raining course

JavaScript for
Oasys PRIMER and D3PLOT

24" June 2016




\

Introduction PRIMER JavaScripts — Part 2
— Aims of this course — Guidance on Core JavaScript
— Which Oasys products have capabilities
JavaScript? — How to use the Oasys JavaScript
— What is JavaScript? extensions in PRIMER
— Examples of use of JavaScript — Accessing, modifying and creating
keyword data
PRIMER JavaScript — Part 1 — Reading and writing external files
— - — Interacting with PRIMER - picking and
Basic concepts selecting
D3PLOT JavaScripts — GUI: Using ready-made windows
— Running an existing JavaScript, — Using command-line commands_,
plotting the data — Common errors and how to avoid them
— The process of writing and
debugging scripts PRIMER JavaScripts — Part 3
— Writing JavaScripts to calculate new — Using Sets
data — Functions within a script
— GUI: create your own menus
— Other topics

Oasys

LS-DYNA ENVIRONMENT



Aims of this course ‘

« Familiarisation with the JavaScript language — it is not expected that participants
will already know JavaScript.

 Learning how to write and run JavaScripts in PRIMER and D3PLOT

 For those wishing to study only PRIMER JavaScripts, the section on JavaScripts
for Oasys D3PLOT may be omitted.

Oasys

S-DYNA ENVIRONMENT



Which Oasys software products have JavaScript? ‘

JavaScript is now available in all Oasys
Software products.

Oasys PRIMER
Oasys D3PLOT
Oasys T/HIS
Oasys REPORTER

Oasys

LS-DYNA ENVIRONMENT



What is JavaScript? ‘

 Fully-featured programming language, widely used for web programming
» JavaScript has “Core” (standard) capabilities described in textbooks

» JavaScript Interpreter can be embedded in other software, e.g. PRIMER and
D3PLOT

* The Oasys software development team can extend JavaScript by adding
classes and methods for communication with PRIMER, D3PLOT and T/HIS’s
data and capabilities.

* The user’s scripts can include both Core and Oasys extensions.

* The compilation step is done inside the interpreter — the script is source code
and works on any computer platform.

* The interpreter is included inside PRIMER, D3PLOT and T/HIS — no special
software or system setup is required.

Oasys

LS-DYNA ENVIRONMENT



Why write JavaScripts? ‘

Advantages of writing a JavaScript to create a new capability:

— Quick turnaround — don’t have to wait for a new version of T/HIS, D3PLOT
or PRIMER to be released

— Can keep your application confidential
— Under your control — can build it yourself if you wish.

Example applications (PRIMER):
— Creating a simple mesh, or test models with standard loading
— Data checking or correcting
— Geometric morphing functions
— Input or output translators, special-format spotweld or connections files
— Automating routine tasks

Example applications (D3PLOT):

— Generating your own data components for plotting, calculated from any
information already contained in the model or from external files

Oasys

LS-DYNA ENVIRONMENT




Example application: Finding moved parts

+ Available in the from the file tree listing in the Scripts menu, “find moved”

 This script compares two similar models, and unblanks only those elements
whose nodes have different coordinates between the two models.

Run Script

Only moved parts
are displayed

Oasys

LS-DYNA ENVIRONMENT



Example application: Multiple seat position ‘

 This script seat_position.js is available in the examples directory
$OASYS/primer_library/examples

» Creates multiple seat models with the H-point in different positions.

» The script includes a menu window (GUI) so the user can type in data to make a
rectangular grid of H-point positions.

| =] Input grid information _|=_]|

Run Script
Type data into menu

Oasys

S-DYNA ENVIRONMENT



Example application: Pedestrian Impact Zone Setup

» This script pedestrian_impact_marking_program.js is available in the scripts
directory $OASY S/primer _library/scripts

» This is used to calculate pedestrian impact zone boundaries and impact
points.

Oasys

LS-DYNA ENVIRONMENT



Example application: Read custom-format spotweld file

Custom-format spotweld file

<welds>

<weld>
<coord>3734.050293 586.282166 2347.783936</coord>
<pid>82151</pid>
<pid>8700</pid>

</weld>

<weld>
<coord>3694.061523 586.860229 2347.063721</coord>
<pid>82151</pid>
<pid>8700</pid>

</weld>

<weld>
<coord>3654.075928 587.419556 2346.248291</coord>

<pid>8700</pid>
<pid>82151</pid>
Run Script > Read in the file > Sort the data > Create Spotwelds>

<pid>8710</pid>
</weld>

Oasys

S-DYNA ENVIRONMENT



Script to apply spotweld properties ‘

» Spotweld diameter, failure properties, etc are a function of sheet thickness and yield
stress

« Each customer may have their own different function for calculating these

» A Script could adjust the spotweld size and failure properties using this function

Run Script

dia Dia = fn(Thickness)

Oasys

LS-DYNA ENVIRONMENT




Example application: Interfacing with other programs

This script asks the user to select parts, runs an external program (HYCRASH from
JSOL Ltd) to perform 1-step metalforming analysis, and imports the resulting
thickness, stress and strain data into the model.

SHELL THICKNESS
1.143

- —H 1173
. Select parts _ 1203
wmﬂ_ﬂﬂﬂf 1.234
m . I 264
- Script runs 1.294
Run Script SRR 1o
1.355
1.386
1.416
1.446
1.477
1.507
Select parts in -
crash model -
Crash model Crash model now has

forming data

Qasys

LS-DYNA ENVIRONMENT



Automatic model assembly ‘
Eivicrosoftbncel Bookt

B3 Microsoft Excel - Book1
E File Edit View Insert Format  Tools  Daka Window  OwaE

, [ ]
NEHRIERITE & LB S 9-0 Customer’s unique
e I e B S AR AR L @3 | ¥4 Reply with Change .
133 - 3 Input
A | B | ¢ | ] | E |
| 1 |CASE SPEED ANGLE DUMMY  OUTPUT ‘
| 2 |FMVES205 ‘
EREEER:
| 4 |ODE
ipﬂle | | —_— —_— _— —_— _— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— 1
| 6 |Euro Side o Lo R d
7 LNCAP S CIIPL ea
8 sicar T Connect
| 9 |15mph )
| 10 |Canadian ‘ / ) ; meteriale
| 11 |Rear
[ 12 |FMYvES214 . =

Primer Database/Templates

® .

E Roof
crush
4% * contact

Assemble

Oasys

LS-DYNA ENVIRONMENT



Example — plotting spotweld forces ‘

» This JavaScript is included with D3PLOT — Swforc listing in JavaScript menu.

» The script reads the swforc file, interpolates to the time-states in the d3plot file, and
stores the data in user-defined data components.

Spotweld Shear
(Mid surface)

2D/3D Components

0.000
0.500
1.000
1.500
2.000
2.500

Modal results

File: T.:.'".ljEi[:lh:lt_"tlrE-Ir':. DiEiF:ll Ll l"-.-"‘EIl:II::it‘_lll" Ll .":".l:ZI:EIrl

Encading:  LATINT T femary: E Temp User
Solids and shells

hisc Iy Ale 3.000
Thin shells onlky 3.500
4000

Resultants  *| Geame
4500

5.000

* 1.0E+03

Geometry

ARP nnb ARAL

Select data component

A created by the script

Contour plot

Oasys

LS-DYNA ENVIRONMENT



Example — how close to yield/failure? ‘

This JavaScript is included in the d3plot_library\examples directory.

Plastic, yield stress 30MPa

Yield ratio
(Top intg pt)

Steel, yield stress 400MPa

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.800
1.000

43YS D3PLOT: Plastic and steel cantilever VON_MISES_STRESS
(Top intg pE)

n.ao0
25.00
50.00
75.00
100.00
125.00
150.00
175.00
200.00
225.00
250.00

After running the script we can plot the ratio
(Von Mises Stress)/(Yield Stress), using the
correct yield stress for each material. Now we
can see that the plastic part is closest to yield.

Stress is higher in the steel, but this does not
tell us which material is closest to yield

Oasys

LS-DYNA ENVIRONMENT



PRIMER JavaScript — Part 1




@y

 Start PRIMER. Do not read in a model.

« We are going to run a script that creates
a model containing a simple mesh.

« Tools => Script, browse for the script
make_shell mesh.js

* Press Run

* A shell mesh should appear.

Oasys

LS-DYNA ENVIRONMENT

Aszign ms Mechanizsm | Rigidify
Attached Connection | Meshing Script
Ocoupant o Units

Check

|ruT|H #| PERTURB ¢

¥| INTEGRH f RAIL




Making simple changes to an existing script ‘ w

* In a text editor, open the script make_shell_mesh.js

PRIMER

« At this stage, we will not attempt to explain the details of the script
» Look through the script, reading the comments (lines starting with //)
* Near the top of the file, some variables are given values.

— Read the meaning of the variables in the comments then change some
of the numbers.

« Save the script (from the text editor).
* In PRIMER, press Run again.
— A new mesh should appear (in a second model).

— Check that your changes to the script have had the correct effect.

Oasys

LS-DYNA ENVIRONMENT



PRIMER

Writing your own scripts — getting started ‘ w

* You will need:

— Existing scripts (that we provide) to use as examples

— PRIMER JavaScript Manual — this document describes the extensions
that we have written

— You may also want a JavaScript textbook describing the Core functions.

« Write your script in the text editor, a few lines at a time. Then save and try to
run it. Once these lines of script work correctly, add some more lines.

 We provide example scripts in these directories: _ _
This directory is for scripts that

— $OASYS\primer_library\scripts should be available as in the tree
listing in the Scripts menu

— $OASYS\examples\primer_scripts
This directory is for other examples

that you can follow when writing
scripts

Oasys

LS-DYNA ENVIRONMENT



Exercise - A first script ‘ W

« Create a new file in a text editor, called scriptl.js

PRIMER

* Write the following:

A

// My first script ) Comment

< Blank lines are allowed,; they help

( 11 1dm) make the script easier to read

Message ("Hello World") ;
I '\\ Lines end with a semicolon

Message is an extension function _
that we have provided, for Arguments to functions (data
printing messages in PRIMER's provided as input or output) go in
dialog box. Find the description round brackets

in the PRIMER JavaScript
manual.

Oasys

LS-DYNA ENVIRONMENT




B @Yo

Run the script and look in PRIMER’s dialog box. You may need to expand
the dialog box or scroll through it.

| :'r'irner = i < m
t Primer = & AC | Zoom
Hello vWyior|d
::-::".." e :: \ ‘-
b J

Text written using the Message function




Debugging scripts ‘ W/PRIMER )

« Atypical error is to mis-spell a function name.
— In your script, change Message to message (with lower case m). Save the

script and re-run it.
« A message appears giving an error and details of what has gone wrong

] INFORMATION =X

oL o« |

Error while compiling "C:%TEMEPY%script.js" at line 2

RBeferenceError: message 13 not defined

Iy ) J
- | =

A Error message also appear in the dialogue box.

’ OaSyS | Slide 22

LS-DYNA ENVIRONMENT



| @y

 There is also an error message printed in the PRIMER'’s start-up window.
* The interpreter tells you what is wrong, and on which line the fault occurred.

_[o] x|

Program Date = Jun 2 2888 (Windows 32 hit>

Model editing,. merging, wvizuwalisation and more.

Cc>» Copyright 280087, O0ASYS 1td
All rights reserved

For help and support from OASYS:
Morth America
Tel: +44 (@121 213 3399 (1> 248 822 L585Q
Fax: +44 (@121 213 3382 (1> 248 822 4872
E-mail: dyna.support@arup.com us - supporti@arup.com
(AINIAH wuy . arup.comsSdyna
Opened window: MCCPCHAGHALSS6

Reading Preference file — C:xProgram Filez“oazyz?3“oa_pref

Reading Preference file — C:s\Documents and Settingsz“richard.sturtsoa_pref

Error while compiling H:~DATA~DEHMO~JS_PRIMER“=criptli.js:- at line 4:
ReferenceError: message is not defined

www ERROR xxx
Error executing script




Gones W04

« Comments are lines that are ignored by the interpreter. They are used to
help make your script intelligible. Use plenty of comments!

PRIMER

« Comments may be written in several ways:
— From double-slash // to the end of the line is a comment

— Start with /* and end with */ - anything in between is a comment, even if
it covers several lines.

/*
/l
/| This is a comment line * Ablock of comments |
/] * These are comment lines
*/

a=b+1;, /*comments can be added on same line as coding */

c=d+1; [/l another way to write comments

Oasys

LS-DYNA ENVIRONMENT



e IO 4

Oasys

LS-DYNA ENVIRONMENT

PRIMER

Variables allow you to store and manipulate data in the script. Unlike some other
programming languages variables in JavaScript are untyped. This means that a
variable can hold an integer, a floating point number, a string or an object. e.qg.

i = 10; // variable 1 contains the integer 10
i =10.1; // variable i now contains the floating point number 10.1
i = “ten”; // variable 1 now contains a string

Variables are declared by using var.

var pi = 3.1415927; Create a new variable containing the number 3.1415927

var n = new Node(m, 100, 20, 40, 10); Create a new Node object.

