
LS-DYNA ENVIRONMENT

Slide 1

Training course

JavaScript for

Oasys PRIMER and D3PLOT

24th June 2016

LS-DYNA ENVIRONMENT

Slide 2

Contents

Introduction

– Aims of this course

– Which Oasys products have
JavaScript?

– What is JavaScript?

– Examples of use of JavaScript

PRIMER JavaScript – Part 1

– Basic concepts

D3PLOT JavaScripts

– Running an existing JavaScript,
plotting the data

– The process of writing and
debugging scripts

– Writing JavaScripts to calculate new
data

PRIMER JavaScripts – Part 2

– Guidance on Core JavaScript
capabilities

– How to use the Oasys JavaScript
extensions in PRIMER

– Accessing, modifying and creating
keyword data

– Reading and writing external files

– Interacting with PRIMER – picking and
selecting

– GUI: Using ready-made windows

– Using command-line commands

– Common errors and how to avoid them

PRIMER JavaScripts – Part 3

– Using Sets

– Functions within a script

– GUI: create your own menus

– Other topics

LS-DYNA ENVIRONMENT

Slide 3

Aims of this course

• Familiarisation with the JavaScript language – it is not expected that participants

will already know JavaScript.

• Learning how to write and run JavaScripts in PRIMER and D3PLOT

• For those wishing to study only PRIMER JavaScripts, the section on JavaScripts

for Oasys D3PLOT may be omitted.

LS-DYNA ENVIRONMENT

Slide 4

Which Oasys software products have JavaScript?

JavaScript is now available in all Oasys

Software products.

• Oasys PRIMER

• Oasys D3PLOT

• Oasys T/HIS

• Oasys REPORTER

LS-DYNA ENVIRONMENT

Slide 5

What is JavaScript?

• Fully-featured programming language, widely used for web programming

• JavaScript has “Core” (standard) capabilities described in textbooks

• JavaScript Interpreter can be embedded in other software, e.g. PRIMER and

D3PLOT

• The Oasys software development team can extend JavaScript by adding

classes and methods for communication with PRIMER, D3PLOT and T/HIS’s

data and capabilities.

• The user’s scripts can include both Core and Oasys extensions.

• The compilation step is done inside the interpreter – the script is source code

and works on any computer platform.

• The interpreter is included inside PRIMER, D3PLOT and T/HIS – no special

software or system setup is required.

LS-DYNA ENVIRONMENT

Slide 6

Why write JavaScripts?

Advantages of writing a JavaScript to create a new capability:

– Quick turnaround – don’t have to wait for a new version of T/HIS, D3PLOT

or PRIMER to be released

– Can keep your application confidential

– Under your control – can build it yourself if you wish.

Example applications (PRIMER):

– Creating a simple mesh, or test models with standard loading

– Data checking or correcting

– Geometric morphing functions

– Input or output translators, special-format spotweld or connections files

– Automating routine tasks

Example applications (D3PLOT):

– Generating your own data components for plotting, calculated from any

information already contained in the model or from external files

LS-DYNA ENVIRONMENT

Slide 7

Example application: Finding moved parts

• Available in the from the file tree listing in the Scripts menu, “find moved”

• This script compares two similar models, and unblanks only those elements

whose nodes have different coordinates between the two models.

Model 1 Model 2
Only moved parts

are displayed

Run Script?

LS-DYNA ENVIRONMENT

Slide 8

Example application: Multiple seat position

• This script seat_position.js is available in the examples directory

$OASYS/primer_library/examples

• Creates multiple seat models with the H-point in different positions.

• The script includes a menu window (GUI) so the user can type in data to make a

rectangular grid of H-point positions.

Run Script

Type data into menu

LS-DYNA ENVIRONMENT

Slide 9

Example application: Pedestrian Impact Zone Setup

• This script pedestrian_impact_marking_program.js is available in the scripts

directory $OASYS/primer_library/scripts

• This is used to calculate pedestrian impact zone boundaries and impact

points.

LS-DYNA ENVIRONMENT

Slide 10

Example application: Read custom-format spotweld file

<welds>

<weld>

<coord>3734.050293 586.282166 2347.783936</coord>

<pid>82151</pid>

<pid>8700</pid>

</weld>

<weld>

<coord>3694.061523 586.860229 2347.063721</coord>

<pid>82151</pid>

<pid>8700</pid>

</weld>

<weld>

<coord>3654.075928 587.419556 2346.248291</coord>

<pid>8700</pid>

<pid>82151</pid>

<pid>8710</pid>

</weld>

Custom-format spotweld file

Run Script Read in the file Sort the data Create Spotwelds

LS-DYNA ENVIRONMENT

Slide 11

Script to apply spotweld properties

• Spotweld diameter, failure properties, etc are a function of sheet thickness and yield

stress

• Each customer may have their own different function for calculating these

• A Script could adjust the spotweld size and failure properties using this function

All 5mm

dia

4.5mm

6mmRun Script

Dia = fn(Thickness)

LS-DYNA ENVIRONMENT

Slide 12

Example application: Interfacing with other programs

This script asks the user to select parts, runs an external program (HYCRASH from

JSOL Ltd) to perform 1-step metalforming analysis, and imports the resulting

thickness, stress and strain data into the model.

Select parts in

crash model

Crash model Crash model now has

forming data

Run Script
Script runs

HYCRASH

LS-DYNA ENVIRONMENT

Slide 13

Automatic model assembly

Control &

materials

Whole

vehicle

contact

Roof

crush

contact

Customer’s unique

input

Connect

Assemble

Primer Database/Templates

Script Read

LS-DYNA ENVIRONMENT

Slide 14

Example – plotting spotweld forces

• This JavaScript is included with D3PLOT – Swforc listing in JavaScript menu.

• The script reads the swforc file, interpolates to the time-states in the d3plot file, and

stores the data in user-defined data components.

Run Script
Select data component

created by the script
Contour plot

LS-DYNA ENVIRONMENT

Slide 15

This JavaScript is included in the d3plot_library\examples directory.

Example – how close to yield/failure?

Plastic, yield stress 30MPa

Stress is higher in the steel, but this does not

tell us which material is closest to yield

After running the script we can plot the ratio

(Von Mises Stress)/(Yield Stress), using the

correct yield stress for each material. Now we

can see that the plastic part is closest to yield.

Steel, yield stress 400MPa

LS-DYNA ENVIRONMENT

Slide 16

PRIMER JavaScript – Part 1

LS-DYNA ENVIRONMENT

Slide 17

Running an existing script

• Start PRIMER. Do not read in a model.

• We are going to run a script that creates

a model containing a simple mesh.

• Tools => Script, browse for the script

make_shell_mesh.js

• Press Run

• A shell mesh should appear.

