
PRIMER 18.0

PRIMER 18.0 – Contents

• Performance Enhancements

• Changes to Input

• Rivet Connections

• Check Options

• Seatbelts

• Undocking Cut Sections Panel

• Cut Sections Improvements

• Soft = 2

• Isogeometric Analysis (IGA)

• Encryption Tool

• Partially Encypted *AIRBAG Cards

• HIC Area Calculator

• Pedestrian Run Builder

• Implicit Analysis Setup Tool

• Running LS-DYNA from PRIMER

• Import Geometry from D3PLOT

• Checkpoint Files

• JavaScript Engine Upgrade

• JavaScript GUI Builder

• JavaScript API

• Miscellaneous

Performance Enhancements

Performance Enhancements: Time to read models

PRIMER 18 is between 5% to 10% faster than PRIMER 17 when reading models, particularly larger
ones (these benchmark figures are for a 44m element model). Write speed is unchanged.

Performance Enhancements: Time to run Model Check

Check time tends to be dominated by contacts and connections, so very model dependent.
We continue to tackle bottlenecks and parallelise, the general trend is to become faster.

“Many C” means
Many Contacts

Changes to Input

LS-DYNA Keyword Support

• PRIMER 18.0 keywords:

• LS-DYNA R12 Vol 1 and Vol 2 fully supported

• LS-DYNA R12 Vol 3 mostly supported (only some *DUALCESE keywords outstanding)

• LS-DYNA R13 core *IGA keywords supported

Drag and Drop

• There is also a new option to drag and drop LS-DYNA

files (*KEYWORD format) that have a non-standard

extension (*.inp,*.dat etc.).

• If the checkbox is ticked, all drag and drop files are

assumed to be *KEYWORD format. If unticked, files

are read according to file extensions.

• Support for dragging and dropping of files has been extended beyond keyword files.

• You may now drag and drop other file types like Abaqus, Nastran, IGES, JT and Layup.

• This drag and drop feature only works for Windows.

JT Reader Update

• The Siemens JT file reader libraries have been updated from version 9.0 to 10.8.

Rivet Connections

Rivet Connections

• Self-Piercing Rivets (SPR) have been added as a new connection type in PRIMER.

• Rivets can be:

• created in a similar way to other connection types;

• modified via the connection table;

• read from and written to XML files;

• accessed via JavaScript.

• The following slides demonstrate these features.

Creating a Rivet (methods similar to spot-weld)

• An optional specified title will be stored on

each connection made – this is a way of

distinguishing between different SPR types

in your model.

• Creation methods:
• Screen pick
• Node pick
• Nodes in set
• Line of rivets
• Pick geometry point

Rivet_title

Creating Rivet Connection

• ‘Use Pref values’ - SPR2 settings from pref

primer*default_settings_for_rivet_creation:

D=10,FN=999,FT=999,etc.

• Pref supports CONSTRAINED_SPR2 settings

D,FN,FT,DN,DT,XLN,XLT,ALPHA1,ALPHA2,ALPHA3,

EXPN,EXPT,INTP,DENS.

• Any newly created C_SPR2 will import these values.

• Settings can be modified post-creation using

keyword editor for selected *CONSTRAINED_SPR2.

Creating Rivet Connection

• XYZ position determines layers to be joined.

• ‘Match existing’ will try to match rivet to existing
C_SPR2 considering layers – layers are unique in
C_SPR2 cards.

• With ‘Use Pref values’ set, all non-zero pref values
must be matched in C_SPR2.

• If no match, reverts to ‘Create new SPR2’ with pref
values (if set).

• ‘Create new SPR2’ always makes new C_SPR2 with
pref values for each new connection.

• ‘Select SPR2’ only makes rivet if layers match
between connection being created and selected
C_SPR2.

Creating Rivet Connection

• Rivet orientation is important.

• C_SPR2 orients rivet MID-XPID1..XPID4-SID.

• ‘Reverse Last’ can be used to reverse last created rivet.

MID

SID

SID

MID

Modifying Rivet Connections

• The Connections Table displays data on *CONSTRAINED_SPR2 card.

• Edit via keyword editor permitted for unique selection – modifies all rivets that

use this SPR2.

• Change applies to all rivets of SPR2 node set (SNID) - does not require update &

remake.

• Do not change MID, XPIDn, SID on C_SPR2 – this must be done via the connection

table to retain data link between connection and C_SPR2 card (see next slide).

Modifying Rivet Connection on Table

• Connection layers can be changed for unique selection. Requires

‘Update & remake’.

• Reverse by ‘Update & remake (swap layers)’ for unique selection.

• Coordinate P1 can be changed. ‘Update & remake’ allowed

unconditionally.

Modifying Rivet Connection on Table

• If multiple rivets share same C_SPR2, properties cannot be changed for subset of

rivets.

• Property modification requires selection of all rivets using this C_SPR2.

• Split out selected Rivet C_SPR2s will copy existing C_SPR2 and make a new node set

enabling modification of properties of selected rivets (single or multiple).

Writing Rivet Connection to XML

Default is to write SPR2 settings <d><fn><ft>,etc with every

rivet - SPR2 cards will be constructed on read.

Alternate is to write only SPR2
node set id SNID – each rivet will
connect to extant SPR2 cards.

Reading Rivet Connection from XML

• ‘Match existing’ (default) will create minimum

number of C_SPR2 cards.

• ‘Create new’ will generate new C_SPR2 for each

rivet.

• If pref default_settings_for_rivet_creation set,

any undefined setting will be set from them.

Creating Rivet Connection in JavaScript

• It is possible to create and modify rivets via JavaScript.

• The following slide shows an example.