The interpreter knows that n is a
Node object because that is what
the Node constructor returns.




PRIMER

When should var be used? ‘ w

« We can use var to create a variable or object before it is used, or when it is
first used. e.qg.

var pi;
pi = 3.1415927;

« If var is omitted, the Interpreter automatically declares the variable.
However, variables declared automatically are “global” while those declared
with var in functions are local to the function in which they are declared (see
sections on functions and variable scope later).

To avoid any confusion always declare variables using var.

 |tis harmless to use var more than once for the same variable.

Oasys

LS-DYNA ENVIRONMENT



PRIMER

I @Y

« Strings are made by enclosing characters in single or double quotes (‘ or )

var s = ‘Hello, world!’;
var s = “Hello, world!”;

« If you want to use ‘ in your string then use double quotes () and visa versa.
var s = “You can use ‘single quotes’ inside double quotes”;

e Strings can be concatenated by using +
var s = “Hello, ” + “world!”; // produces “Hello, world!”

« The length of the string is contained in the property length. e.g. for s above
s.length

A\ Inastring has a special meaning. Combined with the next character in the
string it represents a character that could otherwise not be allowed in the string.

e.g.

var s = “You can use \”double quotes\” inside double quotes”;

Oasys

LS-DYNA ENVIRONMENT



I @Y

« Some common escape sequences

PRIMER

\t tab

\n newline

\" double quote
\’ single quote
\\ backslash

* Note the backslash case. This is important for filenames on Windows. e.g.
to refer to a file C:\temp\nodes.csv as a string you would need to do:

var s = “C:\\temp\\nodes.csv”;

Oasys

LS-DYNA ENVIRONMENT



D3PLOT JavaScript

Follow this link to skip this section of the course

Oasys

S-DYNA ENVIRONMENT



WO

« Start D3PLOT, read the results file base.ptf page humber:  potel 1ot [ o1

« We are going to run a script that checks all the B USPLOT _ THIS | _Memary |
output times, and reports the maximum Measure
displacement of any node at any time. sesEEn [P opr | reptes

Vol Clip_|
Colour__|Entity | Trace no |wiits

« Press JavaScript, browse for find_max_displ.js, Groups  |UserData | %Y Data |
press Run. POMRNLR v ascip | Layout |

« The dialog box should show the result. Javascript

Fun script Check script
Ep lot_jawvascriptfind_ma=_displ.js E|

...processing state 102 memory size: (e [EHEN [0

...processing state 1049
...processing state 110

.processing state 107

. PTOG ___:__ing ate 111 Aezign seript to function key; <nones T

processing state 112




Running a script and plotting data ‘ W/DSPLOT )

« We will now run a script that calculates, for Page Mumber o N R o
each node at each timestate, the B oot tHs e Tume | memory |
horizontal displacement (ignoring the Atached | Defarm Measure  |[Ltities
vertical component), and expresses this as
a percentage — i.e. when each node
reaches its maximum horizontal
displacement, its data value will be 100%.

Data Componert

» First, confirm that there are no pre-existing

' Cat : Strain
user-defined data components for nodes G
Component PLASTIC_STRAIM

— Data Component menu, contours:  (ERR | Auto i mecium | G
C d d hax & hin (Mo maximin shown) | Options..
a ategory rOp own menu Ervelope OFF Options..

— User Defined Se|ection Surface MIDDLE surface T
Fef frame GLOBAL Dptions .

Magnitude Magnitude x coz[phase+phi]

Averaging ]y T Attributes . Options..

O&lsyS Slide 31

LS-DYNA ENVIRONMENT



Running a script and plotting data ‘ W/DSPLOT )

« Browse for the script
calc_horiz_displ_percent.js and run it.

« This script creates a user-defined data 4 Element Energies
component named “horiz percent”. = e
=2 ar Data _ zer Define

* In the Data Component menu, the User Horiz peroert
button is now live; select “Horiz percent”.
Perform a shaded image plot (shortcut F).

 Animate the model.

* You could also try using XY_DATA to make a graph
of the new data component versus time for a node.

* Note that a new file base_1.ubd has appeared in the
directory with the model. This contains the data.

« Exit from D3PLOT, start D3PLOT again and read the
same model. The new data is still available for
plotting, without rerunning the script.

Oasys

LS-DYNA ENVIRONMENT



D3PLOT JavaScript or User-defined data? ‘ W/ D3I5LOT )

« User-defined data components can be defined directly in D3PLOT, e.g. using
the “simple formula” method. This is easier than writing a JavaScript to
calculate results however it has limitations.

« When is a JavaScript needed?

— “Simple formula” can be applied when the user-defined result for node n at
time t depends only on existing data (e.g. displacements, velocities) for
node n at time t. Similarly for elements — if the user-defined data at time t
depends only on existing data for that element at time t.

— If the user-defined data requires knowledge of results across multiple
nodes/elements, or across multiple time-states, then “simple formula”
cannot be used and a JavaScript is needed.

— If the user-defined data is calculated using branching logic (i.e. is not a one-
line mathematical formula), a JavaScript is needed.

— If the user-defined data is calculated using data from an external file, in
combination with the data in the results file, a JavaScript is needed.

Oasys

LS-DYNA ENVIRONMENT



Writing your own scripts — getting started ‘ W/ D3I5LOT )

* You will need:

Existing scripts (that we provide) to use as examples

D3PLOT Manual Appendix VI — this document describes the extensions
that we have written

The extension functions that are common to D3PLOT and PRIMER are
described in the Primer Javascript APl manual.

You may also want a JavaScript textbook describing the Core functions.

« Write your script in the text editor, a few lines at a time. Then save and try to
run it. Once these lines of script work correctly, add some more lines.

« We provide example scripts in these directories:
— $OASYS\d3plot_library\scripts ~——____ This directory is for scripts that

— $OASYS\d3plot_library\examples \ menu

should be in the listings the Scripts

This directory is for other examples
that you can follow when writing scripts

Oasys

LS-DYNA ENVIRONMENT



Using the D3PLOT JavaScript manual ‘ W/ DBF’LOT )

« Start your browser (or Acrobat)
with the electronic D3PLOT
manual.

* Go to Appendix VI.

« Look at the descriptions of the
functions GetNumberOf,
SetCurrentState, and GetData.

* Open the script find_max_displ.js
in a text editor.

 Compare the descriptions and
argument lists with the examples
given in the script.

APPENDIX VI JAVASCRIPT INTERFACE

Description of functions and methods.

The following pages describe the functions (Mmethods") available from the JTavascript interface.

Return value Function name

hoolean Create?indoarmodel list);

hoolean Delete?Windowiwindow list, (dispose Tagh
booleat setWindowA ctivewindow_id, active_flag)
itrte ger CretWind owll e ramelwitidow_id)
hoolean SetWindowFramewindow_id, frame mamber)
integer Get'WindowEramelwindow_id)

ohject Cet'Windowhdodels(windowr_id)

bioolean setCurrenthlodellmodel_id)

bioolean SetCurrentdtatelstate id)

itite ger CrettuimbierD i tyrpe, (Rerfher argsh

hoolean CueryDataPre sent(component, frpeh
double CretTime( fsfafe )

Oasys

LS-DYNA ENVIRONMENT



Using the D3PLOT JavaScript manual ‘ W/DB?LOT>

* Arguments shown in brackets are optional.

* In the example below, GetNumberOf can have either 1 or 2 arguments.
« The first argument type_code is required (i.e. not in brackets).

« The second argument state id is optional.

integer GetNumheer{type_cnde,|{state_id]]|

Eeturns the quantity (" mamber of ') ttems of type <type _code> i the current model.

Oasys

LS-DYNA ENVIRONMENT



R Ocsys AL

« Unlike the PRIMER Javascript interface (in which data is treated as objects
and object properties), in D3PLOT data is accessed using integer indices
(since D3PLOT stores data in arrays).

* For example, this script would write the labels of the first 3 nodes to the
dialog box:

var labl = GetLabel (NODE, 1);
var lab2 = GetLabel (NODE, 2);

var lab3 = GetlLabel (NODE, 3);

Message ("Label of first node = " + labl);
Message ("Label of second node = " + lab2);
Message ("Label of third node = " + lab3);

« Watch out: the index for the first node (or element, etc) is 1, NOT zero.

Oasys

LS-DYNA ENVIRONMENT



R Ocsys AL

« In D3PLOT, only one model may be “current” at any point in the script, allowing
its data to be accessed.

« If more than one model is present, first set the current model before accessing
data (SetCurrentModel command).

« Likewise, only one time-state may be “current” at any point in the script.

« Before accessing results data, set the current state (SetCurrentState command).

SetCurrentModel (1) ; // Assume we are working with Model 1

SetCurrentState (10) ; // Set the 10-th time-state to be current
var dx10 = GetData (DX, NODE, 1); // Get the X-displacement of the first node

SetCurrentState (15) ; // Set the 15-th time-state to be current
var dx15 = GetData (DX, NODE, 1); // Get the X-displacement of the first node

Oasys

LS-DYNA ENVIRONMENT



The GetData function W/ DBF’LOT )

« GetData is used to access all results, and also some input data such as
original (basic) coordinates.

var dx10 = GetData (DX} NODE, 1); // Get the X-displacement of the first node

Constants are used to identify the data component. To see a full list of these, follow the link

double or double array GetDatalcomponent]type_code, item, (int_pnt), (extra), (fr_of _ref), (state_id), (dda))

Feturns the data for <component™ of <item> of type <type_chde>.

The return walue 15 scalar, array[3] or atray[d] for sealat, vector ynd tensor components respectively.

WARNING: If the function atguments are granumatically comrect

tthe requested data component is not present in the database, then 1, 3 or 6 zeros are returned as requited, and no warning »
funiction CuetyDataPresent) to check that an optional data cotg

et i3 actually present in a databaze before attempting to extract its values.

Arguments : |-<cumpunent> |Cunsta.nt |A valicl cotiponent cndeIeg DX, S5X¥) |On15r walid codes it the list below are permitted.
|-<ty1:-e_cnde> |Cunsta.nt |A walid element tvpe code ( SOLID, etc) |The type of the item
<item:- Integer If +ve: The internal item munber starting from 1 Internal item mumbers will be many times faster to proce
If -ve: The external label of the item
<irt prt:> Integer Optional:

Integration poitts are only meaningfial for some compo
stresses. This argment may be omitted if not needed.
o If+ve iz anintegration point id (1 = lowest),

* Alternatively one of the codes TOP, MIDDLE, BOTTOM

Uze zero to define a null "padding" argument

ewkra Tntemer [Pmtiamal-

Oasys

[Tthia arciiment 12 antr neceeaars Far & Four ramnonenta

LS-DYNA ENVIRONMENT



The GetData function W/ DBF’LOT )

« GetData is used to access all results, and also some input data such as
original (basic) coordinates.

var dx10 = GetData (DX, |[NODE} 1); // Get the X-displacement of the first node

Constants are used to identify the entity type. To see a full list of these, follow the link

double or double array GetData(component,jtype_code, Jtem, (int_pni). (extra). (fr_of_ref). (state_id), (dda))

Feturns the data for <component™ of <item> of type <type_code>.
The return walue 15 scalar, array[3] or atray[d] for sealat, vector and tensor cdmponents respectively.

WARNING: If the function atguments are granunatically correct but the requested data component is not present in the database, then 1,3 or 6 zeros are returned as requited, and no warning »
funiction CuetyDataPresent’) to check that an optional data component is acfually present in a databasze before attempting to extract its values.

Arguments : |-<cumpunent> |Cunsta.nt |A valid componery code (eg DX, SXY) |On15r walid codes it the list below are permitted.
|-<ty1:-e_cnde> |Cunsta.nt |A walid elementﬁgme-[ SOLID, &tc) |The type of the item
<item:- Integer If +ve: The internal item munber starting from 1 Internal item mumbers will be many times faster to proce
If -ve: The external label of the item
<irt prt:> Integer Optional:

Integration poitts are only meaningfial for some compo
stresses. This argment may be omitted if not needed.

o If+ve iz anintegration point id (1 = lowest),

* Alternatively one of the codes TOP, MIDDLE, BOTTOM

Uze zero to define a null "padding" argument

ewkra Tntemer [Pmtiamal-

Oasys

[Tthia arciiment 12 antr neceeaars Far & Four ramnonenta

LS-DYNA ENVIRONMENT



The GetData function W/ DBF’LOT )

 When using GetData to access shell element stresses, the integration point
must be specified.

« Canuse 1,2,3... or TOP, MIDDLE, BOTTOM.

var stress = GetData (SXX, SHELL, 1, |TOP}; // Get the X-stress of the first shell

double or double array GetData(component, type_code, item,ﬁ{_nr pnt). (extra). (fr_of_ref). (state_id), (dda))

Feturns the data for <component™ of <item> of type <type_code>.
The return walue 15 scalar, array[3] or atray[d] for sealat, vector and tensor components resfectively.