LS-DYNA ENVIRONMENT

Slide 18

Making simple changes to an existing script

• In a text editor, open the script make_shell_mesh.js

• At this stage, we will not attempt to explain the details of the script

• Look through the script, reading the comments (lines starting with //)

• Near the top of the file, some variables are given values.

– Read the meaning of the variables in the comments then change some

of the numbers.

• Save the script (from the text editor).

• In PRIMER, press Run again.

– A new mesh should appear (in a second model).

– Check that your changes to the script have had the correct effect.

LS-DYNA ENVIRONMENT

Slide 19

Writing your own scripts – getting started

• You will need:

– Existing scripts (that we provide) to use as examples

– PRIMER JavaScript Manual – this document describes the extensions

that we have written

– You may also want a JavaScript textbook describing the Core functions.

• Write your script in the text editor, a few lines at a time. Then save and try to

run it. Once these lines of script work correctly, add some more lines.

• We provide example scripts in these directories:

– $OASYS\primer_library\scripts

– $OASYS\examples\primer_scripts

This directory is for scripts that

should be available as in the tree

listing in the Scripts menu

This directory is for other examples

that you can follow when writing

scripts

LS-DYNA ENVIRONMENT

Slide 20

Exercise - A first script

• Create a new file in a text editor, called script1.js

• Write the following:

// My first script

Message("Hello World");

Comment

Blank lines are allowed; they help

make the script easier to read

Message is an extension function

that we have provided, for

printing messages in PRIMER’s

dialog box. Find the description

in the PRIMER JavaScript

manual.

Arguments to functions (data

provided as input or output) go in

round brackets

Lines end with a semicolon

LS-DYNA ENVIRONMENT

Slide 21

Exercise - A first script

• Run the script and look in PRIMER’s dialog box. You may need to expand

the dialog box or scroll through it.

Text written using the Message function

LS-DYNA ENVIRONMENT

Slide 22

Debugging scripts

• A typical error is to mis-spell a function name.

– In your script, change Message to message (with lower case m). Save the

script and re-run it.

• A message appears giving an error and details of what has gone wrong

• A Error message also appear in the dialogue box.

LS-DYNA ENVIRONMENT

Slide 23

Debugging scripts

• There is also an error message printed in the PRIMER’s start-up window.

• The interpreter tells you what is wrong, and on which line the fault occurred.

LS-DYNA ENVIRONMENT

Slide 24

Comments

• Comments are lines that are ignored by the interpreter. They are used to

help make your script intelligible. Use plenty of comments!

• Comments may be written in several ways:

– From double-slash // to the end of the line is a comment

– Start with /* and end with */ - anything in between is a comment, even if

it covers several lines.

//

// This is a comment line

//

/*

* A block of comments

* These are comment lines

*/

a = b + 1; /* comments can be added on same line as coding */

c = d + 1; // another way to write comments

LS-DYNA ENVIRONMENT

Slide 25

Variables

• Variables allow you to store and manipulate data in the script. Unlike some other

programming languages variables in JavaScript are untyped. This means that a

variable can hold an integer, a floating point number, a string or an object. e.g.

i = 10; // variable i contains the integer 10

i = 10.1; // variable i now contains the floating point number 10.1

i = “ten”; // variable i now contains a string

• Variables are declared by using var.

var pi = 3.1415927;

var n = new Node(m, 100, 20, 40, 10);

Create a new variable containing the number 3.1415927

Create a new Node object.

The interpreter knows that n is a

Node object because that is what

the Node constructor returns.

LS-DYNA ENVIRONMENT

Slide 26

When should var be used?

• We can use var to create a variable or object before it is used, or when it is

first used. e.g.

var pi;

pi = 3.1415927;

• If var is omitted, the Interpreter automatically declares the variable.

However, variables declared automatically are “global” while those declared

with var in functions are local to the function in which they are declared (see

sections on functions and variable scope later).

To avoid any confusion always declare variables using var.

• It is harmless to use var more than once for the same variable.

LS-DYNA ENVIRONMENT

Slide 27

Strings

• Strings are made by enclosing characters in single or double quotes (‘ or “)

var s = ‘Hello, world!’;

var s = “Hello, world!”;

• If you want to use ‘ in your string then use double quotes (“) and visa versa.

var s = “You can use ‘single quotes’ inside double quotes”;

• Strings can be concatenated by using +

var s = “Hello, ” + “world!”; // produces “Hello, world!”

• The length of the string is contained in the property length. e.g. for s above

s.length

• A \ in a string has a special meaning. Combined with the next character in the

string it represents a character that could otherwise not be allowed in the string.

e.g.

var s = “You can use \”double quotes\” inside double quotes”;

LS-DYNA ENVIRONMENT

Slide 28

Strings

• Some common escape sequences
\t tab

\n newline

\” double quote

\’ single quote

\\ backslash

• Note the backslash case. This is important for filenames on Windows. e.g.

to refer to a file C:\temp\nodes.csv as a string you would need to do:

var s = “C:\\temp\\nodes.csv”;

LS-DYNA ENVIRONMENT

Slide 29

D3PLOT JavaScript

Follow this link to skip this section of the course

LS-DYNA ENVIRONMENT

Slide 30

Running an existing script

• Start D3PLOT, read the results file base.ptf

• We are going to run a script that checks all the

output times, and reports the maximum

displacement of any node at any time.

• Press JavaScript, browse for find_max_displ.js,

press Run.

• The dialog box should show the result.

LS-DYNA ENVIRONMENT

Slide 31

Running a script and plotting data

• We will now run a script that calculates, for

each node at each timestate, the

horizontal displacement (ignoring the

vertical component), and expresses this as

a percentage – i.e. when each node

reaches its maximum horizontal

displacement, its data value will be 100%.

• First, confirm that there are no pre-existing

user-defined data components for nodes

– Data Component menu,

– Category drop down menu

– User Defined selection

LS-DYNA ENVIRONMENT

Slide 32

Running a script and plotting data

• Browse for the script
calc_horiz_displ_percent.js and run it.

• This script creates a user-defined data
component named “horiz percent”.

• In the Data Component menu, the User
button is now live; select “Horiz percent”.
Perform a shaded image plot (shortcut F).

• Animate the model.

• You could also try using XY_DATA to make a graph
of the new data component versus time for a node.

• Note that a new file base_1.ubd has appeared in the
directory with the model. This contains the data.

• Exit from D3PLOT, start D3PLOT again and read the
same model. The new data is still available for
plotting, without rerunning the script.

LS-DYNA ENVIRONMENT

Slide 33

D3PLOT JavaScript or User-defined data?