Creating Rivet Connection in JavaScript

var c1 = new Conx(m, 10, 48, 0); // create rivet connection c1

c1.type = Conx.RIVET;

var c2 = new Conx(m, 30, 48, 0);

c2.type = Conx.RIVET;

c2.spr2_match = true; // c2 will match C_SPR2 card for c1 (assuming it joins same layers)

var c3 = new Conx(m, 50, 48, 0);

c3.type = Conx.RIVET;

c3.spr2_match = false; // c3 will have new C_SPR2

Conx.UseSPR2Pref(true); // use pref settings for new SPR2

Conx.RealizeAll(m);

if(c3.spr2_unshared) // option to check C_SPR2 it is not shared

{

var spr2 = Spr2.GetFromID(m, c3.spr2_id); // change C_SPR2 property

spr2.fn = 1.2;

}

Check Options

Check Options: Element quality

• CHECK OPTIONS panel

• The “Max solid spotweld/

adhesive warpage” criterion is

used in the “Adhesive” and

“Spotweld” categories.

• This has now been included in

the “Quality” category too.

Seatbelts

New “Advanced” belt path editor mode: basic controls

• Original editor still fully
functional, now called “basic”.

• New “advanced” editor is
switchable in the path point
editor panel. You can swap
modes back and forth at will.

• Its attributes can be
controlled in the new “Path
Visualisation” tab in the
floating Fitting options panel.

The “Advanced” path editor
makes difficult geometries
far easier to fit.

Advanced Seatbelt fitting editor: Mouse controls

• Each basic path point now has a triad which
allows the mouse to drag and rotate the
point.

• Arrows drag (move) the point in local
directions, Cube handles twist it, for
example:

Red: Drag along belt Green: twist transversely

Local axis system for drag & twist

Advanced Seatbelt fitting editor: Dragging points

Red: drag forwards and backwards Green: drag sideways Blue: drag up/down

These are all in “path local” directions, as shown by the arrow vectors.

Points may also be “free” dragged in the current screen space using their
central circle symbol as a handle.

In all cases dragging a point separates it from any underlying node used
to define it.

Advanced Seatbelt fitting editor: Twisting and skewing points

Left mouse actions rotate and twist the path

Right mouse actions skew the path.

Advanced Seatbelt fitting editor: Example path movements

The spline path curvature can be “broken” at
a point to give a sharp change of direction.

“Skewing” the path in plane is also possible,
making it easy to thread the belt through
difficult geometries.

Advanced seatbelt fitting editor: Right click options at point

Right click at base path point gives
a menu of options.

Right click at intermediate point
has further options.

View on point Centres current view on point.
Reset Reverts to pre-edited state.
Unset Undoes rotation and twist at point.
Tweak path Gives fine adjustments.
Properties Sets attributes at point (slipring, etc).
Element length Sets local element length.
Local friction Sets local friction coefficient.
Delete Point Deletes this point.

View on point Centres current view on point.
Make path point Makes a new basic path point at

this intermediate point location.

Advanced seatbelt fitting editor: Adding “curl” at a point.

Example of a Tweak: “Curling” the belt path helps it to negotiate difficult geometry.

This example shows how adding “curl” can help the belt to fit to the wing of a child booster seat.

Advanced seatbelt fitting editor: “local” element lengths

Setting a “local” element length allows the belt path to fit to tight geometries.

Meshing through a pelvis
buckle with a coarse
element length works, but
is not satisfactory.

The option to shorten
the elements locally
from point N to N+1
has been used here.

This gives a well conditioned
mesh during fitting that will
also work better during the
actual analysis.

Advanced seatbelt fitting editor: local friction coefficient

Using a “local” friction coefficient to solve the “bunching up” problem at a buckle.

The path through this buckle
is not symmetric which can
cause problems during fitting.

The path (correctly) gets
pulled to one side, causing
bunching up in that corner

A higher local friction makes
the belt “stick to” the buckle,
solving the problem.

Advanced seatbelt fitting editor: explicitly meshed sliprings

The improvements in the advanced editor make it possible to thread the belt through practically
any geometry, so that *ELEMENT_SEATBELT_SLIPRING is no longer necessary. Here are some
examples of explicitly meshed buckles and guides.

“Fit” Panel changes - Path Fitting buttons

• More path fitting

buttons added to give

greater control.

“Fit” Panel changes – Initial State

• Initial (or Start) state of panel is shown

• Before “Fit”

• After “Reset”.

• The button with the “Play” icon is the

new “Fit” button.

• Hover text has been modified for

clarification.

• Button alias has been added for macros.

“Fit” Panel changes – Processing State

• Processing (or Running/ Fitting) state is

shown

• During “Fit”.

• A “Pause” button has been added.

• This is a duplicate of the “Stop” button

previously used to Stop/Pause the fitting

process.

“Fit” Panel changes – Paused State

• Paused state is shown

• After “Pause”

• After “Step”.

• The “Reset” button replaces the previous

“Restart” button.

• The path fitting will revert to the initial state

and stay there till further actions are taken.

• Note: “Restart” = “Reset” + “Fit”.

• A “Step” button has been added

• The path fitting will be stepped forwards by

1 iteration.

Mesh Density Control

PRIMER 17.0 PRIMER 18.0

• Mesh density controls have been reorganised to provide easier workflow.

Mesh Density Control – 4 levels

• New dropdown menu to control “Max

curve angle”, “Belt length” & “#rows”.

Coarse (Default) Medium

Fine Very Fine

Duplicated Fitting Parameters

• Values duplicated in pop-up panel• Original Panel

Reference Geometry – Belt Meshing (SHELLs only)

• Initial distortion of the fabric shell belt mesh can now be removed during the analysis with the

aid of *AIRBAG_REFERENCE_GEOMETRY.

• PRIMER now has the option to create *AIRBAG_REFERENCE_GEOMETRY automatically during

the belt meshing phase.

• When MAT FABRIC is used for the shell belt with |FORM| >=12, the TSRFAC loadcurve can be

used to gradually pull the mesh back to its reference geometry shape.

Reference Geometry – Panel changes

“Mesh” panel:

• Added tick box.

• Added reference geometry label.

Reference Geometry – Panel changes

“Auto-refit” panel:

• Added reference geometry label.