WARNING: If the function atguments are granunatically correct but the requested data confponent is not present in the database, then 1,3 or 6 zeros are returned as requited, and wo warning »
funiction CuetyDataPresent’) to check that an optional data component is actually present 40 a databasze before attempting to extract its values.

Arguments : |-<cumpunent> |Cunsta.nt |A wvalid component code (eg DX | SXY) |On15r walid codes it the list below are permitted.
|-<ty1:-e_cnde> |Cunsta.nt |A walid element tvpe code ( SOLED, etc) |The type of the item
<item:- Integer If +ve: The internal item munber $tarting from 1 Internal item mumbers will be many times faster to proce
If -ve: The external label of the it+n
<irt prt:> Integer Optional: Integration points are only meaningfial for some compo

stresses. This argment may be omitted if not needed.

o If+ve iz anintegration point id (1 = lowest),
* Alternatively one of the codes TOP, MIDDLE, BOTTOM

Uze zero to define a null "padding" argument

ewkra Tntemer [Pmtiamal- [Tthia arciiment 12 antr neceeaars Far & Four ramnonenta

Oasys

LS-DYNA ENVIRONMENT



Looping through all nodes, time-states, etc ‘ W/ D3I5LQT )

First use GetNumberOf to find how many nodes, time-states, etc. there are;
then use a for loop.

« The script will run more quickly if done in this order:

— Loop through the time-states

— For each state, process data for all nodes/elements/etc.

var nstate = GetNumberOf (STATE) ; // Get number of time-states

var nnode = GetNumberOf (NODE) ; // Find number of nodes in model

for (istate=1; istate<=nstate; istate++)
{

SetCurrentState (istate);

for (j=1; j<=nnode; j++)

{

do something..

Oasys

LS-DYNA ENVIRONMENT




Looping through all nodes, time-states, etc ‘ W/ D3I5LQT )

* The script will run more slowly if done in this order:

— Loop through nodes/elements etc

— For each node/element, process data for all time-states
var nstate = GetNumberOf (STATE) ; // Get number of time-states

var nnode = GetNumberOf (NODE) ; // Find number of nodes in model

for (j=1; j<=nnode; Jj++)
{

for (istate=1; istate<=nstate; istate++) -
{ Not recommended — will

SetCurrentState (istate) ; be slower

do something..

}

« If there is a good reason to write the loops in this way (e.g. if complex operations
are to be performed on a complete time-history for each node or element),
consider using the direct disk access method (DDA argument in the function
GetData).

Oasys

LS-DYNA ENVIRONMENT




Exercise - Accessing data from a model ‘ W/ D3I5LQT )

« Start from find_max_displ.js, and save the script under a new name
access_data 1.js.

« Edit the script where needed to do the following:
— Loop through all the time-states
— Find the maximum von Mises stress in any shell element at each time-state

* Read the notes in the manual for the GetData function regarding surface
selection (data for shells is present at top, middle, and bottom
integration points).

— Write the maximum value to the dialog box (for each time-state)

e The result should be 864.97

In case of problems with this exercise, look at access data_d3plot_1 complete.js

Oasys

LS-DYNA ENVIRONMENT



Creating new results data (UBIN components) ‘ W/ D3I5LQT )

« Itis often useful to calculate data for each node (or element), and display it as a
contour plot.

« This is done using User Binary (UBIN) Data Components.

« First, create a data component using CreateUbinComponent. This function
returns a “handle” (constant) by which the data component may be referenced:

Name of data component Type of data (scalar, vector, tensor)

|

icomp|= CreateUbinComponent ("Horiz percent" , U NODE, U SCALAR, REPL?CE);

/
Type of entity for which the What to do if a user data

data can be plotted component with this name
already exists

« Data may then be stored using PutUbinData:

A 4

PutUbinData (icomp) NODE, j, 0, result);

Number to be plotted for Node j at the current time-state

Oasys

LS-DYNA ENVIRONMENT



Creating new results data (UBIN components) ‘ W/ D3I5LQT )

« Scalar data = one value per node or element.

« This data may be viewed by contour plotting, and is also available from WRITE

and XY_DATA
* Any number of data components can be in use within the script simultaneously,
e.g.
icompl = CreateUbinComponent (“My data 1" , U NODE, U SCALAR, REPLACE);
icomp2 = CreateUbinComponent (“My data 2" , U NODE, U SCALAR, REPLACE);

for (istate=1; istate<=nstate; istate++)
{
SetCurrentState(istate);
for (j=1; j<=nnode; J++)
{
(calculate)
PutUbinData (icompl, NODE, j, 0, resultl);
PutUbinData (icomp2, NODE, 3j, 0, result2?);

Oasys

LS-DYNA ENVIRONMENT



Exercise — creating and plotting UBIN data ‘ W/DB#’LCT )

« Start from access_data_d3plot_2 incomplete.js, save under a new name
access_data d3plot_2.js

* Add a statement to create a new user data component “failure index”. This will be
a scalar variable for shell elements.

« The coding to calculate the failure index has already been written. This is what it
IS supposed to do:

— If plastic strain = 0 (i.e. the element has not yielded)

« failure index = (von Mises stress)/(yield stress), where yield stress = 200MPa
— If plastic strain > 0

« failure index = 1.0 + (plastic strain)/(failure strain), where failure strain = 0.8.

— Thus the index will rise from zero to 1.0 at yield, and to 2.0 when the failure strain is
reached. Note, however, that the input data did not include any failure strain so the
elements pass the “failure strain” without failing. Find maximum index at top, middle
and bottom surfaces.

« Add a statement to write the calculated failure index to the user data component.

In case of problems with this exercise, look at access data_d3plot_2 complete.js

Oasys

LS-DYNA ENVIRONMENT



Vector, beam force and tensor data ‘ W/ DSPLOT )

Oasys

LS-DYNA ENVIRONMENT

Vector data = 3 values per node

Store an array instead of a single value Type of data = vector

icomp = CreateUbinComponent (“My vector" , U NODE, U VECTOR, REPLACE);

var my result = new Array(); .
_ My vector (MAG)

for (j=1; j<=nnode; j++)
{

my result[0] = GetData (DX, NODE, J); . ~ g 0.00
my result[l] = GetData (DY, NODE, j); . . ;:i
my result[2] = 0.0; 43.71
PutUbinData (icomp, NODE, j, 0, my result); T H 5829
} : i 72 86

The data may be plotted as arrows

Similar process for creating

— Beam forces (6 numberS) e rl.'1i:-E:I::l;!||=3F|E|::I_J:;!"

— Shell/solid tensor (6 numbers)




Issuing Command-line commands ‘ W/DC’PLC)T )

 Any D3PLOT capability that can be accessed via command line (commands
typed in the dialog box, or written in a command file) can be issued from a
JavaScript.

— Use the functions Dialoguelnput or DialoguelnputNoEcho:

DialogueInput (“/BLANK ALL”,”UNBLANK PART 1”,”REDRAW”) ;

» After each call to Dialoguelnput (or DialoguelnputNoEcho), D3PLOT returns
automatically to the main menu.

« If you need to issue a sequence of commands without returning to the main
menu, use a single call with multiple arguments (separated by commas), as in
the above example.

Oasys

LS-DYNA ENVIRONMENT



GUI: Ready-made windows ‘ WD

« Some ready-made windows are available in D3PLOT:
— See the PRIMER JavaScript manual in the Window Class.

— All of the Window and Widget class functions from PRIMER are also
available in D3PLOT. For example:

j Erraor message |jj

i

Window.Information

« This subject is covered later in the course

Oasys

S-DYNA ENVIRONMENT



Creating your own GUI ‘ WD

« New menus may be created using the Window and Widget classes.

— “Window” = the window containing a floating menu
— “Widget” = buttons, text boxes, text labels, checkboxes, etc
« See PRIMER Javascript manual for details.
« The functions and techniques are identical in DSPLOT and PRIMER

Window title _H Input rearientation data |jj

_____ Text box widget - the user
can type in the box

Window Checkbox widget - the user

—  can click to make it checked

Label widget — text with or unchecked

Nno user interaction .
Button widget - the

interpreter can execute a
function when the button is
clicked

Oasys

S-DYNA ENVIRONMENT



R Ocsys AL

« Commonality between D3PLOT and PRIMER Javascripting

— Core functions are (of course) identical

— Extension functions for creating GUIs and reading/writing external files
are identical in PRIMER and D3PLOT

— Functions for accessing data are different, reflecting the different
internal structure of the two programs.

 PRIMER JavaScripts are object-oriented,
« While D3PLOT JavaScripts are mostly not object-oriented.

Oasys

LS-DYNA ENVIRONMENT




PRIMER JavaScript — Part 2




Making your scripts available to others ‘ W/F’RIAMER )

JavaScript

* Any script can be run by browsing for the
script file.

opasys Javascripting Traininglscript j= Eu

« To make a script available more easily, R s v wemory: B
it i ; EIE
copy it into the directory

Al E Initizl
— $OASYS\d3plot_library\scripts or A
— $OASYS\primer _library\scripts. Sm msic cumimy
Convert spat to MRB
— For each script in this directory, an cospr
entry appears in listing in the Script e i

menu.

By default, the script filenames
appear in the listing

&% C:"Program Files'pasys93'd3plot_library'scripts

J File Edit ‘Miew Faworites Tools  Help
J (JBack - o - T |p Search |7 Folders | (=
J Address IB Z:\Program Files\oasys33d3plot_libraryscripts
Folders = _%me - / | Size | Type | Ciake Mo
modal_damp_d3plgy. js 7EKE J3cript Script File 290 20
= D casys9 =l ipt. j 7KB  IScript Seript Fil 29/08/21
= (53 daplot_library B |y _scripk.is cripk Script File J03)
|2 seripts
—

Oasys

LS-DYNA ENVIRONMENT




Making your scripts available to others ‘ W/PRI'I\/IER )

Javascript

« To change the name of the button (and
optionally to add hover text for the button)
add a special comment at the top of the file
containing text:

Encoding:  LATIMA T
i B
name:<name for button> ' ALE Intil

description:<hover text to display>

Beam Swap

Beam orientation swaping tool

// name: Beam Swap

// description: Beam orientation swapping tool

// It is assumed that Model 1 is the d3eigv file

// The script writes out damping data per mode

Oasys

LS-DYNA ENVIRONMENT



PRIMER

Oasys JavaScript extensions ‘ w

« Extensions to core JavaScript are written by the Oasys software development
team for interaction with PRIMER’s model data. These extensions can be called
in users’ scripts.

« To access each type of LS-DYNA keyword requires a new class to be added to
JavaScript by Oasys.

« Examples of classes available to access keywords are:

*BOUNDARY SPC, PRESCRIBED MOTION
*CONSTRAINED NODAL RIGID BODY

*CONTACT

*DEFINE CURVE, VECTOR

*ELEMENT BEAM,  SOLID,  SHELL, DISCRETE, _MASS
*INITIAL STRESS SHELL

*LOAD_ NODE

*NODE

*PART, *MAT, *SECTION, *HOURGLASS

*SET

Oasys

LS-DYNA ENVIRONMENT



Oasys JavaScript extensions ‘ w

 These PRIMER capabilities can also be accessed via Oasys extensions:

PRIMER

All command-line commands
Blanking

Colour

Connections (spotwelds etc)
Image (write JPG etc)

Merge Nodes

Remove

View, redraw, etc

Xrefs

+others

« Menus can be created

* Functions to read and write external files (including XML files) are also provided
as extensions, since these are not part of Core JavaScript.

Oasys

LS-DYNA ENVIRONMENT



Using the PRIMER JavaScript manual ‘ W/F’RNER )

« To find what functions are available
for writing messages, open the

PRIMER JavaScript manual. ErrorMessage(string[Any valid javascript type]) [static]
: Descripti
¢ FO”OW the Ilnk to the g|0ba| CIaSS Priel::::nne:ll:"rclrur:emge to the dialogue box adding a carriage return.
This class contains stand-alone Arguments
functions — more on this later. Name | Type Description

string | Any valid javascript type | The string/item that vou want to print

* Look at the detailed description for

] Return type
the function ErrorMessage. No return value
. . . . Example
¢ Use thls funCtlon In your Scrlpt to To print the title of model object m az an error to the dialo box

erte an error message ErrorMesszage ("The title iz " + m.titcle):

— “example error message”.

Use the example in the manual entry to help write your own error message.
You can omit “+ m.title”, this will be explained later.

In case of problems with this exercise, look at scriptl _complete.js

Oasys

LS-DYNA ENVIRONMENT



Classes and Objects ‘ w

* Aclass is a grouping to which functions and data can belong.

PRIMER

— For example, each keyword supported by the JavaScript interface has its own
class (e.g. Node, Shell, Part...). There are also classes for external Files, GUI
generation, and other items.

« For each class you can then create individual objects that are instances of that
class.

— For example, the Node class represents *NODEs in PRIMER. A Node object
represents a single *NODE entity and is an instance of the Node class.

* An object has properties that depend on its class.
— A Node object has properties that include x-coordinate, y-coordinate, label, etc.

« To find the properties of each type of object, look in the PRIMER JavaScript
manual. The manual is organised into classes.

— To find the properties of a Node object, look in the Node class.

