Cycling | Digital Doping with LS-OPT

24th January 2018 Ben Crone

ARUP

LS-OPT

- Optimisation.
- System identification.
- DOE.
- Curve matching.
- Robustness.
- Sensitivity studies.

ARUP

LS-OPT - Solvers

- 11 built in solver options, including:
 - LS-DYNA
 - MS Excel
 - MATLAB
 - NASTRAN

Stage Stage1
Setup Parameters Histories Responses File Operations
General
Package Name Excel
Excel File Hill M LS-DYNA
Do LS-OPT LS-PREPOST
ANSA Input definitior Excel
Sheet HyperMorph MATLAB
Speed Model MSC-NASTRAN
Speed Model User-Defined
Add User-Defined Postprocessor

• User defined routines also possible.

LS-OPT - Solvers

- 11 built in solver options, including:
 - LS-DYNA
 - MS Excel ← …
 - MATLAB
 - NASTRAN

Stage Stage1
Setup Parameters Histories Responses File Operations
General
Package Name Excel
LS-DYNA Excel File Hill N LS-INGRID
Do LS-OPT LS-PREPOST
ANSA Input definitior Excel
Sheet HyperMorph
Speed Model METAPost
Speed Model MSC-NASTRAN TrueGrid
Speed Model User-Defined Add User-Defined Postprocessor

• User defined routines also possible.

Etape du Tour

- Organised by Tour de France.
- Official stage opened to amateurs.
- Mountain stage.
- Circa 10,000-15,000 riders.
- 2017 stage:
 - 110 miles.
 - 2 mountains.
 - 3700 m ascent.

RUP

• Energy based calculation using force balance.

• System input less system outputs.

- System input:
 - Driving force.
 - Power at pedal as generated by cyclist.
 - Minus drivetrain losses, ~3%.
 - Power at wheel (drive).

$$P_{wheel} = \eta_{drive} \cdot P_{pedal}$$

- System output:
 - Gravity.
 - Work done travelling uphill.

$$F_{grav} = mgsin\theta$$

$$(m = m_{cyclist} + m_{bike})$$

- System output:
 - Rolling resistance of tyres.
 - Function of weight and tyre friction.
 - Tyre rolling resistance coefficient approx. 0.005.

$$F_{roll} = \mu_{tyre} \cdot R = \mu_{tyre} \cdot mgcos\theta$$

 $(m = m_{cyclist} + m_{bike})$

- System output:
 - Air resistance.
 - Function of frontal area and shape.
 - Increases in proportion to the square of velocity.

$$F_{drag} = \frac{1}{2} \rho v^2 C_d A$$

- ρ Air Density
- v Velocity
- C_d Drag Coefficient
- A Frontal Area

• Balancing the driving force/power with the resisting forces:

$$P_{wheel} = \left(F_{roll} + F_{drag} + F_{grav}\right) \cdot v$$

Cubic equation that can be solved for velocity.

mg

R

 $F_{drag} + F_{roll}$

 P_{wheel}

Unknowns... Input Power

- Not commonly known. •
- Various methods of measuring exist.
- Pedal based measurements use strain gauges located within pedal spindle.

Garmin

Unknowns... CdA

- Typical values not appropriate.
- Requires extensive testing. •
- Controlled conditions.

Measured Drag Coefficients

Wikipedia

POC

•

• Cd = 0.6.

• $CdA = 0.3 m^2$

agreed with test data.

Problem Setup

- Minimise total time to complete route.
- Constrained by average power (250W).
- Course broken into three stages.

Initial Result

- Not great...
- Model too simplistic.
- Recommended strategy:
 - Gentle on stages 1 & 2.
 - Max effort on final climb.
- Not practical.

BikeRadar

AR

Refined Model

- Utilisation concept introduced.
- Decay factor on latter stages.
- Reduced aero loads for stage 1.

S2 Power		
S1 Util	Factor	
0.85	1	
1	0.9	

S3 Power		
S2 Util	Factor	
0.85	0.9	
1	0.8	

Dan Pontefract

ARUP

Refined Problem

- Constraints now based on utilisation.
 - Average should not exceed 100%.
 - Max should not exceed 103%.
- Quadratic polynomial meta-model used.
- D-Optimal sampling.
- Domain reduction active.
- 10 iterations.

Final Result

- Much more useful.
- Several possible (and similar) strategies all yielding similar times.
- Preferred result:
 - Stage 1 = 218 W (3 hrs 11 mins).
 - Stage 2 = 214 W (51 mins).
 - Stage 3 = 251 W (61 mins).
 - Total Time = 5 hrs 3 mins.

Final Result

Physical Test

- Great success!
- During ride focus was stage 1 and stage 3.
- Prediction was 13 mins out.
- Difference is closer to ten mins due to water bottle refills.
- Finished 261st, 56 mins from winner.
- 91 minutes off TdF time...

Timing	Predicted	Actual
Stage 1	3:11	3:19
Stage 2	0:51	0:51
Stage 3	1:01	1:06
Total*	5:03	5:16

*Doesn't include downhill between stage 2 and 3.

Ben Crone

Next Steps...

- Apply it again this year!
- 105 miles.
- 4 mountains.
- +4000 m ascent.

ARUP

Thank You