• User-defined data components can be defined directly in D3PLOT, e.g. using

the “simple formula” method. This is easier than writing a JavaScript to

calculate results however it has limitations.

• When is a JavaScript needed?

– “Simple formula” can be applied when the user-defined result for node n at

time t depends only on existing data (e.g. displacements, velocities) for

node n at time t. Similarly for elements – if the user-defined data at time t

depends only on existing data for that element at time t.

– If the user-defined data requires knowledge of results across multiple

nodes/elements, or across multiple time-states, then “simple formula”

cannot be used and a JavaScript is needed.

– If the user-defined data is calculated using branching logic (i.e. is not a one-

line mathematical formula), a JavaScript is needed.

– If the user-defined data is calculated using data from an external file, in

combination with the data in the results file, a JavaScript is needed.

LS-DYNA ENVIRONMENT

Slide 34

Writing your own scripts – getting started

• You will need:

– Existing scripts (that we provide) to use as examples

– D3PLOT Manual Appendix VI – this document describes the extensions
that we have written

– The extension functions that are common to D3PLOT and PRIMER are
described in the Primer Javascript API manual.

– You may also want a JavaScript textbook describing the Core functions.

• Write your script in the text editor, a few lines at a time. Then save and try to
run it. Once these lines of script work correctly, add some more lines.

• We provide example scripts in these directories:

– $OASYS\d3plot_library\scripts

– $OASYS\d3plot_library\examples

This directory is for scripts that

should be in the listings the Scripts

menu

This directory is for other examples

that you can follow when writing scripts

LS-DYNA ENVIRONMENT

Slide 35

Using the D3PLOT JavaScript manual

• Start your browser (or Acrobat)

with the electronic D3PLOT

manual.

• Go to Appendix VI.

• Look at the descriptions of the

functions GetNumberOf,

SetCurrentState, and GetData.

• Open the script find_max_displ.js

in a text editor.

• Compare the descriptions and

argument lists with the examples

given in the script.

LS-DYNA ENVIRONMENT

Slide 36

Using the D3PLOT JavaScript manual

• Arguments shown in brackets are optional.

• In the example below, GetNumberOf can have either 1 or 2 arguments.

• The first argument type_code is required (i.e. not in brackets).

• The second argument state_id is optional.

LS-DYNA ENVIRONMENT

Slide 37

• Unlike the PRIMER Javascript interface (in which data is treated as objects

and object properties), in D3PLOT data is accessed using integer indices

(since D3PLOT stores data in arrays).

• For example, this script would write the labels of the first 3 nodes to the

dialog box:

var lab1 = GetLabel(NODE, 1);

var lab2 = GetLabel(NODE, 2);

var lab3 = GetLabel(NODE, 3);

Message("Label of first node = " + lab1);

Message("Label of second node = " + lab2);

Message("Label of third node = " + lab3);

• Watch out: the index for the first node (or element, etc) is 1, NOT zero.

Accessing data from a model

LS-DYNA ENVIRONMENT

Slide 38

• In D3PLOT, only one model may be “current” at any point in the script, allowing

its data to be accessed.

• If more than one model is present, first set the current model before accessing

data (SetCurrentModel command).

• Likewise, only one time-state may be “current” at any point in the script.

• Before accessing results data, set the current state (SetCurrentState command).

Accessing data from a model

SetCurrentModel(1); // Assume we are working with Model 1

SetCurrentState(10); // Set the 10-th time-state to be current

var dx10 = GetData(DX, NODE, 1); // Get the X-displacement of the first node

SetCurrentState(15); // Set the 15-th time-state to be current

var dx15 = GetData(DX, NODE, 1); // Get the X-displacement of the first node

LS-DYNA ENVIRONMENT

Slide 39

var dx10 = GetData(DX, NODE, 1); // Get the X-displacement of the first node

• GetData is used to access all results, and also some input data such as

original (basic) coordinates.

The GetData function

Constants are used to identify the data component. To see a full list of these, follow the link

LS-DYNA ENVIRONMENT

Slide 40

The GetData function

Constants are used to identify the entity type. To see a full list of these, follow the link

var dx10 = GetData(DX, NODE, 1); // Get the X-displacement of the first node

• GetData is used to access all results, and also some input data such as

original (basic) coordinates.

LS-DYNA ENVIRONMENT

Slide 41

var stress = GetData(SXX, SHELL, 1, TOP); // Get the X-stress of the first shell

• When using GetData to access shell element stresses, the integration point

must be specified.

• Can use 1,2,3… or TOP, MIDDLE, BOTTOM.

The GetData function

LS-DYNA ENVIRONMENT

Slide 42

Looping through all nodes, time-states, etc

• First use GetNumberOf to find how many nodes, time-states, etc. there are;

then use a for loop.

• The script will run more quickly if done in this order:

– Loop through the time-states

– For each state, process data for all nodes/elements/etc.

var nstate = GetNumberOf(STATE); // Get number of time-states

var nnode = GetNumberOf(NODE); // Find number of nodes in model

for (istate=1; istate<=nstate; istate++)

{

SetCurrentState(istate);

for (j=1; j<=nnode; j++)

{

do something…

}

}

LS-DYNA ENVIRONMENT

Slide 43

Looping through all nodes, time-states, etc

• The script will run more slowly if done in this order:

– Loop through nodes/elements etc

– For each node/element, process data for all time-states
var nstate = GetNumberOf(STATE); // Get number of time-states

var nnode = GetNumberOf(NODE); // Find number of nodes in model

for (j=1; j<=nnode; j++)

{

for (istate=1; istate<=nstate; istate++)

{

SetCurrentState(istate);

do something…

}

}

• If there is a good reason to write the loops in this way (e.g. if complex operations
are to be performed on a complete time-history for each node or element),
consider using the direct disk access method (DDA argument in the function
GetData).

Not recommended – will

be slower

LS-DYNA ENVIRONMENT

Slide 44

Exercise - Accessing data from a model

• Start from find_max_displ.js, and save the script under a new name

access_data_1.js.

• Edit the script where needed to do the following:

– Loop through all the time-states

– Find the maximum von Mises stress in any shell element at each time-state

• Read the notes in the manual for the GetData function regarding surface

selection (data for shells is present at top, middle, and bottom

integration points).

– Write the maximum value to the dialog box (for each time-state)

• The result should be 864.97

In case of problems with this exercise, look at access_data_d3plot_1_complete.js

LS-DYNA ENVIRONMENT

Slide 45

Creating new results data (UBIN components)

• It is often useful to calculate data for each node (or element), and display it as a

contour plot.

• This is done using User Binary (UBIN) Data Components.