Oasys

LS-DYNA ENVIRONMENT



Properties of an Object ‘ W/ PR[MI%R )

Node properties

Name | Tvpe Description

exists |logical |true if node emsts, false of referred to but not defined. {read only)
ndef  |mteger | Mumber of degrees of freedom (SCALAE and SCALAER, VALTE only).

i integer | IMode number

frc integer | Eotational constramt (0-7)

scalar |iteger | The type of the node. Can be false (FINODE), Node 2CALAR (FITODE SCALAER) or Mode SCALAR. VALTE
(*MODE SCALAR VALTE)

to integer | Translational constraint (0-7)

X float |2 coordmnate |

zl integer | Iritial value of 1st degree of freedom (SCALAER, VALTE only).
X2 integer | Irutial value of 2nd degree of freedom (SCALAER. VATLTE only).
%3 integer | Irutial value of 3rd degree of freedom (SCAL AR VALTE only).
¥ float | coordinate

z Hoat |2 coordmate

If n is a node object, then n.x is its x-coordinate. For example, to copy the x-coordinate of this
node to a new variable xvalue:

var xvalue = n.x; Note the . (full stop) between the object and the property name.

Oasys

LS-DYNA ENVIRONMENT



Classes, Objects and Functions

PRIMER

Node class

The Node class gives you access to node cards in PRIMER. More...

Class functions Class functions “hang off” the
* BlankAll(Model/Model], redraw (optional)/boolean]) Class, e.g.

. B]an.lr_Flagg d.{'Model{Mode J. flag[Flag], redraw (optional) boclean])
oMl

- Aod , modal (optional)/Boolean]) .
’-"51 lodel], layer (optional)/Tnelude number]) Var n = N Od e FI rSt (m) ;

. FlagA]][Model[ J]. flag/Flag])
® ForEach(Model/Model], fonc [function], extra (optional)/awy])
GetAllModel [Model])
GetFromITModel [Madsl]. number/integer])
Last(Model ode1) Class name
LastFreel abel(ModelModel], laver (optional)/Include number])
Merge(Model/Model], flag/Flag]. dist[fleat], label (optional)/integer], position (optional)/integer])
NextFreel abel(Model [Mods!], layer (optional)Tuclude numbsar])
Pick(prompt/siring], Model (optional)fAfodel], modal (optional)/beolean], button text (optional)Giring])
BenumberAllModelModel], start/intsger])
BenumberFlagzed(ModelModel], flag/Flag], start/integer])
Select(flag/Flag], prompt/siring], limit (optional) [Model or Flag]. modal (optional)Boolean])
Total(Model /Model], exists {optional)/boalaan])
UnblankAll(ModelfMoadz!], redraw (optional)/beolean])
UnblankFlagged(ModelModel], flag/Flag]. redraw (optional)/beclzan])
UnflagAll{Model [Model], flag [Flag])
Unsketch All(Model/Model], redraw (optional)/boolzan])

Member functions _
Biask() Member functions “hang off” an

Blanked()

CleacFlas(fiag Flag)) individual object of this class, e.g.
Edit(modal (opticnal)/doolzan])
Error(message Siring], details (optional)/siring )

GetAttachedShells(recursive (optional)/boslean])
GetFreeEdgeMNodes()

GetInitialVelocities()

GetParameter(prop/node property])
MOrd()

* Elagecd(tae/Flag) var n2 = n|Next();

n must be a Node object




Understanding the function descriptions ‘ W

Fust(ModelfMfodeif) [statc]

Description

Eeturns the first node i the model

PRIMER

Arguments

Name | Type |Description ~ The first (and only) argument
Model | Iodel | Model to get first node in must be a model object.
Rethurn type

The output from
this function is a
Node object Example

‘ To get the first node m model m

v

WAL I

= Node.First|imm)|:

<«—Mode object (or null if there are no nodes in the model).

This line will create a Node object containing
the data for the first node in the model.

Class name (needed because First is a Class function)

Oasys

LS-DYNA ENVIRONMENT



Understanding the function descriptions ‘ W

Edit{imodal (optional} fReclearnf)

PRIMER

Description

Starts an interactive editing panel to edit the node.

Arguments
Name Tvpe |Desciaption
modal boolean | If this window 15 modal (blocks the uszer from domng anytlung elze m PEINMEE. until this window 15 distssed). If
(optional) < otmtted the window will be modal

— Optional arguments may be omitted. If there are any compulsor
Return type .

arguments, they go before the optional arguments.

Mo return value
Example This function has no return value. The initial var could be omitted.
To editnode oo
var n.Edit[()]:< Even if a function has no arguments, it still needs brackets

Oasys

LS-DYNA ENVIRONMENT



PRIMER

Using functions — examples of different types ‘ W

Global function without a return value:

Message ("Hello World");

» Global function with a return value:
var 1flag = AllocateFlag();

« Class function without a return value:
Node.BlankAll (m) ;

» Class function with a return value:
Node.BlankAll (m) ;

« Member function without a return value:
n.Edit (m);

* Member function with a return value:

n = n.Next();

Oasys

LS-DYNA ENVIRONMENT



Advice — writing functions in your script ‘ W/PR[MER )

« Copy the example from the Primer Javascript manual, paste it into your script:.

Example

To pick a patt from model m giving the prompt 'Pick patt from screen':

var p = Part.Pick('Pick part from sScreen', m):

4

var p = Part.Pick (“Pick part from screen”,m);

« If necessary, change the variable names to match those in your script.

var= Part.Pick (“Pick part from screen”@;

Oasys

LS-DYNA ENVIRONMENT



Exercise - Accessing data from a model ‘ w

* In this example, we will find and print the label of the first node in the model.

PRIMER

« Start from the script named access_data.js
 Get model 1 as a Model Object (using GetFromID in the Model Class)
« Get the first node from this model as a Node Object (use First in the Node class)

 Message is used to write the node’s ID to the dialog box

// Get Model 1 as a Model Object m

(add your code here) <+ Delete these lines, add your code instead

// Get the first node a node object n

(add your code here) Note how the text of the
message is built up from

// Write the node's label (n.nid) to dialog box text and numbers,
. . . separated by +
Message ("The label of the first node 1is " n.nid) ;

* Read the model shell_meshl.key into PRIMER

* Run the script, check in the dialog box that the correct message is displayed.

Oasys

LS-DYNA ENVIRONMENT



Exercise - Accessing data from a model ‘ W

PRIMER

* Add more lines to your script as follows:

« Use the function GetFromID to create a Node object n2 containing the data for
Node 1020.

« Use the function Println to write the coordinates of this node to the Start-up
window.

— (The function Println is in the Global class — look it up in the manual).

« Save and run the script, check the result.

In case of problems with this exercise, look at access data_1 complete.js

Oasys

LS-DYNA ENVIRONMENT



Note on writing text with numbers ‘ W/ PRI’MER )

Script:
Println ("Coordinates of node 1020 = " + n2.x + n2.y + n2.z);
Result: No spaces or commas were placed

Coordinatesz of node 1828 = 12007.58 between the numbers — the result is
iImpossible to understand

Script:
Println ("Coordinates of node 1020 = " + n2.x +|", "|+ n2.y + ", " 4+ n2.z);
Result: Spaces and commas were
Coordinates of node 1828 = 128, '7.5,. B placed between the
- numbers — the result can be
understood

Oasys

LS-DYNA ENVIRONMENT



Modifying data ‘ w

* We will now change the coordinates of node 1020.

PRIMER

Add this line to the end of your script:

n2.x =120.0;

« Save and run the script. You will have to re-draw the model in different modes
(SH then LI) to see the result.

* Note that the data in the JavaScript (e.g. n2.x) is a “mirror” of the actual data in
PRIMER. When the properties of a node object are changed in the script, the
equivalent data in the model changes in PRIMER automatically.

* Add the function UpdateGraphics to the end of your script (this function is in the
Model class).

* Delete the model from PRIMER, re-read shell_mesh1.key.

* Run the script. Now, you should see the image update immediately.

In case of problems with this exercise, look at access data_ 2 complete.js

Oasys

LS-DYNA ENVIRONMENT



Loops using “for” ‘ w

« This is an example of a loop using the for command:

PRIMER

Keep looping while ix<10
Start with ix=0 (i.e. the last time through the loop will be ix=9)

Each time the loop is finished, add 1 to ix
\ / -~
for (ix=0;

ix<10; 1ix++) <«———— This line has no semicolon
{

x = x0 + ix*size x;

y = y0 + iy*size y;

z = 0.0;

var n = new Node(m, ID node next, x, vy, z);
ID node next++;

Braces contain the lines that are
repeated each time through the loop

Oasys

LS-DYNA ENVIRONMENT



Loops using “for” ‘ W

Oasys

PRIMER

“for” loops can be nested:

for (iy=0; 1y<9; iy++)
{
for (ix=0; ix<9; ix++) _ _ _
{ Each loop has a different counter (ix and iy)
x = x0 + 1ix*size x;
y = y0 + iy*size y;
z = 0.0;
var n = new Node (m, ID node next, x, vy, zZ);

ID node next++;

}

The indenting of the script lines in the loop is not compulsory but makes the
script easier to read.

LS-DYNA ENVIRONMENT



Loops using “while” ‘ W

«  “while” means “Keep looping while the condition remains true”:

PRIMER

ix = 0;
while (ix<10) < The condition
{

x = x0 + 1x*size Xx;

y = y0 + iy*size y;

z = 0.0;

var n = new Node(m, ID node next, x, y, 2z);
ID node next++;

ix++;

Oasys

LS-DYNA ENVIRONMENT



PRIMER

“If” statements ‘ w

« Example of a single statement dependent on “if”:

if (x<0.0) Message (“x 1is negative”); <+—— semicolon

« Example of multiple statements dependent on “if”
if (x<0.0) ™ no semicolon

/{

braces Message (“x 1s negative”);

\ y =y + 10.0;
}

Oasys

LS-DYNA ENVIRONMENT



“If” statements ‘ W

« Example of branching “if”:

PRIMER

if (x<0.0)

{
Message (“x 1is negative”);
vy =y + 10.0;

}

else 1if (y<0.0)

{
Message (“y 1s negative”);
z =z + 10.0;

Oasys

S-DYNA ENVIRONMENT



“If” statements ‘ w

* More logical tests:

if (x==0.
if (x!=0.
if (x==0.
if (x==0.
if (x)

0)
0)
0 && y==0.0)
O [ y==0.0)

1if (! (x==4.0))

it (!'x)

if
1if
1f
1f
1f
1f
1f

PRIMER

x 1s equal to 0.0 NOTE == not =

X 1s not equal to 0.0

x=0 and y=0

x=0 or y=0

x exlists and has a non-zero value

the condition in brackets is false

X does not exist or is zero

Oasys

LS-DYNA ENVIRONMENT



PRIMER

Looping through all the entities in a model ‘ w

Example — looping through nodes

This means, keep repeating the lines
. within the braces while n has a value
while (n) < (or, until n becomes “null”).

{

var n = Node.First (m);

Could be any code here that

Message ("Node label = " + n.nid); _ _
does something with a node

n = n.Next();
} \
The last step in the loop is to replace n with
the next node after the old node n.

If n is the last node, then n.Next will be null.

Oasys

LS-DYNA ENVIRONMENT



PRIMER

EXxercise - Looping through all the entities in a model ‘ W

We are now going to change the script so that it can fold the mesh.
Comment out the line that changes the coordinates of node 1020.

Add to your script access_data.js a loop through all the nodes in the model,
writing each node label to the dialog box using Message.

Save and run the script.

Now modify your loop, adding an “if” condition. We will try to fold the mesh along
x=100:

— First, stretch the mesh in the X direction by a factor of 2.

— If a node’s x-coordinate (n.x) is 100, then the z-coordinate is increased by 5.

— If a node’s x-coordinate (n.x) is >100, then the z-coordinate is increased by 10 and the
x-coordinate becomes 100 — (n.x — 100)
Save and run the script.
Note that comparing floating point numbers sometimes needs a tolerance. e.g.
if (n.x > 99.9 s&& n.x < 100.1) Instead of if (n.x == 100).
In this case the nodes in “shell_mesh1.key” are exactly at 100 so == works.

In case of problems with this exercise, look at access data_3 complete.js

Oasys

LS-DYNA ENVIRONMENT



@

Constructor

Node(MModeldodelf, mdfimtegery, xffloatf, v[flaat], 2ffloas], tc (optional) irniegery, vc (optional) fntegery)
Description
Create a new Mode object.

Arguments

Name Type |Description
Model Model | Model that node will be created

Within the description of each

e mteger |Fode munber . .

N ﬂoaf X coordinate Class in the PRIMER JavaScript
y Roat | ¥ coordinate manual is a section telling you
z float |2 coordinate how to create new data of that
tc (optional) |integer | Translational constraint (0-7). If omitted tc will be set to 0. type (the “Constructo r”)

o (opticnal) |integer | Eotational constraint (0-7). If omitted ro will be setto 0.

