Recent and Ongoing Developments in LS-DYNA

Dilip Bhalsod

12th Oasys LS-DYNA Indian Update Meeting March 2019

Announcement

As of March 04, 2019 Nathan Asher Hallquist has been appointed Executive Vice President of LSTC.

Outline

- Introduction
- Applications and development updates on
 - Metal forming
 - Implicit
 - Frequency Domain Analysis
 - Material: composite
 - CFD: ICFD, ALE, SPH & CESE
 - Meshless method
- Summary & Future

Introduction

Growth of LS-DYNA

- Continues leading explicit FEA

Explicit CAE openings in Indeed, 05/04/2018

STAFF

Global Market Share

LS-DYNA Applications

Development costs are spread across many industries

Automotive

Crash and safety NVH & Durability FSI

Structural

Earthquake safety
Concrete and composite structures
Homeland security

Aerospace

Bird strike Containment Crash

Electronics

Drop analysis
Package analysis
Thermal

Manufacturing

Stamping Forging Welding

Defense

Weapons design
Blast and penetration
Underwater Shock Analysis

Consumer Products

Biosciences

Forming Simulation

L. Zhang, X. Zhu, F. Ren

LS-DYNA for forming

- Users include, not limited to,
 - Audi, BMW, Volvo, Honda, Mazda, Nissan, Toyota, Unipres,...
- Usage of LS-DYNA for Metal Forming in BMW
 - cold forming, trimming and springback compensation

simulation of indirect press hardening.

LS-DYNA for forming in BMW

Draping of CFRP

Ls-dyna

Assembly process,

- Insertion of single parts
- Modeling of spotwelds, weldlines & adhesive
- Hemming simulation of the outer parts

MPP Fusion

As per BMW's request, Fusion is extended to MPP

- MPP performance
 - Reduce simulation time > 25%
 - Forming error < 2%
 - Springback error < 10%

Tube-adaptive method

- Box-adaptive method
 - Cannot handle arbitrary loading path
 - Need to perform mesh fission/fusion every single time step.

echnology Corp.

- Tube-adaptive method
 - Arbitrary loading path
 - Optimal adaptive time interval and tube radius
 - Reduce computational cost while maintaining accuracy

Radius	2	4	6	8	10	12	14	16
Thick. Diff.(%)	6.4	4.4	5.2	1.8	0.3	0.7	0.9	0.6
Time Red.(%)	50	50	49	47	46	45	44	40

Translations between FLD and Triaxial Limit

- Increasingly, as more Advanced High Strength Steels (AHSS) are being used, stamping engineers need to worry about material failure such as shear fracture during forming, in addition to the traditional necking failure.
- Two keywords are created to conveniently translate the two types of failure limits.
 - *DEFINE_CURVE_FLD_FROM_TRIAXIAL_LIMIT
 - *DEFINE_CURVE_TRIAXIAL_LIMIT_FROM_FLD

IGA for Metal Stamping

NUMISHEET 2005 benchmark in 2017

FEA:

- Avg. mesh = 2mm
- 3.7 hr

IGA:

- No adaptivity
- Mesh = 4mm
- 2.2 hr

Implicit

Thomas Borrvall, F. Bengzon

LS-DYNA for Implicit analysis

Spring-back compensation

Static structure analysis

 Frequency domain solver for NVH, fatigue, random vibration analysis...