• First, create a data component using CreateUbinComponent. This function

returns a “handle” (constant) by which the data component may be referenced:

icomp = CreateUbinComponent("Horiz percent" , U_NODE, U_SCALAR, REPLACE);

Name of data component

Type of entity for which the

data can be plotted

Type of data (scalar, vector, tensor)

What to do if a user data

component with this name

already exists

PutUbinData(icomp, NODE, j, 0, result);

Number to be plotted for Node j at the current time-state

• Data may then be stored using PutUbinData:

LS-DYNA ENVIRONMENT

Slide 46

Creating new results data (UBIN components)

• Scalar data = one value per node or element.

• This data may be viewed by contour plotting, and is also available from WRITE

and XY_DATA

• Any number of data components can be in use within the script simultaneously,

e.g.
icomp1 = CreateUbinComponent(“My data 1" , U_NODE, U_SCALAR, REPLACE);

icomp2 = CreateUbinComponent(“My data 2" , U_NODE, U_SCALAR, REPLACE);

for (istate=1; istate<=nstate; istate++)

{

SetCurrentState(istate);

for (j=1; j<=nnode; j++)

{

… (calculate) …

PutUbinData(icomp1, NODE, j, 0, result1);

PutUbinData(icomp2, NODE, j, 0, result2);

}

}

LS-DYNA ENVIRONMENT

Slide 47

Exercise – creating and plotting UBIN data

• Start from access_data_d3plot_2_incomplete.js, save under a new name
access_data_d3plot_2.js

• Add a statement to create a new user data component “failure index”. This will be
a scalar variable for shell elements.

• The coding to calculate the failure index has already been written. This is what it
is supposed to do:

– If plastic strain = 0 (i.e. the element has not yielded)

• failure index = (von Mises stress)/(yield stress), where yield stress = 200MPa

– If plastic strain > 0

• failure index = 1.0 + (plastic strain)/(failure strain), where failure strain = 0.8.

– Thus the index will rise from zero to 1.0 at yield, and to 2.0 when the failure strain is
reached. Note, however, that the input data did not include any failure strain so the
elements pass the “failure strain” without failing. Find maximum index at top, middle
and bottom surfaces.

• Add a statement to write the calculated failure index to the user data component.

In case of problems with this exercise, look at access_data_d3plot_2_complete.js

LS-DYNA ENVIRONMENT

Slide 48

icomp = CreateUbinComponent(“My vector" , U_NODE, U_VECTOR, REPLACE);

var my_result = new Array();

for (j=1; j<=nnode; j++)

{

my_result[0] = GetData(DX, NODE, j);

my_result[1] = GetData(DY, NODE, j);

my_result[2] = 0.0;

PutUbinData(icomp, NODE, j, 0, my_result);

}

• Vector data = 3 values per node

• Store an array instead of a single value

Vector, beam force and tensor data

Type of data = vector

• The data may be plotted as arrows

• Similar process for creating

– Beam forces (6 numbers)

– Shell/solid tensor (6 numbers)

LS-DYNA ENVIRONMENT

Slide 49

Issuing Command-line commands

• Any D3PLOT capability that can be accessed via command line (commands

typed in the dialog box, or written in a command file) can be issued from a

JavaScript.

– Use the functions DialogueInput or DialogueInputNoEcho:

• After each call to DialogueInput (or DialogueInputNoEcho), D3PLOT returns

automatically to the main menu.

• If you need to issue a sequence of commands without returning to the main

menu, use a single call with multiple arguments (separated by commas), as in

the above example.

DialogueInput(“/BLANK ALL”,”UNBLANK PART 1”,”REDRAW”);

LS-DYNA ENVIRONMENT

Slide 50

GUI: Ready-made windows

• Some ready-made windows are available in D3PLOT:

– See the PRIMER JavaScript manual in the Window Class.

– All of the Window and Widget class functions from PRIMER are also

available in D3PLOT. For example:

• This subject is covered later in the course

Window.Information

LS-DYNA ENVIRONMENT

Slide 51

Creating your own GUI

• New menus may be created using the Window and Widget classes.

– “Window” = the window containing a floating menu

– “Widget” = buttons, text boxes, text labels, checkboxes, etc

• See PRIMER Javascript manual for details.

• The functions and techniques are identical in D3PLOT and PRIMER

Window

Window title
Text box widget - the user

can type in the box

Label widget – text with

no user interaction

Checkbox widget - the user

can click to make it checked

or unchecked

Button widget - the

interpreter can execute a

function when the button is

clicked

LS-DYNA ENVIRONMENT

Slide 52

PRIMER and D3PLOT Scripting

• Commonality between D3PLOT and PRIMER Javascripting

– Core functions are (of course) identical

– Extension functions for creating GUIs and reading/writing external files

are identical in PRIMER and D3PLOT

– Functions for accessing data are different, reflecting the different

internal structure of the two programs.

• PRIMER JavaScripts are object-oriented,

• While D3PLOT JavaScripts are mostly not object-oriented.

LS-DYNA ENVIRONMENT

Slide 53

PRIMER JavaScript – Part 2

LS-DYNA ENVIRONMENT

Slide 54

Making your scripts available to others

• Any script can be run by browsing for the
script file.

• To make a script available more easily,
copy it into the directory

– $OASYS\d3plot_library\scripts or

– $OASYS\primer_library\scripts.

– For each script in this directory, an
entry appears in listing in the Script
menu. By default, the script filenames

appear in the listing

LS-DYNA ENVIRONMENT

Slide 55

// name: Beam Swap

// description: Beam orientation swapping tool

//

// It is assumed that Model 1 is the d3eigv file

// The script writes out damping data per mode

//

Making your scripts available to others

• To change the name of the button (and

optionally to add hover text for the button)

add a special comment at the top of the file

containing text:

name:<name for button>

description:<hover text to display>

LS-DYNA ENVIRONMENT

Slide 56

Oasys JavaScript extensions

• Extensions to core JavaScript are written by the Oasys software development

team for interaction with PRIMER’s model data. These extensions can be called

in users’ scripts.

• To access each type of LS-DYNA keyword requires a new class to be added to

JavaScript by Oasys.

• Examples of classes available to access keywords are:

*BOUNDARY_SPC, _PRESCRIBED_MOTION

*CONSTRAINED_NODAL_RIGID_BODY

*CONTACT

*DEFINE_CURVE, _VECTOR

*ELEMENT_BEAM, _SOLID, _SHELL, _DISCRETE, _MASS

*INITIAL_STRESS_SHELL

*LOAD_NODE

*NODE

*PART, *MAT, *SECTION, *HOURGLASS

*SET

LS-DYNA ENVIRONMENT

Slide 57

Oasys JavaScript extensions

• These PRIMER capabilities can also be accessed via Oasys extensions:

All command-line commands

Blanking

Colour

Connections (spotwelds etc)

Image (write JPG etc)

Merge Nodes

Remove

View, redraw, etc

Xrefs

+others

• Menus can be created

• Functions to read and write external files (including XML files) are also provided

as extensions, since these are not part of Core JavaScript.