Return type

Maode obiject

Example

To create a new node i model m wath label 100, at coordmates (20, 40, 107

var n = new Node(mwm, 100, 20, 40, 10);

Oasys

LS-DYNA ENVIRONMENT



ErTTT I ST

« For example, look at the script make_shell _mesh.js:

PRIMER

Message ("Making nodes") ;

for (iy=0; iy<num y+1; iy++)
{
for (ix=0; ix<num x+1; ix++)
{
x = x0 + 1x*size Xx;
y = y0 + iy*size y;
z = 0.0;
var n = new Node (m, ID node next, x, y, z);
ID node next++;

Oasys

LS-DYNA ENVIRONMENT




Exercise — creating new data ‘ w

« Write a new script named create data.js to loop through all the nodes in a model,
adding a *LOAD_NODE Z-direction, loadcurve ID = 101, scale factor = 1.0.

PRIMER

* |n this case, the loadcurve itself has not been defined. A “latent” definition will be
created. The data for the curve may be added later.

* Check your script using the model shell_ meshl.key
* Make sure that the *LOAD_NODESs appear in PRIMER.
» If the loads do not appear, it is because the Entity switch for loads is off.

— Add a statement to your script to turn it on — see Visibility in the Global class.

In case of problems with this exercise, look at create data_complete.js

Oasys

LS-DYNA ENVIRONMENT




Maths functions ‘ W

 These are part of Core JavaScript.

PRIMER

« For a full list of available functions, consult a JavaScript textbook

« Examples of maths and logic operations:

length = Math.sqrt (x*x + y*y + z*z);
test = Math.max(x, Vy);

x _abs = Math.abs (x);

« List of static functions belonging to the Math class:

abs, acos, asin, atan, atan2, ceil, cos, exp, floor, log, max, min, pow,
random, round, sin, sqrt, tan

Oasys

LS-DYNA ENVIRONMENT




Using JavaScript textbooks ‘ w

« Textbooks typically contain large sections on “Client Side”, which is irrelevant to
PRIMER scripts. Only the Core sections are relevant.

PRIMER

« The textbook will be useful as a reference, for example to find what Math
functions or (character) String functions are available and how to use them.

« Example: “JavaScript — The Definitive Guide” (5t edition) by David Flanagan,
published by O’Reilly. ISBN 0-596-10199-6

* Online reference guides are also available — search for “Core JavaScript
Reference”.

Oasys

LS-DYNA ENVIRONMENT



PRIMER

I @Y

* In JavaScript, an array is actually an object with certain special properties.

 To declare a new array in JavaScript, use the Array Constructor:

var coords = new Array();

* Arrays can contain numbers, strings, or objects. It is not necessary to
declare which type of data will be contained.

* Itis not necessary to declare the size of the array — it will be automatically
extended as needed. Optionally, you can declare the size:

var my array = new Array(10);

« The array members start at index zero. Array members can be given values

like this:
coords[0] = 1.5/  Note — square brackets are used to
coords[1l] = 2.0; contain the array index
* ...Or like this:
coords.push(1.5); push assigns the next available array

coords.push (2.0); member

Oasys

LS-DYNA ENVIRONMENT



PRIMER

I @Y

* To find the length of an array:

var 1 = coords.length;

« Different types of data may be stored in an array:

My arrayl[3] = 1.5;
My array[4] = “coordinates”;
My array[5] = new Node (100,10,20,30);

« True multi-dimensional arrays are not supported by JavaScript, but you can set
up an array of arrays. e.g.

My array = new Array(10);
for (1=0; 1<10; i++) My arrayl[i] = new Array(10);
My arrayl[5][7] = 1.5;

Oasys

LS-DYNA ENVIRONMENT



Reading external files ‘ W

* Files are treated as objects. Look at the File class in the PRIMER Javascript

PRIMER

manual.
var £ = new File(filename, File.READ); Open a file
var line = f.ReadLine(); // read the first line
f.ReadLine reads the
while ( line != undefined ) nextline from the file

{
(do something)

line = f.ReadLine(); // read the next line
} When f.ReadLine reads
f.Close () ; beyond the end of the file,

the return value is undefined

Oasys

LS-DYNA ENVIRONMENT



PRIMER

Class constants ‘ W

 File.READ is a constant belonging to the file
class.

File class

The File class allows you o read and write text files. More

— This tells the interpreter that we want to Class functions

open the file for reading, not writing.

o o
Class constants are upper case. mﬁﬁﬁﬁwm

S divetorsfrrng)
IMember functions

var £ = new File("nodes.csv", IFile.READ)I; Ine(] i _ 2
z ¥ AwELCript [
Em.ugf.-imwmfrd'_fmmm'prmuﬂ

File constants

Name Description

File APPENT | Flag tv open fle for appending
Fil=EEAT} |Flag o open file for reading
Fil= WEITE (Flag to open fils for writing

Oasys

LS-DYNA ENVIRONMENT




Exercise: Reading external files ‘ W/ PRIMER )

« We will now write a script to read a comma-separated file.

* In a text editor, open the existing script mesh_from _file 1.js.
* Look at the File class in the PRIMER JavaScript manual.

 Where the comment line says “add code here”, add commands to open a file
(using the variable filename and the file object f), and read the next line from the
file

« Tryto run the script. If it does not work, check in the dialog box for error messages.

* The most likely problem is that Primer looked in the wrong directory to find the file
nodes.csv. To fix this, you could (but do not do it now) change the script such that
the variable filename now includes the full path, e.g.

var filename = “C\\temp\\training\\nodes.csv”; Windows
var filename = “/data/training/nodes.csv”; Unix/Linux

* Note that back-slash is a special character, so a double-back-slash is needed (the
first back-slash means “the next character is as-written, not a special character”).

In case of problems with this exercise, look at mesh_from_file_1 complete.js

Oasys

LS-DYNA ENVIRONMENT



PRIMER

Using file selector windows ‘ w

* Rather than typing the full path and filename into your script, it is easier to
browse for the file.

* In your script mesh_from_file_1.js, instead of setting “var filename = ... “, use
the function GetFilename (Window class) to ask the user to browse for the file.
The function will return the filename as a variable.

* The filename returned by GetFilename will include the full path, so the file does
not have to be in the same directory as the script.

e Save and run your script.

In case of problems with this exercise, look at mesh_from_file_la complete.js

Oasys

LS-DYNA ENVIRONMENT



Assignment within a statement ‘ w

* We have used this method for reading lines from a file:

PRIMER

line = f.ReadLine ()
while ( line != undefined )
{

(do something)

line = f.ReadLine();

}
« An alternative to this coding would be:

while (| (line = f.ReadLine()b != undefined )
{ A

(do something)

« This part of the statement sets line equal to the return-value of f.ReadLine.

 The assignment to line is done before evaluating whether to continue the
While loop.

Oasys

LS-DYNA ENVIRONMENT




Breaking down character strings, reading data ‘ W

 Next we want to extract the node ID and coordinates from each line of data in
the file.

PRIMER

* Hereis an example line:
1016,50,10,0 Node ID, X, Y, Z

« Step 1: Break down the string into a series of small strings, each containing a
number (we will use the comma delimiter).

— The Core JavaScript function split can do this.
« Step 2: Read a number from each small string.
— The Core JavaScript functions parselnt and parseFloat can do this.

* Most string-handling is done using Core JavaScript functions. However, we have
added a small number of extra extension functions (e.g. NumberToString).

Oasys

LS-DYNA ENVIRONMENT



Processing strings ‘ w

« Use split to divide line into an array of strings (we will call this array words):

PRIMER

var line;

var words = new Array():;
while ( line != undefined )
{
words = line.split(",");
if (words.length == 4)
{
Message ("label = " + words[0]);
Message ("x-coord = " + words[1l]);
Message ("y-coord = " + words|[2]);
Message ("z-coord = " + words|[3]);
}
line = f.ReadLine();

Oasys

LS-DYNA ENVIRONMENT




Processing strings ‘ w

« The members of the array words are still character strings. We need to convert
them into numbers.

PRIMER

* Use the core JavaScript functions parselnt and parseFloat. e.g:

label = parselnt (words[0]);
X = parseFloat (words[1l]);

 We also need to check whether the “word” that we have just tried to convert is a
valid number. For example, it could have been from a comment line.

« If parseint and parseFloat fail to find a number, they return a special value
‘NaN’ (Not a Number), for which we can test using the function isNaN().

if (isNan(x) )

{
Error ("Bad x coordinate “ + words|[1l]);
Exit () ;

Oasys

LS-DYNA ENVIRONMENT



PRIMER

Exercise — converting character strings ‘ w

« We will continue with the example that reads data from a csv file. This data is
intended to contain (Node ID, X, Y, 2).

« Start from the existing script mesh_from_file_2.js. This script will create a node
from data stored in variables label, x, y and z.

» Lines of code need to be added where shown in the script (“... add code here”)

 Add a command to split line into separate strings, storing these in the array
words (use the function split)

* Add commands to read numerical values for label, x, y and z from the strings
stored in words (use parseFloat and parselnt)

* Run the script. What happens? Modify the script to fix any problem.

In case of problems with this exercise, look at mesh_from_file_2 complete.js

Oasys

LS-DYNA ENVIRONMENT



PRIMER

Writing external files ‘ W

// Open file

var £ = new File("nodes.key", File.WRITE); —— Open a new file
f.Writeln ("*NODE") ; Write a text string to the file
var n = Node.First (m);

while (n)
{

, Write LS-DYNA keyword
f.Writeln (n.KeywordCards()) ; fonnatdauiﬁoranode)

n = n.Next();

f.Writeln ("*END") ;

f.Close () ; Close the file

Oasys

LS-DYNA ENVIRONMENT



Other useful string-processing functions ‘ W

There are many core JavaScript functions for processing strings. For more
details, consult a JavaScript reference book.

PRIMER

For example, if reading a line containing numbers in fixed fields, like an

-DYNA k rd:
LS eyword Take characters 0 to 9 from line and

word[0] = line.slice(0,9); copy them into word[0]. Note that
the first character is 0, not 1

When writing data to a file, we often need to write numbers in a given format.
Unlike languages such as Fortran and C, there are no Format statements in
JavaScript. Instead, use functions such as number.toFixed,
number.toExponential, etc.

We have written a function to make this a little more convenient:

word[0] = NumberToString(n.nid, 8); Write node ID to 8-character string

word[1l] = NumberToString(n.x, 16);  Write node x to 16-character string

f.Writeln(word[0] + word[1l]); Write these to file

Oasys

LS-DYNA ENVIRONMENT




Creating data for non-supported keywords ‘ w

S H H Hh Hh Hh Hh

Oasys

LS-DYNA ENVIRONMENT

PRIMER

Some of LS-DYNA'’s keywords are not currently supported by Classes in the
PRIMER Javascript interface.

Non-supported keyword data may be created using this method:
— Write a file containing the keyword data
— Use the Import function (Model Class) to read it into the model.

See example script create_non_supported_kwd.js

= new File("./ibtmp.key", File.WRITE) ; Open temporary file

Writeln ("*KEYWORD") ; Write keyword data to file
.Writeln ("*CONSTRAINED EXTRA NODES NODE");

.Writeln (NumberToString (part 1id,10) + NumberToString(nl.nid,10));
.Writeln ("*END") ;

.Close(); Close temporary file

.Import ("ibtmp.key") ; Import data from file into model




Jsing Geta R Ousys 4

An alternative to the methods previously given for looping through all the entities
in a model is to use GetAll:

PRIMER

var nodes = Node.GetAll (m);
for (1=0; 1i<nodes.length; 1i++)

{

Nodes is an array of node objects

x—coord = nodes|[1].X;
(do something)

If you will be looping through all the nodes several times this will be quicker.

However, the memory requirement is larger — this may become significant for
very large models.

Oasys

LS-DYNA ENVIRONMENT



References to other entities ‘ w

 Example: if s is a shell element object, then s.nl is the LABEL of the first node — it
is not a node object. Therefore, if you want to find the node’s coordinates, do it like

PRIMER

this:
var node label 1 = s.nl; node_label_1 is a number
var node 1 = Node.GetFromID (m,node label 1); node_1is a node object
or
var node 1 = Node.GetFromID(m,s.nl);
then
var X coord = node 1.x;

« This is always the case when one entity A refers to another entity B — the relevant
property of A is always the label of B, not an object. This is so that you can still
access and change data for entities for which we have not yet created classes, e.g.
You can change EOSID on a PART but there is no EOS class yet.

« Be careful also when creating new keyword data:
var s = new Shell (m, pid, nl, n2, n3, n4);
nl, n2, n3, n4 must be node labels, NOT node objects

Oasys

LS-DYNA ENVIRONMENT



e IR0 4

PRIMER

« Aflag is a marker that can be set True or False for each entity (of any type) Iin

the model.

» Flags are re-used by different functions in PRIMER, to save memory.

« The same flags are available in the JavaScript interface.

Why do we need flags?

— Example: Orient a part. We need to move each node belonging to the part.

Loop through all elements
Loop through all nodes

Move node

belonging to the part Wrong: nodes shared by >1

on the element element will be moved more
than once

Loop through all elements
Loop through all nodes
Flag the node

Loop through all nodes

belonging to the part

on the element
Correct — each node belonging
to the part is only moved once.

