arguments
	Return type
	Example

	SetCellProperties(properties[object], row[integer], column[integer])
	Description
	Arguments
	Return type
	Example

	SetColumnProperties(properties[object], column[integer], header[constant])
	Description
	Arguments
	Return type
	Example

	SetColumnWidth(column[integer], width[real])
	Description
	Arguments
	Return type
	Example

	SetCondition(condition[integer], properties[object])
	Description
	Arguments
	Return type
	Example

	SetCondition(condition[integer], column[integer], properties[object])
	Description
	Arguments
	Return type
	Example

	SetCondition(condition[integer], row[integer], column[integer], properties[object])
	Description
	Arguments
	Return type
	Example

	SetRowHeight(row[integer], height[real])
	Description
	Arguments
	Return type
	Example

	UnmergeCells(row[integer], column[integer])
	Description
	Arguments
	Return type
	Example

	Page class
	Member functions
	Page properties
	Detailed Description
	Constructor
	new Page(template[Template], options (optional)[object])
	Description
	Arguments
	Return type
	Example

	new Page(template[Template], name (optional)[string]) [deprecated]
	Description
	Arguments
	Return type
	Example

	Details of functions
	DeleteItem(index[integer])
	Description
	Arguments
	Return type
	Example

	Duplicate(index (optional)[integer])
	Description
	Arguments
	Return type
	Example

	Generate()
	Description
	Arguments
	Return type
	Example

	GetAllItems()
	Description
	Arguments
	Return type
	Example

	GetItem(index[integer])
	Description
	Arguments
	Return type
	Example

	ImportItem(filename[string])
	Description
	Arguments
	Return type
	Example

	Reporter class
	Reporter constants
	Constants for Autotable source and row types
	Constants for Condition types
	Constants for Justification
	Constants for Line cap style
	Constants for Line join style
	Constants for Line style
	Constants for Text style
	Constants for View

	Reporter properties
	Detailed Description

	Template class
	Class functions
	Member functions
	Template properties
	Detailed Description
	Constructor
	new Template(filename (optional)[string])
	Description
	Arguments
	Return type
	Example

	Details of functions
	Close()
	Description
	Arguments
	Return type
	Example

	DeletePage(index[integer])
	Description
	Arguments
	Return type
	Example

	DeleteTemporaryVariables()
	Description
	Arguments
	Return type
	Example

	EditVariables(title (optional)[string], message (optional)[string], update (optional)[boolean], variables (optional)[array], columns (optional)[constant], alphabetical (optional)[boolean])
	Description
	Arguments
	Return type
	Example

	ExpandVariablesInString(string[string])
	Description
	Arguments
	Return type
	Example

	Generate()
	Description
	Arguments
	Return type
	Example

	GetAll() [static]
	Description
	Arguments
	Return type
	Example

	GetAllPages()
	Description
	Arguments
	Return type
	Example

	GetCurrent() [static]
	Description
	Arguments
	Return type
	Example

	GetMaster()
	Description
	Arguments
	Return type
	Example

	GetPage(index[integer])
	Description
	Arguments
	Return type
	Example

	GetVariableDescription(name[string])
	Description
	Arguments
	Return type
	Example

	GetVariableValue(name[string])
	Description
	Arguments
	Return type
	Example

	Html(filename[string])
	Description
	Arguments
	Return type
	Example

	Pdf(filename[string])
	Description
	Arguments
	Return type
	Example

	Ppt(filename[string]) [deprecated]
	Description
	Arguments
	Return type
	Example

	Pptx(filename[string])
	Description
	Arguments
	Return type
	Example

	Print(printer[string])
	Description
	Arguments
	Return type
	Example

	Save()
	Description
	Arguments
	Return type
	Example

	SaveAs(filename[string])
	Description
	Arguments
	Return type
	Example

	Update()
	Description
	Arguments
	Return type
	Example

	Window class
	Class functions
	Window constants
	Detailed Description
	Details of functions
	Error(title[string], error[string], buttons (optional)[constant]) [static]
	Description
	Arguments
	Return type
	Example

	GetDirectory(initial (optional)[string]) [static]
	Description
	Arguments
	Return type
	Example

	GetFile(extension (optional)[string], allow new (optional)[boolean], initial (optional)[string]) [static]
	Description
	Arguments
	Return type
	Example

	GetFiles(extension (optional)[string]) [static]
	Description
	Arguments
	Return type
	Example

	GetInteger(title[string], message[string]) [static]
	Description
	Arguments
	Return type
	Example

	GetNumber(title[string], message[string]) [static]
	Description
	Arguments
	Return type
	Example

	GetOptions(title[string], message[string], options[object]) [static]
	Description
	Arguments
	Return type
	Example

	GetString(title[string], message[string]) [static]
	Description
	Arguments
	Return type
	Example

	Information(title[string], info[string], buttons (optional)[constant]) [static]
	Description
	Arguments
	Return type
	Example

	Message(title[string], message[string], buttons (optional)[constant]) [static]
	Description
	Arguments
	Return type
	Example

	Question(title[string], question[string], buttons (optional)[constant]) [static]
	Description
	Arguments
	Return type
	Example

	Warning(title[string], warning[string], buttons (optional)[constant]) [static]
	Description
	Arguments
	Return type
	Example

	Variable class
	Class functions
	Member functions
	Variable constants
	Variable properties
	Detailed Description
	Constructor
	new Variable(template[Template], name[string], description (optional)[string], value (optional)[string], type (optional)[string], readonly (optional)[boolean], temporary (optional)[boolean])
	Description
	Arguments
	Return type
	Example

	Details of functions
	GetAll(template[Template]) [static]
	Description
	Arguments
	Return type
	Example

	GetFromName(template[Template], name[string]) [static]
	Description
	Arguments
	Return type
	Example

	Remove()
	Description
	Arguments
	Return type
	Example

	E. Writing external programs/scripts
	Returning variables from programs
	Accessing existing variables in REPORTER
	Example perl program to read variables file from REPORTER

	Example program: Extracting the smallest timesteps (Text output)
	C program/script
	C Shell program/script
	Fortran program/script
	Perl program/script

	F. Unicode support
	F.1 Output formats that support unicode
	HTML
	PowerPoint
	PDF

	Installation organisation
	Version18.0 Installation structure
	Installation Examples
	Dynamic configuration using the top level oa_pref file.
	The hierarchy of oa_pref file reading
	Locking Preference Options

	Licences used in software
	Apple Public Source
	Draco
	Expat
	FreeType
	FFmpeg
	Jpeg
	Libcurl
	Libfame
	Libgif
	Libpng
	Libxlsxwriter
	MPEG-LA
	Openssl
	PCRE
	PDFHummus
	POV-Ray
	SmoothSort
	Spidermonkey
	Treeview
	Win-iconv
	x264
	Zlib

