

#### Fraunhofer and Sidact Software

- FEMZIP Compression of simulation results
- SDMZIP Compression of sets of simulation results
- DIFFCRASH Robust Design: Identification of areas in geometry causing scatter of simulation results



**SDMZ** 





#### CHALLENGE

- In order to improve engineering design ...
  - more simulations are performed
  - larger, more detailied Models are used
- » Large amounts of data are generated! (several PetaByte per year) The data has to be ...
  - analyzed
  - exchanged
  - archived
- » Network connections and storage space can become bottlenecks!



#### SOLUTION





## Data Compression

- Two fundamentally different compression approaches:
- Lossless Data Compression The original data can be restored identically from the compressed data
- Lossy Data Compression The original data cannot be restored identically from the compressed data
- » With lossy data compression schemes a much stronger reduction can be achieved!





## Data Compression

• Floating-point data **cannot** be efficiently compressed losslessly:



**FEMZIP** 

- A compression factor of only 1.2 is obtained
- » The solution is **FEMZIP**

Airflow simulation around a car: 6 variables, 43 million elements, 21 time steps





#### Advantages



#### **Reduced Archive Size**

Storage and backup capacities can hold more simulation results



#### Shorter Data Transfer Times

Simulation results can be transferred significantly faster



#### **Quicker Data Loading**

Compressed data can be loaded quicker into post processors





# Lossy Data Compression

- **Quantization** Floating point data is rounded to a given precision and mapped into the integer domain.
- Prediction

A bijective transformation is performed to prepare those integers for encoding purposes (reduce entropy).

Encoding

Afterwards an entropy encoding method is used which removes redundant bits.



» FEMZIP achieves compression factors of about 10!





#### Parameter File

FEMZIP Standard Configuration File (mm, s, Tons, N)

| Number | of | extra | values | per | shell:       | 5 |
|--------|----|-------|--------|-----|--------------|---|
| Number | of | extra | values | per | solid:       | 6 |
| Number | of | extra | values | per | thick shell: | 5 |

| Node values: precision        |   |            |
|-------------------------------|---|------------|
| coordinates                   | : | 0.10000000 |
| velocities                    | : | 10.0000000 |
| accelerations                 | : | 1000000.0  |
| Shell values: precision       |   |            |
| sigma                         | : | 1.00000000 |
| epsilon                       | : | 0.00100000 |
| bending_moment                | : | 1000.00000 |
| shear_resultant               | : | 10.0000000 |
| normal_resultant              | : | 10.0000000 |
| thickness                     | : | 0.00100000 |
| internal_energy               | : | 1.00000000 |
| Thick shell values: precision |   |            |
| sigma                         | : | 1.00000000 |
| Solid values: precision       |   |            |
| sigma                         | : | 1.00000000 |
| 1D-element values: precision  |   |            |
| axial_force                   | : | 10.0000000 |
| s_shear_resultant             | : | 10.000000  |
| t_shear_resultant             | : | 10.0000000 |
| s_bending_moment              | : | 1000.00000 |
| t_bending_moment              | : | 1000.00000 |
| torsional_resultant           | : | 1000.00000 |





## Lossy Data Compression





• The visual appearance of the original and the compressed results is shown. While a compression factor of 8.8 was achieved no difference is noticeable.

Source: topcrunch.org



#### **SDMZIP:** Compressing sets of simulation results





#### Compression of simulation results

Standard solution for industry applications

- Lossy compression of a single simulation result
- Versions for several data formats
- Continuing improvement
- Integrated decompression in several postprocessors
- Compression rates of 15 to 30



# Example: Chevrolet Silverado simulated using LS-DYNA



The displayed model has been developed by the National Crash Analysis Center (NCAC) of the George Washington University under a contract with the FHWA and NHTSA of the US DOT. The crash simulation was done by SIDACT with help of Fraunhofer Institut SCAI, Sankt Augustin Germany, and are their respective property

ARUP

## Compression results

Single simulation

- Original size: 1,525.1 MB
- FEMZIP size: 55.9 MB
- Compression rate: 27.28

Additional simulation

- Original size : 1,525.1 MB
- FEMZIP size : 56.25 MB
- Combined compression rate: 27.19



# Comparison: Two simulations, first and last timestep



- Are the simulations disparate?
- Can the commonalities be exploited?



# Recently developed:

New software for compression of sets of simulation results

- Lossy compression
- Information is processed part-based
- Modular storage concept
- Commonalities of similar simulations is aggregated



# Compressing sets of simulation results





## Compression results

30 Simulations, with 38 timesteps:

- Original size: 45,752.58 MB
- FEMZIP size : 1,684.54 MB
- SDMZIP size : 379.23 MB
  - Database : 110.17 MB
  - -\*.efz ca. : 8.98 MB





### Incremental compression







# Database development for 30 simulations

Size of databases in MB for incremental compression.

Size of \*.efz ca. : 19.01 MB

Results vary depending on:

- Similarity of simulations
- Time resolution





# Robustness analysis – process to analyze multiple simulation runs







































#### ARUP







#### ARUP

## Example:

## Toyota Yaris

#### Toyota Yaris

| Model           | Toyota Yaris |
|-----------------|--------------|
| Year            | 2010         |
| Number of Parts | 917          |
| Finite-Elements | 1,514,068    |



### Example:

## Toyota Yaris



#### Maximum variation of node position in [mm]

© SIDACT GmbH



## Example:

## Chrysler Neon

#### Chrysler Neon

| Model           | Chevrolet<br>Silverado |
|-----------------|------------------------|
| Year            | 2006                   |
| Number of Parts | 712                    |
| Finite-Elements | 1062140                |



## Example: Chrysler Neon



#### Maximum variation of node position in [mm]

© SIDACT GmbH



## Summary

- Production tolerances can have a big impact on simulation results
- Easy emulation of thickness variation triggers model instabilities
- More robust design