If node is flagged, move it.

Oasys

LS-DYNA ENVIRONMENT




PRIMER

e IR0 4

« Example — finding nodes on boundary between two parts meshed together

Slide 100



@Y

« Example — finding nodes on boundary between two parts meshed together

O&lsyS Slide 101

LS-DYNA ENVIRONMENT



@Y

« Example — finding nodes on boundary between two parts meshed together

Flag nodes on the other part with the green flag

OOlSyS Slide 102

LS-DYNA ENVIRONMENT



@Y

« Example — finding nodes on boundary between two parts meshed together

I S

OOlSyS Slide 103

LS-DYNA ENVIRONMENT



e IR0 4

« There are many ready-made functions available that make use of flagging.

PRIMER

* More than one flag may be in use at any time. Since flags are used both by
PRIMER itself and by the JavaScript interface, we must ask PRIMER to give us a
flag.

* Important: ALWAYS Allocate and Clear a flag before using it, otherwise you could
cause memory corruption in PRIMER.

var my flag = AllocateFlag(); Request PRIMER to give me a flag

m.ClearFlag(my flag); Set the flag
FALSE for all entities in Model m
my part.SetFlag(my flag); Set the flag TRUE for

the part object my_part
* Once you have finished with a flag you should return it:

ReturnFlag (my flag);

* Note: AllocateFlag and ReturnFlag are in the Global class, while ClearFlag and
some other flagging functions are in the Model class.

O&lSyS Slide 104

LS-DYNA ENVIRONMENT



PRIMER

Propagating Flags and other useful functions ‘ w

« The function PropagateFlag (in the Model class) finds all flagged entities, and
“propagates” the flag to junior entities.

 For example, if a Part is flagged, then PropagateFlag will also set the flag for all
elements of that part, and all nodes on those elements.

m.PropagateFlag (my flag);

« If a Part Set is flagged, PropagateFlag sets the flag for all the Parts in the set,
and then all the elements and nodes of those parts.

« To detect whether an entity is flagged, use the function Flagged, e.g. for a node
look in the Node class for the Member function Flagged.

if (n.Flagged(my flag)) (do something) ;

 To add flagged items to a set, use AddFlagged (in the Set class)

O&lSyS Slide 105

LS-DYNA ENVIRONMENT



Exercise - flagging ‘ w

« Delete all models from PRIMER. Read in the model front_of car.key.

PRIMER

« There is a partly-completed script flagging.js. Load this into a text editor.

* The objective is to identify parts with PID > 199999 and move them 1000mm in
the x direction.

« Add code to do the following:
— Allocate and clear a flag
— Set the flag for parts whose Part ID is > 199999
— Propagate the flag
— Incrementing the x-coordinate of flagged nodes by 1000

— Return the flag

In case of problems with this exercise, look at flagging_complete.js

O&lsyS Slide 106

LS-DYNA ENVIRONMENT



PRIMER

Picking from the graphics window ‘ W

 The function Pick is available for Parts, elements, nodes, etc. The function

invokes PRIMER’s picking capability - click on the entity in the graphics window.
= Fick HODE B x|

n = Node.Pick (|Pick Node A[);

« The Pick function is for picking a single entity — to pick several entities, your
script should call Pick each time an entity is to be picked:

na = Node.Pick (“Pick Node A”);
nb = Node.Pick (“Pick Node B”);

» If the user picks a node, the function returns a Node Obiject. If the user presses
Cancel, it returns “undefined”.

O&lsys Slide 107

LS-DYNA ENVIRONMENT



PRIMER

Picking from the graphics window ‘ W

* Another example: Ask the user to pick multiple nodes, and store them in an
array. We do not know how many nodes the user will pick.

var nodes = new Array():;
var num = 0;
var n;

while (n = Node.Pick(“Pick a node”, m) )

{

nodes [num] = n;
num++
}
Message (“Number of nodes picked = “ + num);

 When the user presses Cancel, the picking function will return null, so the while
loop will finish.

O&lsys Slide 108

LS-DYNA ENVIRONMENT



PRIMER

Exercise - Picking ‘ w

« Start from picking.js.

* Delete all models from PRIMER, read in front_of car.key.
* Add code to the script so that the user is asked to pick a part.
« The flag my_flag should be set true on that part.

* Check that the user did not press “Cancel” — if so, the part p would be null, and
the script should exit.

« The picked parts will then be moved in X — this section of the script is already
written.

In case of problems with this exercise, look at picking_complete.js

O&lsyS Slide 109

LS-DYNA ENVIRONMENT



PRIMER

Selecting using object menus ‘ w

 PRIMER’s Object Menus can also be used for selecting entities. Object menu
selection also allows VIS (and then pick or drag across a screen area), Filter,
Key In, etc.

« The Select functions are very similar to Pick, except that, instead of returning
one object of the type picked (e.g. Node.Pick returns one node), the Select
function has no return value — instead, it sets a flag for all the entities selected.
The flag is an input to the Select function:

var my flag = AllocateFlag();
m.ClearFlag(my flag);
Node.Select (my flag,“Select Nodes to be processed”);
var n = Node.First(m);
while (n)
{
if (n.Flagged(my flag)) (do something);

n = n.Next();

O&lSyS Slide 110

LS-DYNA ENVIRONMENT



Complete the script select.js — add a step to
select parts.

Test the script by running it, use the object
menu to filter the parts by material type, choose
MAT_RIGID, select all the parts, Apply.

You should see in the dialog box that 15 parts
were selected. The rigid parts should be moved,
and put in a new set.

—]| | Selection menu T
Select parts to mowe
—| FILTER 1ITEMS |=_]] =
| DISMISS aLL| NONE| pryl B
Filter PART defns w15 JKEY_IN|
CAMNCEL
By hatl Type (all models
Ay b atl type iz1tall models)
I BLATZKO_RUBBER  EROMETER_D
ARM-FT-R)

FAKECALIPER_1-R)

FakECALIPER_2-R)

FAKEDISC-FT-L)

FAkEDISC-FT-R)

ARM-FT-L)
FRIGHT-FT-L)
FRIGHT-FT-R) —
FAakECALIPER_1-L)
FAakECALIPER_2-L)
PULBRET-FT-JOINT_2)

all ARIAT FT 15l T™ o

In case of problems with this exercise, look at select_complete.js

Slide 111

Oasys

LS-DYNA ENVIRONMENT




GUI: Ready-made windows ‘ W/F’RI’MER )

« Some ready-made windows are available: look in the PRIMER JavaScript manual
in the Window Class. For example, Window.Message:

|=|_ Menuname [T |t of buttons to appear on menu, separated by | (bitwise “or”).
Ok7? The menu will disappear when one of these buttons is pressed.

YES and NO are Class Constants. The available constants are
| ves | He | shown in the manual.

— Return value is the Constant belonging to the button that was pressed

v

var Answer = |Window.Message ("Menu name","OK?"“,|Window.YES | Window.NO)|;

if (Answer == Window.NO) Exit ()
Name Type Description
title sting | Title for window.

gquestion | string | Question to show in window,

buttons conistant {The buttons to use. Can be bitwise OR of Window OF, Window CANCEL, Window VES or |
(optional) Window MO I this 15 omitted Yes and Mo button will be used. By default the window will be
modal, If Window HONMODAL iz also given the window will be non-modal instead. Note that this

will not curtently allow windows created in javascript to be processed, it ondy applies to 'native’
FRIMEE menns.

Oasys Side 112

LS-DYNA ENVIRONMENT



4

GUI: Ready-made windows ‘ w

« A simpler example uses only one button. In this case, the function’s return value
can be ignored (the script does not need to know which button was pressed:

Window.Error ("Error message", “Cannot continue”, Window.OK) ;

|_—Il

O&lsy Slide 113

LS-DYNA ENVIRONMENT



GUI: Ready-made windows ‘ w

« By default, these windows prevent access to other functions in Primer until the
user presses a button. However, this can be changed using the Constant
NONMODAL.

PRIMER

* In this way the script can guide a user through an interactive process:

Window.Information ("Instructions", “Step 1 - Model Check",
Window.OK | Window.NONMODAL) ;

Window.Information ("Instructions", "Step 2 - Create a Part",
Window.OK | Window.NONMODAL) ;

Window.Information ("Instructions", "Step 3 - Create a Part Set",

Window.OK | Window.NONMODAL) ;

O&lSXS Slide 114

S-DYNA ENVIRONMENT



PRIMER

Exercise — using ready-made windows. ‘ w

« Start from ready_made_windows.js.

* Add a check that model m exists. If not, use Window.Error to inform the user
and then exit from the script. The window should contain an “OK” button only.
Test this by deleting all models from Primer and running the script.

« After the user has picked a part, use Window.Question to check whether the
user wants to move that part. In the script, the character-string forming the
guestion is already done for you.

 The window should have “Yes” and “No” buttons. If the user presses “No”, exit.

In case of problems with this exercise, look at ready _made_windows_complete.js

O&lSyS Slide 115

LS-DYNA ENVIRONMENT



PRIMER

Model Selection ‘ w

Most of the scripts in this training course assume that the model will be M1, e.g.

var m = Model.GetFromID(1);

* |tis more convenient to use Model.Select:

var m = Model.Select (“"Select a model”);

« If there is only one model present in PRIMER, that model will be selected without
asking the user any questions. This will still work if the model is M2 or M3, etc.

» If there are no models in PRIMER, an error message will be issued.
« If more than one model is present, the user will be asked to select a model.
» Please use this function in your script and test it:

— a) when no models are present

— b) when one model is present

— ¢) when two or more models are present.

O&lsyS Slide 116

LS-DYNA ENVIRONMENT



Issuing Command-line commands ‘ w

 Any PRIMER capability that can be accessed via command line (commands
typed in the dialog box, or written in a command file) can be issued from a
JavasScript, using the functions Dialoguelnput or DialoguelnputNoEcho.

* For example:
DialogueInput (“/CHECK checkfile check.dat apply”);

PRIMER

» After each call to Dialoguelnput (or DialoguelnputNoEcho), PRIMER returns
automatically to the main menu. If you need to issue a sequence of commands
without returning to the main menu, use a single call to with multiple arguments
(separated by commas):

DialogueInputNoEcho ("/mech point “ + pt name,
"position Y + points([i].x + " * " 4+ points[i].z,

"done", "accept")

O&lSyS Slide 117

LS-DYNA ENVIRONMENT




PRIMER

Exercise: Command-line commands ‘ w

* In Primer’s dialog box, type H (that means Help), to see the available command-
line commands.

We will use the command PART _INFO to write the part table data to a csv file.
« Make sure that you have a Model 1 in Primer.
* Try typing this into Primer’s dialog box:
/PART INFO WRITE data.csv 1
* Check the csv file using Excel.

* In your script ready _made_windows.js, add a call to Dialoguelnput to use the
above command.

* Itis better to use m.number rather than assuming that Model 1 will be present:

DialogueInput(“/PART_INFO WRITE data.csv % + m.number);

O&lsyS Slide 118

LS-DYNA ENVIRONMENT



Common mistakes and recommendations ‘ w

« JavaScript is case sensitive. Node is not the same as node.

PRIMER

 When testing to see if something is equal you must use ==. i.e.
if (1 == 10) // This tests if i is 10
if (1 = 10) // This sets 1 to 10.

// The test is then if(10) which is always true
« Do not forget semi-colon after each line
« Remember that the first member of an array is array[0], not array[1]
« Always declare variables with var or you may overwrite variables by mistake.

« If you read data from a file then you are reading strings. If you want numbers you
need to use parselnt() and parseFloat() to read the number from the string.

« When calling Extension functions, check carefully whether the input arguments
and return values should be entity labels or objects.

* Do not mix up Member functions and Class functions:

n = Node.Next () ; // Wrong — Next is a Member function! Needs a
node

// object, not the class name

= n.Next (); // Correct

O&lS A Slide 119

LS-DYNA ENVIRONMENT




Common mistakes and recommendations ‘ w

When calling Class functions, don’t omit the class
PropagateFlag (my flag); // wrong

PRIMER

m.PropagateFlag (my flag); // correct

* Include lines of code to check the return values from functions. Many
functions return null if something cannot be found or done.

na = Node.Pick(“Pick Node A”);  Wrong - if the user presses Cancel on the picking
Message (“Node ID = “ + na.nid); menu, nawill be null. This will cause an error.

na = Node.Pick(“Pick Node A”); Correct - na is tested for null value
if (na) Message (“Node ID = “ + na.nid); before being used

* Do not create an infinite loop with while:
n = Node.First (m);
while (n)

{

Wrong — the line n = n.Next(); has been
forgotten. Each time through the loop, n is still
the first node in the model! If you run this script,

Message ("Node ID = " + n.nid); you will have to crash Primer to escape.

}
* And finally - always write lots of comments!

O&lSyS Slide 120

LS-DYNA ENVIRONMENT



Exercise — debugging a script ‘ w

e Try to run the script script_with_errors.|s

PRIMER

* When the script asks you to select a file, find nodes.csv (as used in the
read-from-file example.

