Cycling | Digital Doping with LS-OPT

24 ${ }^{\text {th }}$ January 2018
Ben Crone

- System identification.
- DOE.
- Curve matching.
- Robustness.
- Sensitivity studies.

L $\mathrm{L}+\boldsymbol{\text { *multiobjective_optimization.Isopt - LS-OPT 5.1.2 }}$

1 design

Metamodel-based multiobjective optimization

LS-OPT - Solvers

- 11 built in solver options, including:
- LS-DYNA
- MS Excel
- MATLAB
- NASTRAN

- User defined routines also possible.

LS-OPT - Solvers

- 11 built in solver options, including:
- LS-DYNA
- MS Excel \longleftarrow ?..
- MATLAB
- NASTRAN

- User defined routines also possible.

Etape du Tour

- Organised by Tour de France.
- Official stage opened to amateurs.
- Mountain stage.
- Circa 10,000-15,000 riders.
- 2017 stage:
- 110 miles.
- 2 mountains.
- 3700 m ascent.

Mathematical Model

- Energy based calculation using force balance.
- System input less system outputs.

?

Mathematical Model

- System input:
- Driving force.
- Power at pedal as generated by cyclist.
- Minus drivetrain losses, $\sim 3 \%$.
- Power at wheel (drive).

$$
P_{\text {wheel }}=\eta_{\text {drive }} \cdot P_{\text {pedal }}
$$

Mathematical Model

- System output:
- Gravity.
- Work done travelling uphill.

$$
F_{g r a v}=m g \sin \theta
$$

$$
\left(m=m_{c y c l i s t}+m_{b i k e}\right)
$$

Mathematical Model

- System output:
- Rolling resistance of tyres.
- Function of weight and tyre friction.
- Tyre rolling resistance coefficient approx. 0.005 .

$$
F_{\text {roll }}=\mu_{\text {tyre }} \cdot R=\mu_{\text {tyre }} \cdot m g \cos \theta
$$

$$
\left(m=m_{c y c l i s t}+m_{\text {bike }}\right)
$$

Mathematical Model

- System output:
- Air resistance.
- Function of frontal area and shape.
- Increases in proportion to the square of velocity.
$F_{d r a g}+F_{r o l l}$
$P_{\text {wheel }}$

$$
F_{d r a g}=\frac{1}{2} \rho v^{2} C_{d} A \quad \begin{aligned}
& \rho \quad \text { Air Density } \\
& v \text { Velocity } \\
& C_{d} \text { Drag Coefficient } \\
& A \text { Frontal Area }
\end{aligned}
$$

Mathematical Model

- Balancing the driving force/power with the resisting forces:

$$
F_{d r a g}+F_{r o l l}
$$

$$
P_{\text {wheel }}=\left(F_{\text {roll }}+F_{\text {drag }}+F_{\text {grav }}\right) \cdot v
$$

Cubic equation that can be solved for velocity.

Unknowns... Input Power

- Not commonly known.
- Various methods of measuring exist.
- Pedal based measurements use strain gauges located within pedal spindle.

Values tuned so that model agreed with test data.

- $\mathrm{Cd}=0.6$.
- $\mathrm{CdA}=0.3 \mathrm{~m}^{2}$

Problem Setup

- Minimise total time to complete route.
- Constrained by average power (250W).
- Course broken into three stages.

Initial Result

- Not great...
- Model too simplistic.
- Recommended strategy:
- Gentle on stages $1 \& 2$.
- Max effort on final climb.
- Not practical.

- Utilisation concept introduced.

- Decay factor on latter stages.
- Reduced aero loads for stage 1.

S2 Power	
S1 Util	Factor
0.85	1
1	0.9

S3 Power	
S2 Util	Factor
0.85	0.9
1	0.8

Refined Problem

- Constraints now based on utilisation.
- Average should not exceed 100%.
- Max should not exceed 103%.
- Quadratic polynomial meta-model used.
- D-Optimal sampling.
- Domain reduction active.
- 10 iterations.

Final Result

- Much more useful.
- Several possible (and similar) strategies all yielding similar times.
- Preferred result:
- Stage $1=218$ W (3 hrs 11 mins).
- Stage $2=214$ W (51 mins).
- Stage $3=251 \mathrm{~W}$ (61 mins).
- Total Time $=5$ hrs 3 mins.

Final Result

- Importance of stage 1 (and 3) reflected in other data.

- Great success!
- During ride focus was stage 1 and stage 3 .
- Prediction was 13 mins out.
- Difference is closer to ten mins due to water bottle refills.
- Finished $261^{\text {st }}, 56$ mins from winner.
- 91 minutes off TdF time...

Timing	Predicted	Actual
Stage 1	$3: 11$	$3: 19$
Stage 2	$0: 51$	$0: 51$
Stage 3	$1: 01$	$1: 06$
Total	*	$5: 03$

Next Steps...

- Apply it again this year!
- 105 miles.
- 4 mountains.
- +4000 m ascent.

Thank You

ARUP