• Added radio buttons.

Undocking Cut Sections Panel

Cut section panel can be undocked

• Undocking the Cut-section panel allows it to be active at the

same time as other tools but – crucially – not occupying the

tabbed area at the bottom right hand side of the screen.

• This means that it can be used at the same time as other

graphical operations, such as seatbelt fitting.

Cut Sections Improvements

Multiple parallel cuts

• For a given cut plane multiple parallel

cuts can be defined by a (uniform)

spacing and numbers of planes in each

direction.

Custom spacing

• In PRIMER 18 the spacing can now be

customised to not necessarily uniform

spacing.

SOFT = 2

SOFT = 2 supported for contact analysis

Surface to surface and single surface
contacts in LS-DYNA have option to use
segment based contact (soft = 2).
This method gives more accurate edge to
edge behaviour.
Without soft = 2 shell edges can penetrate
if there is no ‘s’-node to ‘m’-segment
contact.

With soft = 2 LS-DYNA uses a projection
algorithm to calculate worst case
penetration which PRIMER v18 simulates.

Isogeometric Analysis (IGA)

IGA Enhancement

• Isogeometric Analyses can be run in LS-DYNA using the keyword

*ELEMENT_SHELL_NURBS_PATCH and *DEFINE_NURBS_CURVE to define the surfaces.

• The *ELEMENT_SHELL_NURBS_PATCH edit panel allows you to manipulate knot values,

change the basis function degree, visualize knot grids, and sketch trimming curves.

Visualise Knot Grid

• “Display Knot” will draw all the knot values (NURBS elements).

Insert Knot Values (h-refinement) - First Method

• First method: type in new knot values in “r-Knot Value/s-Knot Value” textboxes and

press “Insert r-knot/Insert s-knot”.

Insert Knot Values (h-refinement) - Second Method

• Second method: select a knot value by left clicking on the blue solid lines in the
graphics area and press “Insert r-knot/Insert s-knot”. Alternatively, use right click to
select and insert a knot value in one go.

Change the basis function order (p-refinement)

• The order can be changed by typing in the new value in PR/PS textboxes. It will add
new or delete existing control points.

PR=3, 3744 control nodes PR=4, 7272 control nodes

Sketch Trimming Curves

• Enable “Sketch loop” or “Sketch all loops” toggle buttons to sketch trimming curves.

Other IGA related enhancements

• Added warning if a node defined on *ELEMENT_SHELL_NURBS_PATCH is used in

*BOUNDARY_SPC, *BOUNDARY_PRESCRIBED_MOTION or *LOAD_NODE, as it will be a non-

structural node.

• Added support for mass, CofG and inertia tensor calculation for

*ELEMENT_SHELL_NURBS_PATCH.

• Added warning for very high order basis function (PR and PS value) in

*ELEMENT_SHELL_NURBS_PATCH.

• Added warning if NISS/NISR are less than PS/PR in *ELEMENT_SHELL_NURBS_PATCH.

• Various new *IGA keywords added.

• Added keyword editor for *ELEMENT_SOLID_NURBS_PATCH similar to

*ELEMENT_SHELL_NURBS_PATCH.

Encryption Tool

Automatic PGP Encryption

• This Oasys PRIMER tool is for encrypting

*MATERIAL and *DEFINE_CURVE

keywords for LS-DYNA.

• The tool allows you to choose between

partially and fully encrypting a keyword.

• Encrypted keywords can be used by

both LS-DYNA and PRIMER.

Easy Encryption

• Easily select different Keywords

• Select *DEFINE_CURVES associated to a

*MATERIAL

• Switch between 3 LSTC keys

• 2048bit key

• 1024bit key

• Legacy R6 key

• Customise your encryption options

Partially Encrypted *AIRBAG Cards

Partially Encrypted PGP data in *AIRBAG cards

*AIRBAG_xxx_ID Where xxx is the airbag type. A new *AIRBAG header is required for
each definition

<label> <title> The first line of the definition giving its label and an optional title must be
supplied.

(The title is not parsed in any way so it can contain anything.)

-----BEGIN PGP MESSAGE-----

[Encrypted data]

-----END PGP MESSAGE-----

The encrypted data may start at any line thereafter.

It is normally the case that it will start immediately after the [label, title] row
above, but PRIMER will "remember" the line at which it starts, so further
lines of data in clear could be supplied if desired.

As with *MAT and *DEFINE_CURVE it is now possible to define partially encrypted *AIRBAG
cards in order to protect proprietary data.

HIC Area Calculator

Main Panel Updates

• The main panel has been updated to

include a table of results.

• A new comparison tab has been

added.

• Additional options have been

included and some have moved

location.

v17 v18

Display Option Changes

• Coloured Input | option was previously ‘Banded

Input’ and toggles between a simple blue square icon

or colour coded circle.

• Show Plot | for showing/hiding all of the on screen

graphics at once, which may be useful when working

with multiple data sets.

• Show Contour | for showing/hiding the contour bar,

which is no longer the main location for the results.

Coloured Input Not Coloured Input

Options for
changing contour
bar limits now
more obvious.

Table of Results

• The new table displays the result information for the current regulation:

GTR

Determined
by point

names

NCAP

Determined
by point

names

of Points
with HIC >
High HIC
Limit

of Points with HIC less
than and greater than
Low HIC Limit.

Note: Points > Low also
includes points > High

Area % as determined by
point count ratio (# Points)
and area calculation (Area).

Area calculations are only
displayed when the specific
area calculation is
requested.

Note regarding Child/Adult Areas: by default the script ‘shrink
wraps’ a perimeter to the relevant points. It is possible to
change this behaviour (detailed in later slide).

Scores per colour band:
Green, Yellow, Orange, Brown

Number of
impact points
read

Absolute
total score
per zone

Overall score

Buttons allow you to enter additional
impact points and scores per zone.