Safety analysis

Positioning BioRid & HPM, Daimler

Other

Fitting of rubber cylinder between two steel components, *VOLVO GTT*

 $F(t) = F_0 \sin(\omega t + \phi)$

17

Improvement for implicit

Prescribed motion

- exact integration of velocity and acceleration curves
- avoid zero residual force for use on rigid bodies

Mortar contact

- frictional torque due to (shell) offsets
- extensions of friction, tiebreak and tied weld
- Rejections

Prestress

- initial stress section accounts for bending
 - IZSHEAR=2 on *INITIAL_STRESS_SECTION
- mean cross sectional stress prescribed
- preserves structural integrity of bolts

Improvement for implicit

- Process splitting (*CASE)
 - implicitly requested by users
 - a "complicated" process is divided into "simple" steps
 - each "step" is simple and clean
 - no birth/death, simple curves etc.
 - system state transferred between cases through dynain.lsda
 - stress, history, stabilization, contact friction, tied contact
 - flexible
 - each case is essentially a keyword input, allows for "any" modifications
 - "restart" can be made from any case
 - saves the agony of rerunning the entire process

Frequency Domain Analysis

Z. Cui & Y. Huang

Using MCMS for NVH analysis

Time domain fatigue analysis

- Calculate damage ratio and fatigue life in time domain
- Advantages
 - A wide selection of stress / strain solvers (linear / nonlinear, thermal, multiphysics, fluid-structure interaction, EM, CFD, explicit / implicit, etc.)
 - Integration of vibration and fatigue solvers in one code.

IGA for Frequency domain SSD

NURBS Shell Model

Full Gauss integration rule
Piecewise linear plasticity (*MAT_024)

FEA baseline model

Fully integrated shell with assumed strain formulation

Analysis tool	Number of elements	CPU (s)
IGA	1444	47
FEA	1444	6
FEA	5776	23
FEA	12996	54

Material Composite

LS-DYNA composite material - application

 Traditional material model like MAT58 with CDM tends to underestimate the energy absorption (EA) by 10%~40%

 enhanced continuum damage mechanics (ECDM) model and a shell-beam (SB) method are developed as a remedy

LS-DYNA composite material - application

 Pre-preg compression molded (PCM) CF composites is modeled in meso-scale using MAT_54

LS-DYNA composite material - application

Draping and RTM

MAT_293 for the preforming of woven composites

- For woven prepregs forming simulation, which are woven CFRPs impregnated with uncured thermoset resin in desired fiber orientations
- decouple the strong tension and weak shear behavior of the woven composite under large shear deformation
- For woven long fiber composite, fiber angle after forming is critical for accurate predication of crash performance

echnology Corp.

Short fiber from molding to crash

- New interface program to utilize Moldflow and MoldEx3D molding result for LS-DYNA crash analysis is recently implemented in LS-PrePost
- Enhance MAT_157 with *INITIAL_STRESS card for elasticity tensor Cij

Fiber orientation result from Moldflow

LS-DYNA 3 point bending simulation

Thick shell and cohesive element for delamination

Model description

- CFRP modeled as thick shell; each thick shell represents a ply
- Cohesive element thickness of 0.01mm; TS size 4mmx4mm
- Both UD and Woven tested
- MAT_054 is used

Thick shell and cohesive element for delamination

One-Step Analysis for Woven Carbon Fiber Composite

*DEFINE_FIBER

echnology Corp.

- defines carbon fibers and their related properties in a matrix for a onestep inverse forming simulation.
- Can predict the desired composite shape and fiber orientations
- works only with the keyword *CONTROL_FORMING_ONESTEP

*CONSTRAINED_BEAM_IN_SOLID

- Was designed for RC; Extended to simulate FRP manufacturing process
- Thermal-mechanical Adaptive EFG method with local refinement

CFD Technique

Zeng-chan Zhang, Kyoung-Su Im, and Grant Cook, Jr.
Hao Chen
Inaki Caldichoury, Pieree L'Eplattenier
Edouard Yreux

CFD solvers in LS-DYNA

Available CFD solvers in Is-dyna

Solver	CESE	ICFD	ALE	SPH
Low speed aerodynamics	-	$\sqrt{}$	-	-
High speed aerodynamics	$\sqrt{}$	-	-	-
Explosive with EOS	-	-	$\sqrt{}$	$\sqrt{}$
Airbag-piston	$\sqrt{}$	-	$\sqrt{}$	-
Free surface problem (slamming)	-	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
FSI	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Chemistry reaction	$\sqrt{}$	-	-	-
Stochastic particles	$\sqrt{}$	-	-	-

ICFD

Facundo Del Pin Iñaki Çaldichoury Rodrigo R. Paz Chien-Jung Huang

ICFD applications

- Hood flutter vibration

Hood attached to a rotational spring Extraneously induced excitation

"Instability induced excitation"

LSTC Livermore Software Technology Corp.