* Find and correct the errors. After correcting an error, try to run the script
again.

* In case of trouble with this exercise, check the next slides or compare with
script_with_errors_corrected.js.

O&lS_yS Slide 121

LS-DYNA ENVIRONMENT



Exercise — debugging - answers ‘ W
var filename = Window.Gname("Select file"™, "CSV file?", "csv");

wrong spelling of function name — F should be upper-case

PRIMER

// Create node

var n = new Node label,x,y,z); variable name was m, not model

// Get the node label from the first word

var label = words[0]; words[0] is a string. Need parselnt(words[0])

// Close the file

f.Close () missing semi-colon

O&lsys Slide 122

LS-DYNA ENVIRONMENT




Exercise — debugging - answers ‘ WPRIMER
var nl = . First (m) ; mis-spelling of Node class name
var nodel @nid; variable name was n1, not n

Message ("Node label and x-coordinate: " + nodel + ", " +x);

need the node object, not its label

// Loop through nodes, printing labels and incrementing x-coord
while (nl)
{
Message ("Node label = " + nl.nid);
nl.x = nl.x + 100.0; infinite loop — missing n1 = n1.Next();
}
while (nl)
{
Message ("Node label = " + nl.nid);

nl.y = nl.y + 100.0;
nl = Node.Next () ; Next is a Member function, not a Class function

}
O&lsys Slide 123

LS-DYNA ENVIRONMENT



Exercise — debugging - answers ‘ WPRIMER
// Get all nodes into an array
var nodes = Node.GetAll (m); First node is

nodes[0], not [1]

// Create a shell element using the 1st, 2nd, 12th and 11th node

R 01,100 (Godes@edes Daes EDrEraes G

Model object is Need node IDs
needed here not node objects
(e.g. nodes|0].nid)

Visibility ("Node", true);

teGraphics () UpdateGraphics is a Member function in the

Model class — needs m.UpdateGraphics();

O&lSyS Slide 124

LS-DYNA ENVIRONMENT



PRIMER JavaScript — Part 3

Slide 125



PRIMER

O Y

* Look at the Set class in the PRIMER JavaScript manual.

 To create a set and add some entities to it (this can be done only for
SET ... LIST, not GENERATE, ADD, etc).

var s = new Set(m, 100, Set.PART); S is a Set object
s.Add (part id 1);
s.Add (part id 2);

« To loop through the entities in an existing set (this works with all set types,
including GENERATE, ADD, etc)

var s = Set.GetFromID(m, 100, Set.PART); Findthe *SET_PART with ID 100

s.StartSpool () ;
while (part id = s.Spool() ) Loop through all the parts in the set

{

do something

O&lsyS Slide 126

LS-DYNA ENVIRONMENT



Writing new functions (subroutines) ‘ w

* Functions are blocks of code that may be called from your main program or from
other functions — in some languages, these would be called subroutines.

PRIMER

« Functions may be added to your script, after the main body of the script.

* Functions are often used to avoid repeating the same code several times.

'\
var z axls = new Array();
z axls = CrossProd(x axis,y axis); >_ Main body of the SCI‘ipt
y axis = CrossProd(z axis, X axis);

-

function CrossProd(a,b) +— Nosemi-colon ™)

{
/ var ¢ = new Array(); Function nameq CrossProd is within
cl0] = a[11*b[2] - a[2]*b[1]; > the same text file, after the end of the
Braces  ~[1] = a[2]*b[0] - a[0]*b[2]; main body of the script. It can be

called from the main body of the

(2] = al0]*b[1l] - al[l]l*b[0]; : o :
- - - script, or from within another function.

return c;

O&lSyS Slide 127

LS-DYNA ENVIRONMENT



Inputs to functions via argument list ‘ W

« Variables, arrays, and objects may be input to a function via the list of arguments:

z axls = CrossProd(x axis, y axis);

PRIMER

y axis = CrossProd(lz axis} [x axis);

/)
a} [b)

function CrossProd

var ¢ = new Array(3);

c[0] = alll*b[2] - al2]*b[1];

return c;

}

* An input argument does not have to have the same name within the function as
in the main body of the script.

« The types of the arguments do not have to be declared within the function — the

interpreter knows these automatically from the type of the arguments where the
function is called.

O&lsyS Slide 128

LS-DYNA ENVIRONMENT




Inputs to functions via global variables ‘ W

« Alternatively, input may be variables (constants, arrays, or objects) that were
declared in the main body of the script — these are “global’, i.e. they can be
“seen” by all functions within the same text file.

PRIMER

var X _axis = new Array(); Because x_axis and y_axis are
var y axis = new Array(); Qeclared in the main _body o_f 'Fhe
- script, they are automatically visible to
all functions within the same text file.

var z axis = CrossProdXY
Brackets are still needed even when
function CrossProdXY there are no arguments
{
var ¢ = new Array(3);
c[0] = x axis[l]*y axis[2] - x axis[2]*y axis[1l];

return c;

O&lsyS Slide 129

LS-DYNA ENVIRONMENT




PRIMER

Output from functions via return statement ‘ W

« The return statement allows a single variable (e.g. a constant, array, or object) to
be passed back to the calling statement:

z axis = CrossProd(x axis, y axis);

y_axis |= CrossProd(z axis, X axis);

functidn CrossProd(a, Db)

{

var = new Array(3);

c[0] alll*b[2] - al2]*b[1l];

return |c

}

* The type of the return value does not have to be declared — the interpreter knows
what type of variable is being returned by the function. For example, in this case
z_axis and y_axis are arrays because the returned variable, c, is an array.

O&lsyS Slide 130

LS-DYNA ENVIRONMENT



PRIMER

Output from functions via argument list ‘ w

« If an array appears in the argument list, and its members are changed by the
function, the new values are passed back to the calling statement, e.g. in the
example below, z axis and then y axis will take the values calculated for the

array c in the function:

CrossProd(x axis, y axis, z axis);

CrossProd(z axis, x axis, y axis);

function CrossProd(a, b, <)

{
c[0] = alll*b[2] - alZ2]*b[1];

}

» Objects can be passed in the same way, and their properties assigned within the
function. For example, a node object could be passed into a function via the
argument list, and its coordinates could be changed within the function.

O&lsyS Slide 131

LS-DYNA ENVIRONMENT



Output from functions via argument list ‘ W

« This does not work if the input variables are constants, e.g.

PRIMER

var x = 1.0;
AddOne (x) ; The result of this will be “x = 1.0” — the
Message (“x = “ + x); change to x that occurred within the

function AddOne is not passed back to
the calling statement.
function AddOne (value)

{
value = value + 1.0;
Message (“value = “ + value);

}

« This behaviour is similar to C and some other languages — it occurs because what
Is passed to the function is the value of the variable, rather than the variable itself.

O&lsys Slide 132

LS-DYNA ENVIRONMENT




Output from functions via Global variables ‘ w

* Global variables, even if they are constants, may be changed within a function;
the changed values are visible in the main body and all other functions. For

PRIMER

example:
var x = 1.0; o
AddOneToX () ; The result of this will be “x = 2.0” —the
- ' change to global variable x that
Message (“x = “ + x);

occurred within the function

AddOneToX is visible everywhere.
function AddOneToX ()

{
x =x + 1.0;

Message (“x = “ + x);

O&lsys Slide 133

LS-DYNA ENVIRONMENT



PRIMER

Variable scope ‘ w

« The scope of a variable is the region of the program in which it is defined.

A global variable has global scope; it is defined everywhere in your JavaScript
code. Variables declared in a function are defined only within the body of the

function. They are local variables and have local scope.

* In a function a local variable takes precedence over a global variable with the
same name. If you declare a local variable with the same name as a global
variable you hide the global variable. e.g.

var scope = “global”;

function checkscope ()

{

var scope = “local”;
Message (scope) ;

}

checkscope () ; // prints “local”
Message (scope) ; // prints “global”

O&lsyS Slide 134

LS-DYNA ENVIRONMENT



PRIMER

Variable scope ‘ w

« Always use var to declare variables. If you don'’t use it for local variables you will
overwrite the global variable e.g.

scope = “global”; // variable declared without var is
global

function checkscope ()

{

scope = “local”; // we have changed global variable, not
local one
Message (scope) ;

checkscope () ; // prints “local”
Message (scope) ; // prints “local”

O&lsys Slide 135

LS-DYNA ENVIRONMENT



Exercise - functions ‘ w

« Starting from function.js, write a new function to count the selected parts. Most
of the code for this is already included at the bottom of the file.

PRIMER

« Call your new function where indicated in the main body of the script.

* Run the script. Check that the correct number of selected parts was echoed to
the dialog box.

In case of problems with this exercise, look at function_complete.js

O&lsys Slide 136

LS-DYNA ENVIRONMENT




PRIMER

Creating your own GUI ‘ w

« New menus may be created using the Window and Widget classes.

— “Window” = the window containing a floating menu
— “Widget” = buttons, text boxes, text labels, checkboxes, etc
« See PRIMER Javascript manual for details.
« The functions and techniques are identical in DSPLOT and PRIMER

Window title _H Input rearientation data |jj

_____ Text box widget - the user
can type in the box

Window Checkbox widget - the user

—  can click to make it checked

Label widget — text with or unchecked

Nno user interaction .
Button widget - the

interpreter can execute a
function when the button is
clicked

O&lSXS Slide 137

S-DYNA ENVIRONMENT



Creating a window W/F’RIMER )
=10l x|

PRIMER 9.3 rc3 (build 3043)

:i‘ File Kewwords Tools Display Images ‘iewing Options Blank T PART (anytype) T

r
var w = new Window ("Input reorientation data", 10.2, 0.4, 0.3, 0.5];

Window title

hodel |Parttree m

j Input recrientation data :IJ

Wector 0.5

'l Reorient Normals: ’7
Selact Shells

b4 :hain file

0.5

B

| JdavaSeript execution window |

]

File: Eh_d|:|'-LIE:_F'F:Ih_-1EF:'-.-:-riEnt_sheII-_=. gui.jz

flemony size (hiB): _

| Aesign seript to function key ‘-|

Ih’_)(

it et~ RN T T =
Ea

Slide 138



Adding Label and Textbox Widgets to a Window ‘ W/ PRI’MER )

varc:)= new Window ("Input reorientation data", 0.2, 0.4, 0.3, 0.5);
var label X = new Widget(i) Widget.LABEL, 1, 30, 1, 7, "Vector X:");
var text X = new Widget (w, Widget.TEXTBOX, 31, 60, 1, 7, "");
var label Y = new Widget (w, Widget.LABEL, 1, 30, 8, 14, "Vector Y:");
var text Y = new Widget (w, Widget.TEXTBOX, 31, 60, 8, 14, "});
X1 X2 Y1 Y2
1 3031 60 X Initial value of text
[ e ——r—)>
1;__|Jj___li|:-_l.|t_rni-:-_r|e_!ﬂ:cat|nn data |:J
[ EERSA LS All widgets have a type (e.g. Widget. TEXTBOX)
14 4 - Mestery: and (X,Y) coordinates within the window.
I Vector Z

Note that each widget is a variable with a name

| (e.g. text_X) — the variable names will be used
11 Select Shells later to identify the user’s input.

Apply l; Cuit

1 . 1
IHennentHnnnaE:

¥
y

Dimensions are dependent on ‘Display Factor’ in Menu Attributes.

O&lsyS Slide 139

LS-DYNA ENVIRONMENT



var text R = new Widget (w, Widget.LABEL, 1, 30, 22, 28, "Reorient Normals:");
var chkbx R = new Widget (w, Widget.CHECKBOX, 31, 37, 22, 28);

var s button = new Widget (w, Widget.BUTTON, 31, 60, 29, 35, "Select Shells");
var a button = new Widget (w, Widget.BUTTON, 1, 30, 36, 42, "Apply");

var g button = new Widget (w, Widget.BUTTON, 31, 60, 36, 42, "Quit");
X1l X2 Y1 Y2

1 30 31 60 Text on button

O&lSXS Slide 140

S-DYNA ENVIRONMENT



Creating a GUI ‘ w

« To display the menu and wait for user input, use the function Show (Window class):

PRIMER

w.Show () ;

« To make something happen when the user presses a button, set the property
onClick for each button. This should reference the name of a function without
arguments. The functions referenced can be either existing JavaScript functions
(e.g. Exit) or functions included within your script.

var s button = new Widget (w, Widget.BUTTON, 31, 60, 29, 35, "Select Shells");
s button.onClick = MySelectFunction;
var g button = new Widget (w, Widget.BUTTON, 31, 60, 36, 42, "Quit");

g button.onClick = Exit;

« To change the colour of a button, use the property background. The colour of the
text can be changed using the property foreground:

a button.background = Widget.DARKRED;

a button.foreground = Widget.WHITE;

O&lSyS Slide 141

LS-DYNA ENVIRONMENT



Creating a GUI ‘ w

As explained above, the function called when a button is pressed cannot
have any arguments.