Hover text presents the full
calculation

Calc Tab

• Additional new regulations:

• EuroNCAP v9 (DRAFT)

• C-NCAP 2021

• Maximum NCAP point allocation is now

editable. Defaults are:

• EuroNCAP v8 = 24

• EuroNCAP v9 = 18

• C-NCAP 2021 = 10

• Perimeter control moved from top of

main panel to Calc tab.

• Area calculation has been updated to

provide smoother interpolation when

input blobs are arranged in regular grids.

Note: EuroNCAP v9 has not been

officially released.

Settings are correct at time of release

based on DRAFT protocol.

Analysis Tab

• New functionality:

• Contour HIC | Produces a contour

plot of HIC values. Previously this

functionality was termed ‘Banded

Output’.

• HIC Iso Plot | Marks on

area/contour plot regions of

constant HIC.

• HIC Iso Points can be output from

Utilities tab.

Points & Utilities Tabs

• Edit Name | The first letter of point

names dictate the type of point:

• C = Child

• A = Adult

• B or W = Cyclist

• Reflect | reflected points have _R

appended to their name.

• Restore Blob Plot has moved from

the Utilities tab to the Points tab.

• New functionality to write:

• Perimeter data.

• HIC Iso Points

• New functionality to read:

• Child Wrap Around Line

• Cyclist Wrap Around Line

• Read Perimeter File has moved

from the top of the main panel to the

utilities tab.

Points Utilities

Wrap Around Lines & Area Calculation Zones

• The HIC Area tool now calculates adult and child

areas individually, as well as the combined HIC

area, as before.

• The area considered for each individual zone is

found by ‘shrink wrapping’ the relevant points.

This works well when points are located along

boundary wrap around lines but not as well if

they do not, since this can result in an

‘unaccounted area’.

• To facilitate the case were points are not on

boundary lines, the tool can now read Child (and

Cyclist) wrap around lines (WAL). When present

the WAL is used to determine the boundary, not

shrink wrapping.

Adult
Zone

C

C

C

C

A

A

A

A

Points not on boundary

Child
Zone

Unaccounted
Area

C

C

C

C

A

A

A

A

Points on boundary

Child
Zone

Adult
Zone

‘Shrink Wrapped’
Areas

C

C

C

C

A

A

A

A

Child WAL Defined (X,Y,Z)

Child
Zone

Adult
Zone

WAL shown on full plot
and used to define area
(rather than shrink wrap).

Compare Tab

• New tab for comparing one set of HIC results with another.

• You must first read a second file before selecting it from the menu.

• Note: the baseline data is assumed to be the previous result.

Baseline → Current HIC Data

• The current and baseline data are compared based on their names

and proximity to each other (name takes precedence over distance).

• The Inspect button allows you to check how the points have been

matched.

Note: the tool does not currently check for duplicate point names, it is the users responsibility to ensure point names

are unique.

Baseline

Current
Data

Data selected from Compare menu Main data read in to session

• Contour Delta | maps the difference as

a contour surface

• Band Change | highlights points that

have changed banding.

Band
Change

Compare Tab

• When linked, the difference (delta) between the current

and baseline can be calculated (current – baseline).

• Show Delta | plots the HIC difference on screen.

• % Change | presents the difference as a %.

Show Delta plot (absolute values).
Points shown in grey were not
matched to baseline.

Contour
Delta

Unmatched baseline point

Unmatched
current point

Better

Worse

Dark
Mode

Pedestrian Run Builder

Impact Substitution

• This tool creates a new set of impactor analysis models based on an existing set.

• Allows you to easily update include files referenced in the original models in an

interactive way.

• Removes the requirement to manually update individual include references across

many files.

Interactive Impact Point Selection

• Easy changing of

include file names.

• Interactive Impact

points.

• All of the impacts

displayed in a grid

according to X/Y

coordinate.

• Displays the impact

points in a model.

• Select points via

their coordinates.

Implicit Analysis Setup Tool

Implicit Analysis Setup Tool

Generate the required *CONTROL

cards for a selection of Implicit

analyses:

• Static;

• Transient Direct;

• Transient Modal;

• Buckling (standalone or intermittent);

• Eigenvalue (standalone or

intermittent);

• Frequency Domain FRF.

Implicit Analysis Setup Tool

The setup tool has two configuration

modes:

Simplified:

• Requires less input.

• Based on a default analysis.

Advanced:

• Allows for more customised analysis
settings.

Implicit Analysis Setup Tool

Simplified mode: Advanced mode:

Implicit Analysis Setup Tool

• Choose which analysis type to setup for and then work through the prompts, providing input where

required (red textboxes highlight invalid/missing input).

• When finished, click Apply to write the changes to the selected model. If some keywords already exist

they can be chosen to be overwritten or ignored (Overwriting options – Case-by-Case).

Running LS-DYNA from PRIMER

Running LS-DYNA from PRIMER

• This tool allows you to easily submit a model to LS-DYNA directly from PRIMER. The

model can be submitted locally or onto a remote machine/cluster

• As well as speeding up the submission process, the functionality allows easy

initialisation and model checking with a few clicks

• To aid the above, this functionality has been integrated with PRIMER’s LS-DYNA

output checking tool to speed up the process of initialisation when checking models

and visualising decomposition/load profiles

• This tool uses functionality that exists within SHELL – the Oasys LS-DYNA

Environment's submission tool

Running LS-DYNA from PRIMER

• This tool can be accessed by clicking the Model->Submit

button to perform LS-DYNA runs directly from PRIMER

• “Local” machine: The same windows or the same Linux

machine from where the PRIMER session is launched

• “Remote” machine: Linux machine on a network where LS-

DYNA is configured to run

• You can also monitor the progress of “ONLINE" (real time)