LS-DYNA ENVIRONMENT

Slide 58

Using the PRIMER JavaScript manual

• To find what functions are available

for writing messages, open the

PRIMER JavaScript manual.

• Follow the link to the global class.

This class contains stand-alone

functions – more on this later.

• Look at the detailed description for

the function ErrorMessage.

• Use this function in your script to

write an error message

– “example error message”.

Use the example in the manual entry to help write your own error message.

You can omit “+ m.title”, this will be explained later.

In case of problems with this exercise, look at script1_complete.js

LS-DYNA ENVIRONMENT

Slide 59

Classes and Objects

• A class is a grouping to which functions and data can belong.

– For example, each keyword supported by the JavaScript interface has its own

class (e.g. Node, Shell, Part…). There are also classes for external Files, GUI

generation, and other items.

• For each class you can then create individual objects that are instances of that

class.

– For example, the Node class represents *NODEs in PRIMER. A Node object

represents a single *NODE entity and is an instance of the Node class.

• An object has properties that depend on its class.

– A Node object has properties that include x-coordinate, y-coordinate, label, etc.

• To find the properties of each type of object, look in the PRIMER JavaScript

manual. The manual is organised into classes.

– To find the properties of a Node object, look in the Node class.

LS-DYNA ENVIRONMENT

Slide 60

Properties of an Object

If n is a node object, then n.x is its x-coordinate. For example, to copy the x-coordinate of this

node to a new variable xvalue:

var xvalue = n.x; Note the . (full stop) between the object and the property name.

LS-DYNA ENVIRONMENT

Slide 61

Classes, Objects and Functions

Class functions “hang off” the

Class, e.g.

var n = Node.First (m);

Class name

Member functions “hang off” an

individual object of this class, e.g.

var n2 = n.Next();

n must be a Node object

LS-DYNA ENVIRONMENT

Slide 62

Understanding the function descriptions

The first (and only) argument

must be a model object.

The output from

this function is a

Node object

This line will create a Node object containing

the data for the first node in the model.

Class name (needed because First is a Class function)

LS-DYNA ENVIRONMENT

Slide 63

Understanding the function descriptions

Even if a function has no arguments, it still needs brackets

Optional arguments may be omitted. If there are any compulsory

arguments, they go before the optional arguments.

This function has no return value. The initial var could be omitted.

LS-DYNA ENVIRONMENT

Slide 64

Using functions – examples of different types

• Global function without a return value:

Message("Hello World");

• Global function with a return value:

var iflag = AllocateFlag();

• Class function without a return value:

Node.BlankAll(m);

• Class function with a return value:

Node.BlankAll(m);

• Member function without a return value:

n.Edit(m);

• Member function with a return value:

n = n.Next();

LS-DYNA ENVIRONMENT

Slide 65

• Copy the example from the Primer Javascript manual, paste it into your script:.

Advice – writing functions in your script

var p = Part.Pick(“Pick part from screen”,m);

var p1 = Part.Pick(“Pick part from screen”,m1);

• If necessary, change the variable names to match those in your script.

LS-DYNA ENVIRONMENT

Slide 66

// Get Model 1 as a Model Object m

(add your code here)

// Get the first node as a node object n

(add your code here)

// Write the node's label (n.nid) to dialog box

Message("The label of the first node is " + n.nid);

Exercise - Accessing data from a model

• In this example, we will find and print the label of the first node in the model.

• Start from the script named access_data.js

• Get model 1 as a Model Object (using GetFromID in the Model Class)

• Get the first node from this model as a Node Object (use First in the Node class)

• Message is used to write the node’s ID to the dialog box

Note how the text of the

message is built up from

text and numbers,

separated by +

• Read the model shell_mesh1.key into PRIMER

• Run the script, check in the dialog box that the correct message is displayed.

Delete these lines, add your code instead

LS-DYNA ENVIRONMENT

Slide 67

Exercise - Accessing data from a model

• Add more lines to your script as follows:

• Use the function GetFromID to create a Node object n2 containing the data for

Node 1020.

• Use the function Println to write the coordinates of this node to the Start-up

window.

– (The function Println is in the Global class – look it up in the manual).

• Save and run the script, check the result.

In case of problems with this exercise, look at access_data_1_complete.js

LS-DYNA ENVIRONMENT

Slide 68

Note on writing text with numbers

Script:

Println("Coordinates of node 1020 = " + n2.x + n2.y + n2.z);

Result:

Script:

Result:

Println("Coordinates of node 1020 = " + n2.x + ", " + n2.y + ", " + n2.z);

No spaces or commas were placed

between the numbers – the result is

impossible to understand

Spaces and commas were

placed between the

numbers – the result can be

understood

LS-DYNA ENVIRONMENT

Slide 69

Modifying data

• We will now change the coordinates of node 1020.

• Add this line to the end of your script:

n2.x = 120.0;

• Save and run the script. You will have to re-draw the model in different modes
(SH then LI) to see the result.

• Note that the data in the JavaScript (e.g. n2.x) is a “mirror” of the actual data in
PRIMER. When the properties of a node object are changed in the script, the
equivalent data in the model changes in PRIMER automatically.

• Add the function UpdateGraphics to the end of your script (this function is in the
Model class).

• Delete the model from PRIMER, re-read shell_mesh1.key.

• Run the script. Now, you should see the image update immediately.

In case of problems with this exercise, look at access_data_2_complete.js

LS-DYNA ENVIRONMENT

Slide 70

Loops using “for”

• This is an example of a loop using the for command:

for (ix=0; ix<10; ix++)

{

x = x0 + ix*size_x;

y = y0 + iy*size_y;

z = 0.0;

var n = new Node(m, ID_node_next, x, y, z);

ID_node_next++;

}

This line has no semicolon

Braces contain the lines that are

repeated each time through the loop

Start with ix=0
Keep looping while ix<10

(i.e. the last time through the loop will be ix=9)

Each time the loop is finished, add 1 to ix

LS-DYNA ENVIRONMENT

Slide 71

Loops using “for”

• “for” loops can be nested:

• The indenting of the script lines in the loop is not compulsory but makes the
script easier to read.

for (iy=0; iy<9; iy++)

{

for (ix=0; ix<9; ix++)

{

x = x0 + ix*size_x;

y = y0 + iy*size_y;

z = 0.0;

var n = new Node(m, ID_node_next, x, y, z);

ID_node_next++;