"Fluid Structure Interaction Simulation of Hood Flutter", J. Dilworth, ARUP, 15th Is-dyna int. conf.

ICFD applications

Stress on a deformable spoiler

2D simulation of a deformable hood

ICFD applications

Airdrop simulation

Light payload

Heavy payload

Steady State for Conjugate Heat and FSI

The steady state solver or the potential flow solver allow for a fast linearization of Fluid Structure Interaction (FSI) and/or Conjugate Heat transfer (CH) problems

Steady state analysis allows engineers to study physical problems in a time average fashion.

These simulation provide valuable insight faster useful for prototyping.

Steady State for Conjugate Heat and FSI

Conjugate heat transfer for die cooling

Navier Stokes

Potential Flow

24 hours

20 minutes

Immersed Interface & sliding mesh

Immersed interfaces

- simplifies the pre-processing of complex geometries.
- provide sharp interfaces and allow structural contact.

- Sliding mesh
 - for the simulation of transient rotating mechanisms without re-meshing.
 - the domain is split into at least two volume meshes. One mesh will have the rotating components and the other the rest of the domain
 - prevents excessive re-meshing in problems that involve rotating parts

Compare ALE and ICFD based on airfoil simulation

Based on NACA0012

Boundary Layer and periodic boundary condition

- Boundary layer and new RANS turbulence model
 - improvements in speed and quality of boundary layer mesh generation
 - Most commonly encountered RANS Turbulence models are available

- Periodic boundary condition
 - allow a domain reduction of the areas with a repeating fluid pattern. It is widely used in the simulation of turbomachinery.

Coupling IGA with ICFD

ALE

S-ALE: Mesh Trimming

 ALE_STRUCTURED_MESH_T RIM trims off unnecessary elements.

http://ftp.lstc.com/anonymous/outgoing/hao/sale/models/meshtrim/saletrim.tar

method	# of ele	time
ALE	84800	1.0
S-ALE	84800	0.6
S-ALE_TRIM	43219	0.35

Results consistency

CPU time / MPP 4 cores

S-ALE: FOLLOW_GC & mesh merging

 New option of FOLLOW_GC of ALE_STRUCTURED_MESH_MOTIO N move the ALE mesh with the gravity center of certain AMMG groups; and expand/contract with those fluids.

http://ftp.lstc.com/anonymous/outgoing/hao/sale/models/meshmotion/birdstrike/bird sale.tar

- Multiple ALE_STRUCTURED_MESH cards. Can share the same PID
 - A finer mesh for HE and solid can share the same PID with the coarser air mesh separately created by other ALE_STRUCTURED_MESHS card

two meshes setup reduced mesh usage from 6 million to 4 million.

S-ALE vs. ALE for blast simulation

Save 28% of CPU with comparable results

Phase Change EOS for ALE FSI

- In order to simulate fast transient phenomena such as Water Hammers or UNDEX, one must take into consideration phase change.
- Homogeneous Equilibrium Model (HEM) is one of the "one-fluid models" where only the average flow is considered by solving a unique set of governing equations and it can be based on a pure phase model.

Figure 4: Absolute pressure at sensor PT6: Experimental results Tijsseling et al., [8], (--), numerical results with elastic pipes (—).

SPH

Comparing SPH & ALE for UNDEX

Technology Corp.