LS-DYNA runs on a "Local" machine

• You can perform LS-DYNA initialisation of the model in a

PRIMER session and view LS-DYNA results relating to

errors/warnings/load profile and decomposition via the

“LS-DYNA Output Reader” tool in the PRIMER

• Note: A valid LS-DYNA license is required to perform LS-

DYNA runs on “Local”/“Remote” machine

Monitor LS-DYNA jobs

Monitor LS-DYNA jobs

• PRIMER monitors the progress of ONLINE LS-DYNA runs on a Local machine
• The progress of such jobs can be viewed in the ‘LS-DYNA Jobs Monitor’ panel
• You can also save the details of such an LS-DYNA run inside the HOME area settings file by

pressing the “Save Settings” button
• Later sessions of PRIMER will automatically pick up these jobs from the settings file and

you can monitor these jobs by pressing the “LS-DYNA Jobs Monitor” button

Initialise LS-DYNA Analysis

Initialise LS-DYNA Analysis

• You can now choose to “initialise” a model in a PRIMER session via the “Initialise in

LS-DYNA” option under “LS-DYNA Results”

• The model initialisation in LS-DYNA happens via the “LS-DYNA Submission” tool in

PRIMER by pressing the “Submit” button.

• Various initialisation options are available

• After the model is submitted to LS-DYNA, PRIMER monitors the LS-DYNA job

progress:

• After the LS-DYNA run is terminated, PRIMER automatically updates this panel with a list

of the LS-DYNA output files.

• Once the “Apply” button has been pressed PRIMER will open the “DYNA output

tree viewer” and this will display all the errors/warnings and load

profiles/decomposition information – prepared from the LS-DYNA output files

associated with the input model

Import Geometry from D3PLOT

Import Geometry from D3PLOT

• The “Node import” tool in PRIMER now has an

option to import deformed geometry directly from

D3PLOT.

• Select the Import deformed geometry from

D3PLOT option and click Next. A linked D3PLOT

session will open and a ‘Write’ panel will be

displayed in D3PLOT.

• Select the required options for the data that needs

to be imported (nodal coordinates, initial stresses,

initial strains, etc) from the panel and click Apply.

• The data will be sent to PRIMER and the “Node

import” panel will display the selection of data from

D3PLOT. Click Apply to import the data.

Import Geometry from D3PLOT

Import Geometry from D3PLOT

Original model in PRIMER
Imported deformed geometry in PRIMER

(original model is modified)

JavaScript GUI Builder

JavaScript GUI Builder

An interactive GUI Builder has been added to PRIMER, D3PLOT and T/HIS to make it easier

to build JavaScript GUIs, removing the need to write code to create windows and widgets.

1. Design and Save your GUI to a file

2. Read the file in your script

JavaScript GUI Builder

To open the GUI Builder in PRIMER go to Script → GUI Builder

JavaScript GUI Builder

How to use the GUI Builder to build a GUI

JavaScript GUI Builder

Properties Window

The properties of widgets and windows are set

here.

Design Window

Widgets are

added, positioned

and resized here.

JavaScript GUI Builder

Widgets can be added by right-clicking on the design window and selecting the widget

type to add.

The widget will be added with default properties and highlighted with dashed lines to

indicate that it’s the current widget.

JavaScript GUI Builder

Widgets can be moved by left-clicking on them and dragging, or by using arrow keys.

They can be resized by left-clicking on their border and dragging

JavaScript GUI Builder

Multiple widgets can be selected by holding the Ctrl or Shift keys and left-clicking.

Alternatively a box can be dragged around the widgets you want to select.

JavaScript GUI Builder

When multiple widgets are selected the borders can be aligned by right-clicking on the

widget you want to align the other widgets to, and then selecting how you want them

to be aligned:

JavaScript GUI Builder

The properties of a widget can be modified in the properties window, e.g. change the

category to CATEGORY_APPLY:

The appearance of the widget will update in the design

window.

If multiple widgets are selected the property will be applied

to all the selected widgets.

JavaScript GUI Builder

You can copy and paste widgets by right-clicking on them and selecting ‘Copy’ and then

right-clicking on the window and selecting ‘Paste’. The new widget will have all the

same properties as the copied widget.

Alternatively you can use the shortcuts Ctrl-C and Ctrl-V.

JavaScript GUI Builder

To delete a widget, right-click on it and

select ‘Delete’.

Alternatively you can press the Delete

shortcut key.

To lock the position of a widget so it

can’t be repositioned or resized, right-

click on it and select ‘Lock’.

To unlock it again, right-click on it and

select ‘Unlock’.

JavaScript GUI Builder

To add WidgetItems to a Combobox or Listbox, right-click on it and select ‘Edit WidgetItems’.

This will update the design window where you can add WidgetItems by pressing the ‘Add

New WidgetItem’ button.

JavaScript GUI Builder

The appearance of the current WidgetItem can be modified in the same way as Widgets by

clicking on the WidgetItem and updating its properties.

To delete a WidgetItem, click on the ‘-’ on the right hand side.

Once you have finished, press ‘Apply’ to return to the normal design window.

JavaScript GUI Builder

Additional windows can be

created by clicking on the Window

Options dropdown menu.

You can add either a Main Window

or PopupWindow.

The name of the current window is displayed

in the Window selection dropdown menu.

To change to a different window, select it from

the dropdown menu.

JavaScript GUI Builder

PopupWindows can be linked to widgets by setting the popupWindow property.

To remove a PopupWindow linked to a widget, set the popupWindow to <no popup>.

JavaScript GUI Builder

The GUI can also be saved as a raw JavaScript file, with the calls to create and

position the windows and widgets, explicitly defined, rather than using

Window.BuildGUIFromString(). This cannot be loaded back into the GUI Builder,

however it may be useful for creating GUI’s to run in versions prior to v18 that

don’t have the Window.BuildGUIFromString() function.

The GUI can be saved to file by pressing the ‘Save’ button and then selecting a file. The

saved file is a JavaScript file containing the window and widget definitions in a JSON

string, and a call to Window.BuildGUIFromString() which builds the GUI when the script

is run. Further details are given in the next few slides.

It can be reloaded by pressing the ‘Load’ button and selecting the file to load.