}

}

Each loop has a different counter (ix and iy)

LS-DYNA ENVIRONMENT

Slide 72

Loops using “while”

• “while” means “Keep looping while the condition remains true”:

ix = 0;

while (ix<10)

{

x = x0 + ix*size_x;

y = y0 + iy*size_y;

z = 0.0;

var n = new Node(m, ID_node_next, x, y, z);

ID_node_next++;

ix++;

}

The condition

LS-DYNA ENVIRONMENT

Slide 73

“if” statements

• Example of a single statement dependent on “if”:

• Example of multiple statements dependent on “if”

if (x<0.0) Message(“x is negative”);

if (x<0.0)

{

Message(“x is negative”);

y = y + 10.0;

}

no semicolon

semicolon

braces

LS-DYNA ENVIRONMENT

Slide 74

“if” statements

• Example of branching “if”:

if (x<0.0)

{

Message(“x is negative”);

y = y + 10.0;

}

else if (y<0.0)

{

Message(“y is negative”);

z = z + 10.0;

}

LS-DYNA ENVIRONMENT

Slide 75

“if” statements

• More logical tests:

if (x==0.0) = if x is equal to 0.0 NOTE == not =

if (x!=0.0) = if x is not equal to 0.0

if (x==0.0 && y==0.0) = if x=0 and y=0

if (x==0.0 || y==0.0) = if x=0 or y=0

if (x) = if x exists and has a non-zero value

if (!(x==4.0)) = if the condition in brackets is false

if (!x) = if x does not exist or is zero

LS-DYNA ENVIRONMENT

Slide 76

Looping through all the entities in a model

Example – looping through nodes

var n = Node.First(m);

while (n)

{

Message ("Node label = " + n.nid);

n = n.Next();

}

This means, keep repeating the lines

within the braces while n has a value

(or, until n becomes “null”).

The last step in the loop is to replace n with

the next node after the old node n.

If n is the last node, then n.Next will be null.

Could be any code here that

does something with a node

LS-DYNA ENVIRONMENT

Slide 77

Exercise - Looping through all the entities in a model

• We are now going to change the script so that it can fold the mesh.

• Comment out the line that changes the coordinates of node 1020.

• Add to your script access_data.js a loop through all the nodes in the model,

writing each node label to the dialog box using Message.

• Save and run the script.

• Now modify your loop, adding an “if” condition. We will try to fold the mesh along

x=100:

– First, stretch the mesh in the X direction by a factor of 2.

– If a node’s x-coordinate (n.x) is 100, then the z-coordinate is increased by 5.

– If a node’s x-coordinate (n.x) is >100, then the z-coordinate is increased by 10 and the

x-coordinate becomes 100 – (n.x – 100)

• Save and run the script.

Note that comparing floating point numbers sometimes needs a tolerance. e.g.

if (n.x > 99.9 && n.x < 100.1) instead of if (n.x == 100).

In this case the nodes in “shell_mesh1.key” are exactly at 100 so == works.

In case of problems with this exercise, look at access_data_3_complete.js

LS-DYNA ENVIRONMENT

Slide 78

Creating new data

Within the description of each

Class in the PRIMER JavaScript

manual is a section telling you

how to create new data of that

type (the “Constructor”)

LS-DYNA ENVIRONMENT

Slide 79

Creating new data

• For example, look at the script make_shell_mesh.js:

Message("Making nodes");

for (iy=0; iy<num_y+1; iy++)

{

for (ix=0; ix<num_x+1; ix++)

{

x = x0 + ix*size_x;

y = y0 + iy*size_y;

z = 0.0;

var n = new Node(m, ID_node_next, x, y, z);

ID_node_next++;

}

}

LS-DYNA ENVIRONMENT

Slide 80

Exercise – creating new data

• Write a new script named create_data.js to loop through all the nodes in a model,

adding a *LOAD_NODE Z-direction, loadcurve ID = 101, scale factor = 1.0.

• In this case, the loadcurve itself has not been defined. A “latent” definition will be

created. The data for the curve may be added later.

• Check your script using the model shell_mesh1.key

• Make sure that the *LOAD_NODEs appear in PRIMER.

• If the loads do not appear, it is because the Entity switch for loads is off.

– Add a statement to your script to turn it on – see Visibility in the Global class.

In case of problems with this exercise, look at create_data_complete.js

LS-DYNA ENVIRONMENT

Slide 81

Maths functions

• These are part of Core JavaScript.

• For a full list of available functions, consult a JavaScript textbook

• Examples of maths and logic operations:

• List of static functions belonging to the Math class:

length = Math.sqrt(x*x + y*y + z*z);

test = Math.max(x, y);

x_abs = Math.abs(x);

abs, acos, asin, atan, atan2, ceil, cos, exp, floor, log, max, min, pow,

random, round, sin, sqrt, tan

LS-DYNA ENVIRONMENT

Slide 82

Using JavaScript textbooks

• Textbooks typically contain large sections on “Client Side”, which is irrelevant to

PRIMER scripts. Only the Core sections are relevant.

• The textbook will be useful as a reference, for example to find what Math

functions or (character) String functions are available and how to use them.

• Example: “JavaScript – The Definitive Guide” (5th edition) by David Flanagan,

published by O’Reilly. ISBN 0-596-10199-6

• Online reference guides are also available – search for “Core JavaScript

Reference”.

LS-DYNA ENVIRONMENT

Slide 83

Arrays

• In JavaScript, an array is actually an object with certain special properties.

• To declare a new array in JavaScript, use the Array Constructor:

var coords = new Array();

• Arrays can contain numbers, strings, or objects. It is not necessary to

declare which type of data will be contained.

• It is not necessary to declare the size of the array – it will be automatically

extended as needed. Optionally, you can declare the size:

var my_array = new Array(10);

• The array members start at index zero. Array members can be given values

like this:

coords[0] = 1.5;

coords[1] = 2.0;

• …Or like this:

coords.push(1.5);

coords.push(2.0);

Note – square brackets are used to

contain the array index

push assigns the next available array

member

LS-DYNA ENVIRONMENT

Slide 84

Arrays

• To find the length of an array:

var l = coords.length;

• Different types of data may be stored in an array:

My_array[3] = 1.5;

My_array[4] = “coordinates”;

My_array[5] = new Node(100,10,20,30);

• True multi-dimensional arrays are not supported by JavaScript, but you can set

up an array of arrays. e.g.