SPH: Murnaghan Equation of State, IFORM=15/16

- Model incompressible fluid with SPH elements
- Weakly compressible formulation to numerically reduce the sound speed, and consequently increase the time step size

Validation: 2D dambreak, free surface flow

SPH: 3D Validation of Murnaghan Equation of State

Implicit SPH

- Implicit, incompressible SPH formulation allows larger timestep size
- Tailored for wading-type problems
- Example with 9.1 million particles:

Implicit SPH
Color-coded by velocity

Blender rendering

Dynamically Rebalanced SPH

- Re-decomposed the model several times during simulation using a full deck restart
- 30% of cpu saving is observe in a typical bird strike simulation

MLS-based SPH

 A formulation based on moving least-squares (FORM = 12) is implemented to improve the major drawbacks associated with SPH: tensile instability and essential boundary condition enforcement. Moving Least Square formulation.

CESE and Chemistry Solvers

Zeng-chan Zhang, Kyoung-Su Im, and Grant Cook, Jr.

CESE coupling with other LS-DYNA solvers

echnology Corp.

CESE for blast relief valve

 The purpose of the blast relief wall is to vent the combustion gases and pressure resulting from a deflagration of an enclosure in offshore plant. Gas mixture consists of air and methane (CH4).

Meshless & particle methods

```
SPH J. Xu
ALE H. Chen
DEM H. Tang, B. Zhang
SPG Y. Wu, C.T. Wu
Peridynamics W. Hu, B. Ren, C.T. Wu
XFEM Y. Guo, C.T. Wu
```

Meshfree & Particle Methods in LS-DYNA

DEM

 for granular materials that consist of discrete particles like liquids and solutions, cereal, sand, toner,..

DEM: DE-DE contact improvement

 MPP scalability could deteriorate due to load imbalance when particles undergo large motion

re-decompose for every N time steps

Performance improvement

LS-DYNA keyword deck by LS-PrePost Time = 0

XFEM

- Most suitable for ductile materials in shell formulation, especially for pre-cracks
- A non-local algorithm is developed to minimize the meshsize/orientation problems

Peridynamics Method

Extension of classical pdf-based equation.

Standard theory

Stress tensor field (assumes continuity of forces)

$$\rho\ddot{u}(x,t) = \nabla \cdot \sigma(x,t) + b(x,t)$$

Differentiation of surface forces

<u>Peridynamics</u>

Bond forces between neighboring points (allowing discontinuity)

Summation over bond forces

- Most suitable for brittle materials in 3D solid formulation.
- Modified version formulated in Discontinuous Galerkin FEM
- Failure criteria is based on fracture energy released rate

Peridynamics for windshield 3-point bending analysis

Maximum Force (N)		Displacement (mm)	
Exp.	Num.	Exp.	Num.
2841	2860	24.6	26.0

SPG

- Particle integration, able to handle severe deformation
- Most suitable for ductile materials in 3D solid formulation.
- Applications include machining, joining, cutting, riveting & drilling

Summary

- LSTC is working to be the leader in cost effective large scale numerical simulations
- LSTC is providing dummy, barrier, and head form models to reduce customer costs.
- LS-PrePost, LS-Opt, and LS-TaSC are continuously improving and gaining more usage within the LS-DYNA user community
- LSTC is actively working on seamless multistage simulations in automotive crashworthiness, manufacturing, and aerospace
- The scalable implicit solver is quickly gaining market acceptance for linear/nonlinear implicit calculations and simulations
- Robustness, speed, accuracy, and scalability have rapidly improved

Future

- New features and algorithms will be continuously implemented to handle new challenges and applications
 - Electromagnetics,
 - Acoustics,
 - Compressible and incompressible fluids
 - Isogeometric shell, solid elements and NURB contact algorithms
 - Discrete element methodology for modeling granular materials, failure, etc.
 - Peridynamics combined with EFG and DES
 - Composite material manufacturing
 - Modeling battery response in crashworthiness simulations
 - Sparse solver developments for scalability to huge # of cores,
 >10K

12th LS-DYNA European Conference

14 - 16 May 2019, Koblenz, Germany