JavaScript GUI Builder

How to use the GUI in a script

JavaScript GUI Builder

The GUI is saved to a JavaScript file, containing the GUI definition in a JSON string and a call to

Window.BuildGUIFromString(). It is saved with the extension ‘.jsi’ to indicate that it should be included from

another file. You should not need to edit this file.

A *.js file is also written to demonstrate how to include the *.jsi file and display the GUI. This can be used as a

template to follow and modify.

It is written to the same folder as the *.jsi file and named ‘<jsi_filename>_TEMPLATE.js’, e.g. if the *.jsi file is

called ‘demo.jsi’, the *.js file will be saved as ‘demo_TEMPLATE.js’.

The following slides explain what is in the file and how you can reference the Windows, Widgets and

WidgetItems in the script.

JavaScript GUI Builder

To read the GUI in a script you need to include the file using the Use() function.

This will create a global variable (‘gui’ by default) containing all the GUI objects. The

name of the variable can be changed in the GUI builder menu under General Options.

For example, to build the GUI saved in C:\my_gui.jsi:

Use("C:\\my_gui.jsi");

JavaScript GUI Builder

The GUI Window objects are stored as properties on the global object. The name of the

property is whatever was defined in the properties window in the GUI builder:

To display the Window called ‘my_window’ use the Show() method:

if (gui) gui.my_window.Show();

JavaScript GUI Builder

Similarly, each Widget object is a property of the Window object. The name of the Widget

property is whatever was defined in the properties window in the GUI builder:

For example if the window is called ‘my_window’ and the widget is called ‘btnExample’,

the Widget object can be accessed and modified with:

var btn = gui.my_window.btnExample;

btn.text = “Test”;

JavaScript GUI Builder

WidgetItem objects are a property of the Widget.

For, example if the window is called ‘my_window’, the widget the widget item is on is called ‘cbxExample’

and the widget item is called ‘wi1’, it can be accessed and modified with:

var wi = gui.my_window.cbxExample.wi1;

JavaScript GUI Builder

Callback functions (onClick, onChange, etc.) can be assigned to the window and widgets

in the properties window, by adding the name of a function to call.

For example to set the onClick property of a widget so it calls a function called ‘pressed’:

This function then needs to be defined in your script:

Use("C:\\test.jsi");

if (gui) gui.my_window.Show();

function pressed()

{

Message("You clicked me!");

}

JavaScript Engine Upgrade

JavaScript engine upgrade

• For PRIMER 18.0 the JavaScript engine used in PRIMER has been significantly

upgraded.

• In PRIMER 17.0 and earlier the engine only supported ECMAScript 5 features.

• In PRIMER 18.0 the engine now supports ECMAScript 6 (ES6) and many newer

features.

• The engine we use is Spidermonkey provided by Mozilla from the Firefox web browser.

• For PRIMER 18.0 we are now using the current ‘Extended Support Release’ version (ESR78)

• Future releases will continue to use the latest ESR version available.

https://www.ecma-international.org/wp-content/uploads/ECMA-262_5th_edition_december_2009.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-262_6th_edition_june_2015.pdf
https://en.wikipedia.org/wiki/SpiderMonkey

JavaScript engine upgrade

• The primary reason for upgrading is to give access to newer JavaScript features

• In some cases newer JavaScript code people obtained/learned from books and/or the

web and tried to use in PRIMER did not work in PRIMER 17.0 as we only supported

ECMAScript 5.

• Upgrading the engine allows the latest ECMAScript 6 (ES6) language features to be

used.

• Which ES6 (and newer) features are supported by the engine can be viewed at

http://kangax.github.io/compat-table/es6/#firefox78

• Additional benefits to upgrading as well as ES6 support are outlined on the following

slides.

http://kangax.github.io/compat-table/es6/#firefox78

JavaScript engine upgrade – ES6 features

• Upgrading the JavaScript engine gives access to lots of significant new ES6 (and newer)

language features such as

• class keyword

• Block scope with let/const

• Promises

• Arrow functions

• Default parameters, rest parameters and spread syntax

• Set and Map

• Iterators and generators

• Symbol

And many more

• Further resources are available online or via reference material, e.g. JavaScript: The

Definitive Guide. A few examples follow.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol

JavaScript engine upgrade – example ES6 features

• class keyword

• ES6 makes it much easier to create classes using the new class keyword and syntax

ES 5

function Circle(radius)
{

this.r = radius;
}

Circle.prototype.area = function()
{

return Math.PI * this.r * this.r;
}

var c = new Circle(5);
Message("Area of circle with radius " +

c.r + " is " + c.area())

ES 6

class Circle
{

constructor(radius)
{

this.r = radius;
}

area()
{

return Math.PI * this.r * this.r;
}

}

var c = new Circle(5);
Message("Area of circle with radius " +

c.r + " is " + c.area())

JavaScript engine upgrade – example ES6 features

• let statement

• The let statement in ES6 allows you to create variables with block scope (variables declared

with var have scope for the containing function which can be a source of bugs)

• Accessing variables defined with let before they are initialised is an error (helps trap bugs)

ES 5

function test()
{

Message(x); // undefined

var x = 1;
{

var x = 2; // same variable!

Message(x); // 2
}

Message(x); // 2
}

ES 6

function test()
{

Message(x); // Error

let x = 1;
{

let x = 2; // different variable

Message(x); // 2
}

Message(x); // 1
}

JavaScript engine upgrade – example ES6 features

• Spread operator

• The spread operator expands an array into the list of values in the array. It can be useful

when array values are needed in a function.

ES 5

// create a node
var coords = [1, 2, 3];
var n = new Node(model, nid,

coords[0], coords[1], coords[2]);

// draw a rectangle on a widget
var pt1 = [0, 0];
var pt2 = [100, 100];
widget.Rectangle(Widget.RED, true,

pt1[0], pt1[1],
pt2[0], pt2[1]);

ES 6

// create a node
var coords = [1, 2, 3];
var n = new Node(model, nid,

...coords);

// draw a rectangle on a widget
var pt1 = [0, 0];
var pt2 = [100, 100];
widget.Rectangle(Widget.RED, true,

...pt1,

...pt2);

JavaScript engine upgrade – other benefits

• Memory consumption

• JavaScript uses ‘garbage collection’ to manage any memory that needs to be used for a

script.