My_array = new Array(10);

for (i=0; i<10; i++) My_array[i] = new Array(10);

My_array[5][7] = 1.5;

LS-DYNA ENVIRONMENT

Slide 85

Reading external files

• Files are treated as objects. Look at the File class in the PRIMER Javascript

manual.

var f = new File(filename, File.READ);

var line = f.ReadLine(); // read the first line

while (line != undefined)

{

(do something)

line = f.ReadLine(); // read the next line

}

f.Close();

Open a file

f.ReadLine reads the

next line from the file

When f.ReadLine reads

beyond the end of the file,

the return value is undefined

LS-DYNA ENVIRONMENT

Slide 86

Class constants

• File.READ is a constant belonging to the file

class.

– This tells the interpreter that we want to

open the file for reading, not writing.

• Class constants are upper case.

var f = new File("nodes.csv", File.READ);

LS-DYNA ENVIRONMENT

Slide 87

Exercise: Reading external files

• We will now write a script to read a comma-separated file.

• In a text editor, open the existing script mesh_from_file_1.js.

• Look at the File class in the PRIMER JavaScript manual.

• Where the comment line says “add code here”, add commands to open a file
(using the variable filename and the file object f), and read the next line from the
file

• Try to run the script. If it does not work, check in the dialog box for error messages.

• The most likely problem is that Primer looked in the wrong directory to find the file
nodes.csv. To fix this, you could (but do not do it now) change the script such that
the variable filename now includes the full path, e.g.

var filename = “C\\temp\\training\\nodes.csv”; Windows

var filename = “/data/training/nodes.csv”; Unix/Linux

• Note that back-slash is a special character, so a double-back-slash is needed (the
first back-slash means “the next character is as-written, not a special character”).

In case of problems with this exercise, look at mesh_from_file_1_complete.js

LS-DYNA ENVIRONMENT

Slide 88

Using file selector windows

• Rather than typing the full path and filename into your script, it is easier to

browse for the file.

• In your script mesh_from_file_1.js, instead of setting “var filename = … “, use

the function GetFilename (Window class) to ask the user to browse for the file.

The function will return the filename as a variable.

• The filename returned by GetFilename will include the full path, so the file does

not have to be in the same directory as the script.

• Save and run your script.

In case of problems with this exercise, look at mesh_from_file_1a_complete.js

LS-DYNA ENVIRONMENT

Slide 89

Assignment within a statement

• We have used this method for reading lines from a file:

while ((line = f.ReadLine()) != undefined)

{

(do something)

}

line = f.ReadLine();

while (line != undefined)

{

(do something)

line = f.ReadLine();

}

• An alternative to this coding would be:

• This part of the statement sets line equal to the return-value of f.ReadLine.

• The assignment to line is done before evaluating whether to continue the

While loop.

LS-DYNA ENVIRONMENT

Slide 90

Breaking down character strings, reading data

• Next we want to extract the node ID and coordinates from each line of data in

the file.

• Here is an example line:

1016,50,10,0 Node ID, X, Y, Z

• Step 1: Break down the string into a series of small strings, each containing a

number (we will use the comma delimiter).

– The Core JavaScript function split can do this.

• Step 2: Read a number from each small string.

– The Core JavaScript functions parseInt and parseFloat can do this.

• Most string-handling is done using Core JavaScript functions. However, we have

added a small number of extra extension functions (e.g. NumberToString).

LS-DYNA ENVIRONMENT

Slide 91

Processing strings

• Use split to divide line into an array of strings (we will call this array words):

var line;

var words = new Array();

while (line != undefined)

{

words = line.split(",");

if (words.length == 4)

{

Message("label = " + words[0]);

Message("x-coord = " + words[1]);

Message("y-coord = " + words[2]);

Message("z-coord = " + words[3]);

}

line = f.ReadLine();

}

LS-DYNA ENVIRONMENT

Slide 92

Processing strings

• The members of the array words are still character strings. We need to convert
them into numbers.

• Use the core JavaScript functions parseInt and parseFloat. e.g:

label = parseInt(words[0]);

x = parseFloat(words[1]);

• We also need to check whether the “word” that we have just tried to convert is a
valid number. For example, it could have been from a comment line.

• If parseInt and parseFloat fail to find a number, they return a special value
‘NaN’ (Not a Number), for which we can test using the function isNaN().

if (isNan(x))

{

Error("Bad x coordinate “ + words[1]);

Exit();

}

LS-DYNA ENVIRONMENT

Slide 93

Exercise – converting character strings

• We will continue with the example that reads data from a csv file. This data is

intended to contain (Node ID, X, Y, Z).

• Start from the existing script mesh_from_file_2.js. This script will create a node

from data stored in variables label, x, y and z.

• Lines of code need to be added where shown in the script (“… add code here”)

• Add a command to split line into separate strings, storing these in the array

words (use the function split)

• Add commands to read numerical values for label, x, y and z from the strings

stored in words (use parseFloat and parseInt)

• Run the script. What happens? Modify the script to fix any problem.

In case of problems with this exercise, look at mesh_from_file_2_complete.js

LS-DYNA ENVIRONMENT

Slide 94

Writing external files

// Open file

var f = new File("nodes.key", File.WRITE);

f.Writeln("*NODE");

var n = Node.First(m);

while (n)

{

f.Writeln(n.KeywordCards());

n = n.Next();

}

f.Writeln("*END");

f.Close();

Open a new file

Write a text string to the file

Write LS-DYNA keyword

format data (for a node)

Close the file

LS-DYNA ENVIRONMENT

Slide 95

Other useful string-processing functions

• There are many core JavaScript functions for processing strings. For more

details, consult a JavaScript reference book.

• For example, if reading a line containing numbers in fixed fields, like an

LS-DYNA keyword:

word[0] = line.slice(0,9);

• When writing data to a file, we often need to write numbers in a given format.

Unlike languages such as Fortran and C, there are no Format statements in

JavaScript. Instead, use functions such as number.toFixed,

number.toExponential, etc.

• We have written a function to make this a little more convenient:

word[0] = NumberToString(n.nid, 8);

word[1] = NumberToString(n.x, 16);

f.Writeln(word[0] + word[1]);

Take characters 0 to 9 from line and

copy them into word[0]. Note that

the first character is 0, not 1

Write node ID to 8-character string

Write node x to 16-character string

Write these to file

LS-DYNA ENVIRONMENT

Slide 96

Creating data for non-supported keywords

• Some of LS-DYNA’s keywords are not currently supported by Classes in the

PRIMER Javascript interface.

• Non-supported keyword data may be created using this method:

– Write a file containing the keyword data

– Use the Import function (Model Class) to read it into the model.