PRIMER

If you want to call a function that does have arguments, use a “wrapper”
function as in this example:

Variable my_flag is global (declared in main body of
var my flag = AllocateFlag() ; the script), so is “visible” to all functions below

apply button = new Widget (w, Widget.BUTTON, 31, 60, 29, 35, “Apply");

apply button.onClick = MyApplyFunction;

function MyApplyFunction ()

MyApplyFunction has no arguments, and so can be
{

called by the Apply button. It calls MyOtherFunction
MyOtherFunction (my f£lag) ; using global variables as arguments.

O&lSyS Slide 142

LS-DYNA ENVIRONMENT




Creating a GUI ‘ w

« Toread the contents of a text box, use the property text, which is a character
variable (string). To convert to a number, use parselint or parseFloat:

PRIMER

var input X = new Widget (w, Widget.TEXTBOX, 31, 60, 1, 7, "");

var x = parseFloat (input X.text);

* Note that the user is expected to change the contents of the text box. The user
might do this several times. We need to use the final value only. One way to

achieve this is to read from the text box in the function that is activated by the
Apply button:

var a button = new Widget (w, Widget.BUTTON, 31, 60, 29, 35, “Apply"):;
a button.onClick = MyApplyFunction;
function MyApplyFunction ()
{
var x = parseFloat (input X.text);

(do something with x)

O&lSyS Slide 143

LS-DYNA ENVIRONMENT



PRIMER

Creating a GUI ‘ w

« ltis often useful to write a function that can be called whenever the user changes
any input (text box, checkbox, etc). Purposes of the function may include:

— Read numerical values from text boxes
— Count and display how many items the user has selected

— Make buttons active or inactive according to what inputs have been supplied

input X.onChange = MenuUpdate;
input Y.onChange = MenuUpdate;
function MenuUpdate ()

{
if (input X.text != “” g& input Y.text != %)

{
x = parseFloat (input X.text);
y = parseFloat (input Y.text);

apply button.active = true;

}

}
O&lsyS Slide 144

LS-DYNA ENVIRONMENT




PRIMER

Creating a GUI ‘ w

If the same function is used for the ‘onClick’ or ‘onChange’ property on several
Widgets how can you tell which Widget the user has clicked or changed? The
answer is to use a special JavaScript keyword called ‘this’ which is set to the
Widget. e.g. If we wanted to change the background colour of the input X

widget to be red if the user changes it.

input X.onChange = MenuUpdate;
input Y.onChange = MenuUpdate;

function MenuUpdate ()

{
if (this == input X) input X.background = Widget.DARKRED;

if (input X.text != " && input Y.text != %)
{

x = parseFloat (input X.text);

y = parseFloat (input Y.text);

apply button.active = true;

O&lSyS Slide 145

LS-DYNA ENVIRONMENT



Exercise — create a GUI ‘ W

«  We will add a GUI to an existing script.

PRIMER

[y )

« The function of the script is similar to the 'I IDisna oz
previous example on Selection: selected parts T D %mf Feat
will be moved by a distance in X, and put in a | ":5"‘15 b
new Part Set. L 4 Seloct LL

12— —— |~ ot

« User inputs will be: 115.-1_&1’1""? Buit f

— Translation distance for the selected parts .Il |
20 35 i3

— ID of part set to be created

— Button “Select” for the user to Select Parts Example sketch — decide

— Button “Apply” to perform the moving and set your own menu layout

creation

Button “Quit” to leave the menu without performing
any action

* The first step is to sketch the menu and annotate
the position of the Widgets

O&lsyS Slide 146

LS-DYNA ENVIRONMENT



PRIMER

Exercise — create a GUI ‘ w

« Start from script_GUL.js

* Add code where indicated to create a window with title “My Menu”.

« Try to make the menu appear in the bottom-right corner of the screen.
« At this stage, do not add any other code to the script.

* What happens when you run it?

* Add w.Show(); to display the window.

* Run the script. What happens?

— If there are no Widgets on the menu, there is no way for the user to supply input. The
w.Show function waits indefinitely for input. You will have to crash out of PRIMER.

« Add a Quit or Cancel button. When this button is clicked, it should call the function
Exit (use the onClick property of the Quit button).

* Run the script and check that the menu appears, and disappears when you press

Quit.

* Next, add the other widgets and check that they appear in the correct places.

O&lSyS Slide 147

LS-DYNA ENVIRONMENT



Exercise — create a GUI ‘ w

* For the Select button, write a “wrapper” function that calls Part.Select using the
existing flag my_flag

PRIMER

* When the Apply button is pressed, call the existing function MoveParts

* Add code to function MoveParts to read the input values of Distance (variable
x_trans) and Set ID (variable setID_start) from the text boxes.

e Add code to check that neither of the text boxes is blank: if so, return to the main
body of the script and wait for further user input.

« The function already counts how many parts were selected (variable
num_selected). Add code so that if no parts were selected, issue an error
message (function Error) and return to the main menu an wait for further user
input.

In case of problems with this exercise, look at script_ GUI_complete.js

O&lSyS Slide 148

LS-DYNA ENVIRONMENT



PRIMER

Exercise — create a GUI (Part 2) ‘ w

e |ftime allows...

* Add colour to the buttons (suggestion: make the Apply button DARKRED with
WHITE text)

« Make the Apply button inactive (greyed out) initially (use the property active).
Whenever a text box is changed, and after the Select function has been used,

call a new function MenuUpdate that checks the input. If OK, then make the
Apply button active.

— Checks are: the text in the text boxes is not blank; at least one part has
been selected.

In case of problems with this exercise, look at script_ GUI_2 complete.js

O&lsyS Slide 149

LS-DYNA ENVIRONMENT



Further topics for Self-Study

Slide 150



PRIMER

Garbage collection ‘ w

 When variables are created memory is used in the computer to store the data.
Strings, arrays and objects do not have fixed size so storage must be allocated
for them when one is created.

* In some programming languages this memory must be freed manually. In
JavasScript this is done automatically for you using a technique called garbage
collection. For example:

var s = “Hello, world!”; // memory allocated for
string

var n = new Node(m, 100, 20, 40, 10); // memory allocated for Node
object

S = n; // Overwrite s with

n

» After this has run the string “Hello, world!” is no longer reachable (there are no
references to it). The interpreter detects this and frees up the space to be used
again.

« This means that you can create a script that makes lots of temporary objects,
arrays or strings without worrying about memory.

O&lSyS Slide 151

LS-DYNA ENVIRONMENT



Creating your own objects ‘ w

 New objects may be created, and properties added to them, as shown below.

PRIMER

« The type of contents or list of properties does not have to be defined in advance.
var my object = new Object();

my object.title = “Checking information”;

my object.ID 3;
my object.node = new Node(m,1000,10.0,20.0,30.0);

Message (“X-ccord of my node = “ + my object.node.x);

» ltis also possible to add new properties to existing objects, such as node or
element objects. These properties have no effect on the model data in PRIMER,
they exist only temporarily while the script is being run.

var s = Shell.GetFromID(m,1001);

s.Checked = “no”;

O&lsyS Slide 152

LS-DYNA ENVIRONMENT



PRIMER

Using Xrefs ‘ w

« The Xrefs class is used to find the references from one entity to others.

— To find nodes connected to a shell, the information is already there (s.n1l etc).
— To find the shells connected to a node, we need to use Xrefs.

* In this example, we start with a Node object (my_node) and set the flag my_flag
for all the shells attached to my_node.

var xrefs = my node.Xrefs(); Get the Xrefs object for this node
num = xrefs.GetTotal (“SHELL"”) ; How many Xrefs are of type SHELL?

for (count=0; count<num; count++)

{ Get the ID of each shell
var 1id = xrefs.GetID(“SHELL”, count):;
var shl = Shell.GetFromID (model, id):;
shl.SetFlag(my flag);

Get the shell object and
set the flag

O&lSyS Slide 153

LS-DYNA ENVIRONMENT



Using the XML parser ‘ w

« XML is often used for data files as it is flexible and can be extended as
necessary. e.g. perhaps there is a connection file with the format:

PRIMER

<connections>
<connection type="“spotweld”>
<position>10, 20, 30</position>
</connection>
<connection type=“rivet”>
<position>20, 20, 30</position>
</connection>
</connections>

« This is a basic XML file that contains elements, attributes and text.
 PRIMER implements a simple stream-oriented parser where you declare
functions to call when things are found in the XML file. e.g.
— The start of an element

— The end of an element
— Text

O&lsys Slide 154

LS-DYNA ENVIRONMENT



PRIMER

Using the XML parser ‘ w

* For example this will print the contents of a basic XML file

// Create a new parser object
var p = new XMLParser ()

// assign handlers
p.startElementHandler = startElem;
p.endElementHandler = endElem;
p.characterDataHandler = text;

// parse the file
p.Parse("/data/test.xml");

function startElem(name, attr)
{

// handler to be called when the start of an element is found
Println ("START: " + name);

// Print attributes
for (n in attr)

{
Println (" attr: " + n + "=" + attr[n]);
}

}
O&lsys Slide 155

LS-DYNA ENVIRONMENT



Using the XML parser ‘ w

function endElem (name)

{

PRIMER

// handler to be called when the end element of an element is
// found
Println ("END: " + name);

}

function text (str)

{
// handler to be called when text is found
Println ("TEXT: '" + str + "'");

« If a handler is not defined then that part of the XML document is skipped.

* For example if the characterDataHandler was not defined the text in the
XML file would be skipped.

* For more details see the XMLParser class or contact Oasys

O&lsys Slide 156

LS-DYNA ENVIRONMENT




Regular expressions ‘ w

PRIMER

JavaScript has regular expressions to allow you to do pattern matching on

strings. e.g.

“node 10
var regex = /(\d+)\s+x=(.
var result = s.match (regex);
if (result != null)

{

var s = x=1.2 y=20

var fullmatch = result[0];

z=0"
var id = result[1l];
var X = result[2];
var y result[3];
var z = result[4];

b 1

\d’ means “match a digit”,
means “any character”,

+) \s+y=

z=0";

(.+)\s+z=(.+)/

//

//
//
//
//

means “save what you have matched”.

contains

contains
contains
contains
contains

For more details see a good JavaScript textbook.

Slide 157

“10 x=1.2 y=20
\\10//

\\1 .2II

\\20//

\\OII

\s’ means “match whitespace” (space or tab), *’
‘+’ means “one or more of the previous thing” and ()

Oasys

LS-DYNA ENVIRONMENT



PRIMER

Primitive types and reference types ‘ W

 Numbers and booleans (true/false) are “primitive types” in JavaScript.
A primitive type has a fixed size in memory. For example a number occupies 8
bytes of memory in JavaScript.
If each variable in JavaScript reserves 8 bytes of memory, the variable can
directly store the primitive value.

« Objects, arrays and functions are reference types.
Objects, for example, can be any length. They do not have a fixed size.
Since they do not have a fixed size, the data cannot be stored directly in the 8
bytes of memory for the variable.
Instead the variable stores a reference to the data (a pointer or an address where
the data can be found)

« Strings are a special case. They do not have a fixed size but they can be treated
as a primitive type (see a good JavaScript book for more details)

« The reason this is important is that primitive types and reference types behave
differently when they are copied or passed to functions.
Primitive types are manipulated by value.
Reference types are manipulated by reference.

O&lsyS Slide 158

LS-DYNA ENVIRONMENT



PRIMER

Primitive types ‘ W

« Primitive types are copied by value

var m = 1; // variable m holds the value 1
var n = m; // Copy by value. n holds a distinct wvalue 1

Primitive types are passed by value. This could cause functions to work
differently to what you expect.

var total = 0;

var m = 1;

function add value (total, num)

{

total = total + num;

}
add value (total, m);

Println (total) // prints 0, not 1

« This is because when passing by value, the value is copied, so the variable total
above used in the function is a copy and you only change the internal value of
the copy, not the original variable.

O&lsyS Slide 159

LS-DYNA ENVIRONMENT



Reference types ‘ W

Reference types are copied by reference

PRIMER

var a = new Array(1,2,3); // a is an Array so 1s a reference type
var b = a; // Copy reference to new variable

al[0] = 99; // Change original array

Println (b) // prints 99,2,3

« This may not be what you expected!

« Remember that a contains a reference to where the array data is stored.
After the second line there is still only one array object, but b now also contains
the reference to the same array.

« If you want to make a distinct copy of an array you have to do something like

var a = new Array(l,2,3);
var b = new Array();
for (var 1=0; i<a.length; i++) b.push(ali]);

O&lsyS Slide 160

LS-DYNA ENVIRONMENT



Reference types ‘ W

* Reference types are passed by reference.

PRIMER

var totals = new Array(1l,2,3);
var num = 10;

function add to totals(totals, num)

{
totals[0] += num;

}

add to totals(totals, num);
Println(totals) // prints 11,2,3

* In the above example a reference to totals is passed to the function
add_to_totals, so updating totals in the function updates the same array.

O&lS_yS Slide 161

LS-DYNA ENVIRONMENT



raining course

JavaScript for
Oasys PRIMER and D3PLOT

Slide 162