• Every object, array or string you use needs to store a small amount of data to be able to do

this.

• This storage in PRIMER 18.0 is approximately 2/3 of the size in

PRIMER 17.0.

With the default memory size of 25Mb

• PRIMER 17.0 could create ~350,000 objects.

• PRIMER 18.0 can now create ~500,000 objects

JavaScript engine upgrade – other benefits

• Speed

• Scripts which do a lot of mathematical operations will be faster (~ x3.5 speed increase in our

tests).

• String manipulation in scripts is faster (~ x3 speed increase in our tests).

• Regular expressions in scripts are faster (~ x2.5 speed increase in our tests).

• Several other features may see some speed increase from these and other improvements.

JavaScript engine upgrade – other benefits

• Debugger

• The implementation of the debugger has also changed with the new engine.

• Stepping through code using ‘Step’ and ‘Next’ is now significantly faster compared to PRIMER

17.0, especially for scripts with many lines and/or functions.

• In PRIMER 17.0 try and catch did not work properly in the debugger. For example, the

following script would always fail with an exception in the debugger instead of ‘catching’ it.

This now works correctly in PRIMER 18.0.

var o = {};
try
{

o.UndefinedMethod();
}
catch(err)
{

Message(err);
}

JavaScript engine upgrade – other benefits

• Debugger

• Strict mode

• By default the debugger now works in ‘strict mode’ (see https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Strict_mode for details) as this helps to find potential errors.

• This has changed since PRIMER 17.0. In PRIMER 17.0 the ‘strict mode’ checkbox actually added some more

checks to the debugger. It did not enforce ‘strict mode’. This has been corrected for PRIMER 18.0.

• This is equivalent to running the script

• This behaviour can be turned off if required using the checkbox.

version = 18.0;
Message(version);

"use strict";

version = 18.0;
Message(version);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

JavaScript engine upgrade – other benefits

• Better checking

• The new engine has better checking. For example, in the following code an error will be

given when compiling that some code is unreachable (as there are { } missing so the return

is not part of the if block and is always evaluated).

var vector = [1.0, 0.5, -0.2];
var length = vectorLength(vector);

function vectorLength(v)
{

var l = 0;

if (!(v instanceof Array))
ErrorMessage("vectorLength not called with array");
return null;

for (var i=0; i<v.length; i++)
{

l += v[i]*v[i];
}

return Math.sqrt(l);
}

JavaScript engine upgrade – important changes

• Garbage collection memory

• In PRIMER 17.0 the garbage collection memory was ‘private’ to each script.

If multiple scripts were run at the same time each script would have 25Mb of private memory allocated.

• In PRIMER 18.0 the garbage collection memory is now shared across scripts (due to implementation

differences in the new engine).

If multiple scripts are run at the same time

• The memory is allocated when the first script is run.

• The memory is then shared/used for all the scripts running concurrently.

• When the last script finishes the memory is returned.

• If you run scripts concurrently then the memory required may need to be increased.

JavaScript engine upgrade – important changes

• ES6 Modules have not been implemented yet.

• Upgrading the JavaScript engine has enabled ES6 (and newer) features to be used.

• Modules are one ES6 feature that require significant changes in our software to implement

and we are still resolving these.

• For PRIMER 18.0 we want users to benefit from all the other ES6 features so have released

the new engine without module support instead of waiting until we resolve this.

• Support for ES6 modules will be added in a future release.

JavaScript engine upgrade – important changes

• Set class

• ES6 introduced the Set class for collections of values.

However for many years in PRIMER we have used the Set class to support the *SET keyword.

• By default the Set class will continue to be used to support *SET as changing this could

potentially break many existing scripts.

• To use the ECMAScript Set class instead, set the preference

primer*set_class: ECMAScript.

• To enable both classes to co-exist, the class to support the *SET keyword has been renamed

to SetK and Set is an alias to SetK unless the above preference is used.

var s = new Set(model, 100, Set.Node);

s instanceof Set // false

s instanceof SetK // true

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

JavaScript engine upgrade – important changes

• hasOwnProperty() bug in PRIMER 17.0 and earlier.

• The JavaScript engine from PRIMER 17.0 (and earlier) contained a bug which meant that for

the classes we define, object properties that were inherited from the object prototype

appeared to be own properties of the object.

• For example a Window object inherits properties title, left, right, top, bottom etc. from its prototype.

• In PRIMER 17.0 this bug makes these properties appear to be an own property of the window as well as the

prototype.

• If you relied on this feature (unlikely) you will have to modify your code.

var w = new Window("Test", 0.8, 1.0, 0.5, 0.6);
w.dog = "Bark";

Message(w.hasOwnProperty('title')); // false. w does not have own property title. true in 17.0 (bug)
Message(w.hasOwnProperty('dog')); // true. w does have own property dog

Message(w.__proto__.hasOwnProperty('title')); // true. title is inherited from prototype
Message(w.__proto__.hasOwnProperty('dog')); // false. dog is not inherited from prototype

JavaScript engine upgrade – important changes

• Script encoding differences

• In PRIMER 17.0 the default encoding used for scripts by the engine

was ‘Latin-1’.

• However on Windows this was actually implemented using the default encoding, which for

many countries is Windows-1252.

• In PRIMER 18.0 the upgraded engine now compiles scripts as UTF-8 instead by default.

• For scripts that just use ASCII (English) characters this will make no difference.

• However the Windows-1252 encoding also contains special characters such as special quotes ,

apostrophes, en-dash and em-dash characters (‘ ’ “ ” – —) and these are incompatible with UTF-8.

• If your script contains these characters it will no longer compile as ‘Latin-1’ (and it would also not have run

on Linux in PRIMER 17.0 and earlier). Either remove the characters or save the script in a different

encoding using your editor.

• Setting a specific encoding for a script such as Shift-JIS or UTF-8 is unaffected.

JavaScript engine upgrade – important changes

• Extra checking *may* occasionally mean old scripts that ran in PRIMER 17.0 no longer

compile in PRIMER 18.0.

• As the updated engine has better checking (such as the check for unreachable code

mentioned earlier) in some rare cases it may mean that a script which worked in PRIMER

17.0 will fail to compile in PRIMER 18.0 until the error is fixed.

JavaScript engine upgrade – important changes

• Error messages have been enabled for encrypted scripts

• In PRIMER 17.0 if a script was encrypted no error messages would be given when

compiling/running.

• For example if the following script was encrypted

no error message would be given when the script tried to run the undefined function. This

could make it very hard to determine the cause of a ‘released’ script failing.

• As the upgraded engine has better checking and there may

be some rare cases when scripts don’t run we have now

changed this for PRIMER 18.0 so error messages will now be given

for encrypted scripts.

Message("Starting...");
CallAFunctionThatIsNotDefined();
Message("Done.");

JavaScript API

JavaScript API

• Various JavaScript API enhancements include:

• New SensorDefine class is added.

• _MORTAR keyword option can now be set for appropriate types for the Contact class.

• *CONTROL_MPP_DECOMPOSITION_FLAG_STRESS_STRAIN_CURVE is now accessible via JavaScript.

• The shell beta property has been changed.

In previous versions the _BETA option for the shell would be set if the beta property was set to a non-

zero value. However this did not allow you to create an *ELEMENT_SHELL_BETA card with a zero beta

angle from JavaScript.

In version 18 the beta property is now null if _BETA is not set.

• *CONSTRAINED_LINEAR_GLOBAL and *CONSTRAINED_LINEAR_LOCAL now accessible via JavaScript.

• EVDUMP on *CONTROL_IMPLICIT_EIGENVALUE now supported.

JavaScript API

• Cross references are now made between the following entities and properties when created via

JavaScript:

• *PART_COMPOSITE and MID

• *BOUNDARY_PRESCRIBED_FINAL_GEOMETRY and NID

• *INITIAL_VELOCITY and IRIGID

• *LOAD_NODE and M3

• *CONSTRAINED_NODAL_RIGID_BODY and PNODE

• *SECTION_SHELL and ELFORM, EDGSET

• *SECTION_SOLID and ELFORM

• *SENSOR_SWITCH and SWIT

• *ELEMENT_(T)SHELL_COMPOSITE and MID

Checkpoint Files

Controlling Read/Write of Checkpoint Files

Checkpoint Files

The following preferences will control read/write of checkpoint files.

PRIMER also has command-line options with the same names.

• primer*write_checkpoint_files: Enable/disable the recording of checkpoint files

upon PRIMER startup. Valid values are TRUE/FALSE (default is FALSE).

• primer*show_checkpoint_files: Enable/disable the reading of checkpoint files upon

PRIMER startup. Valid values are TRUE/FALSE (default is FALSE).

• If writing of checkpoint files is disabled, reading will also be automatically disabled.

• primer*checkpoint_dir: Specify the folder path to write checkpoint files to and read

checkpoint files from.

Miscellaneous

Quad Shell Splitting

• There are new options to control how quad shells are split.

• Previously when using the Split shell option quad shells were always split along the short

diagonal to preserve mesh quality.

• Sometimes this is not desirable so new options have been introduced:

• Short diagonal (default, as previous)

• Long diagonal

• Always N1N3 – split is made along the node 1 to node 3 diagonal as

defined by the shell topology

• Always N2N4 – split is made along the node 2 to node 4 diagonal as

defined by the shell topology

Boundary Prescribed Motion Animation

• PRIMER’s Boundary Prescribed Motion animation

function computes the analysis timestep as a part of

its operation.

• The timestep used by an implicit model can,

sometimes, be difficult to compute in an exact

manner.

• You may now specify a timestep of their choice that

will override that computed by this function.

Clipboard Item Count

• PRIMER’s Clipboard

header box in the

object selection

menu now shows

the number of

items selected to be

added or deleted.

Keyboard Shortcut Additions

• Shift + Left Arrow: Highlights from the current cursor position to the left by one character

• Shift + Right Arrow: Highlights from the current cursor position to the right by one character

• Shift + Up Arrow: Highlights from the current cursor position to the left-most character in the string (0 or prefix)

• Shift + Down Arrow: Highlights from the current cursor position to the right-most character (length of the string)

• Ctrl + Left Arrow: Jumps the cursor from the current cursor position to the left-most character of the word

• Ctrl + Right Arrow: Jumps the cursor from the current cursor position to the right-most character of the word

• Ctrl + Shift + Left Arrow: Highlight the rest of the word to the left of the cursor position up to the breaking character

• Ctrl + Shift + Right Arrow: Highlight the rest of the word to the right of the cursor position up to the breaking character

• Double Click Left Mouse Button: Highlights the whole word

• Triple Click Left Mouse Button or Ctrl + A: Highlights the whole line

Sort functionality in Renumber->Visualise panel

• You can now sort include files by

• Include label (label’s range in case of range provided or else minimum label present in that include file);

• Include ID;

• Alphabetical.

Measure Panel Number Format

• Added option for number format in Measure panel.

Include File Write

• Added a warning when writing out include if file exists.

Contact Information

UK

T: +44 121 213 3399

dyna.support@arup.com

For more information please contact us:

www.arup.com/dyna

China

T: +86 21 3118 8875

china.support@arup.com

India

T: +91 40 69019797 / 98

india.support@arup.com

USA West

T: +1 415 940 0959

us.support@arup.com

or your local Oasys distributor

mailto:dyna.support@arup.com
mailto:china.support@arup.com
mailto:india.support@arup.com
mailto:us.support@arup.com