• See example script create_non_supported_kwd.js

f = new File("./ibtmp.key", File.WRITE); Open temporary file

f.Writeln("*KEYWORD"); Write keyword data to file

f.Writeln("*CONSTRAINED_EXTRA_NODES_NODE");

f.Writeln(NumberToString(part_id,10) + NumberToString(n1.nid,10));

f.Writeln("*END");

f.Close(); Close temporary file

m.Import("ibtmp.key"); Import data from file into model

LS-DYNA ENVIRONMENT

Slide 97

Using GetAll

• An alternative to the methods previously given for looping through all the entities

in a model is to use GetAll:

var nodes = Node.GetAll(m); Nodes is an array of node objects

for (i=0; i<nodes.length; i++)

{

x-coord = nodes[i].x;

(do something)

}

• If you will be looping through all the nodes several times this will be quicker.

However, the memory requirement is larger – this may become significant for

very large models.

LS-DYNA ENVIRONMENT

Slide 98

References to other entities

• Example: if s is a shell element object, then s.n1 is the LABEL of the first node – it

is not a node object. Therefore, if you want to find the node’s coordinates, do it like

this:

var node_label_1 = s.n1; node_label_1 is a number

var node_1 = Node.GetFromID(m,node_label_1); node_1 is a node object

or
var node_1 = Node.GetFromID(m,s.n1);

then

var x_coord = node_1.x;

• This is always the case when one entity A refers to another entity B – the relevant

property of A is always the label of B, not an object. This is so that you can still

access and change data for entities for which we have not yet created classes, e.g.

You can change EOSID on a PART but there is no EOS class yet.

• Be careful also when creating new keyword data:

var s = new Shell(m, pid, n1, n2, n3, n4);

n1, n2, n3, n4 must be node labels, NOT node objects

LS-DYNA ENVIRONMENT

Slide 99

Using Flags

• A flag is a marker that can be set True or False for each entity (of any type) in

the model.

• Flags are re-used by different functions in PRIMER, to save memory.

• The same flags are available in the JavaScript interface.

• Why do we need flags?

– Example: Orient a part. We need to move each node belonging to the part.

Loop through all elements belonging to the part

Loop through all nodes on the element

Move node

Loop through all elements belonging to the part

Loop through all nodes on the element

Flag the node

Loop through all nodes

If node is flagged, move it.

Wrong: nodes shared by >1

element will be moved more

than once

Correct – each node belonging

to the part is only moved once.

LS-DYNA ENVIRONMENT

Slide 100

Using Flags

• Example – finding nodes on boundary between two parts meshed together

LS-DYNA ENVIRONMENT

Slide 101

Using Flags

• Example – finding nodes on boundary between two parts meshed together

Flag nodes on one part with the red flag

LS-DYNA ENVIRONMENT

Slide 102

Using Flags

• Example – finding nodes on boundary between two parts meshed together

Flag nodes on the other part with the green flag

LS-DYNA ENVIRONMENT

Slide 103

Using Flags

• Example – finding nodes on boundary between two parts meshed together

Nodes flagged with both the red flag and the green flag are on the boundary

LS-DYNA ENVIRONMENT

Slide 104

Using Flags

• There are many ready-made functions available that make use of flagging.

• More than one flag may be in use at any time. Since flags are used both by

PRIMER itself and by the JavaScript interface, we must ask PRIMER to give us a

flag.

• Important: ALWAYS Allocate and Clear a flag before using it, otherwise you could

cause memory corruption in PRIMER.

var my_flag = AllocateFlag(); Request PRIMER to give me a flag

m.ClearFlag(my_flag); Set the flag

FALSE for all entities in Model m

my_part.SetFlag(my_flag); Set the flag TRUE for

the part object my_part

• Once you have finished with a flag you should return it:

ReturnFlag(my_flag);

• Note: AllocateFlag and ReturnFlag are in the Global class, while ClearFlag and

some other flagging functions are in the Model class.

LS-DYNA ENVIRONMENT

Slide 105

Propagating Flags and other useful functions

• The function PropagateFlag (in the Model class) finds all flagged entities, and

“propagates” the flag to junior entities.

• For example, if a Part is flagged, then PropagateFlag will also set the flag for all

elements of that part, and all nodes on those elements.

m.PropagateFlag(my_flag);

• If a Part Set is flagged, PropagateFlag sets the flag for all the Parts in the set,

and then all the elements and nodes of those parts.

• To detect whether an entity is flagged, use the function Flagged, e.g. for a node

look in the Node class for the Member function Flagged.

if (n.Flagged(my_flag)) (do something);

• To add flagged items to a set, use AddFlagged (in the Set class)

LS-DYNA ENVIRONMENT

Slide 106

Exercise - flagging

• Delete all models from PRIMER. Read in the model front_of_car.key.

• There is a partly-completed script flagging.js. Load this into a text editor.

• The objective is to identify parts with PID > 199999 and move them 1000mm in

the x direction.

• Add code to do the following:

– Allocate and clear a flag

– Set the flag for parts whose Part ID is > 199999

– Propagate the flag

– Incrementing the x-coordinate of flagged nodes by 1000

– Return the flag

In case of problems with this exercise, look at flagging_complete.js

LS-DYNA ENVIRONMENT

Slide 107

Picking from the graphics window

• The function Pick is available for Parts, elements, nodes, etc. The function

invokes PRIMER’s picking capability - click on the entity in the graphics window.

n = Node.Pick(“Pick Node A”);

• The Pick function is for picking a single entity – to pick several entities, your

script should call Pick each time an entity is to be picked:

na = Node.Pick(“Pick Node A”);

nb = Node.Pick(“Pick Node B”);

• If the user picks a node, the function returns a Node Object. If the user presses

Cancel, it returns “undefined”.

LS-DYNA ENVIRONMENT

Slide 108

Picking from the graphics window

• Another example: Ask the user to pick multiple nodes, and store them in an

array. We do not know how many nodes the user will pick.

var nodes = new Array();

var num = 0;

var n;

while (n = Node.Pick(“Pick a node”, m))

{

nodes[num] = n;

num++

}

Message (“Number of nodes picked = “ + num);

• When the user presses Cancel, the picking function will return null, so the while

loop will finish.

LS-DYNA ENVIRONMENT

Slide 109

Exercise - Picking

• Start from picking.js.

• Delete all models from PRIMER, read in front_of_car.key.

• Add code to the script so that the user is asked to pick a part.

• The flag my_flag should be set true on that part.

• Check that the user did not press “Cancel” – if so, the part p would be null, and

the script should exit.

• The picked parts will then be moved in X – this section of the script is already

written.

In case of problems with this exercise, look at picking_complete.js

LS-DYNA ENVIRONMENT

Slide 110

Selecting using object menus

• PRIMER’s Object Menus can also be used for selecting entities. Object menu

selection also allows VIS (and then pick or drag across a screen area), Filter,

Key In, etc.

• The Select functions are very similar to Pick, except that, instead of returning

one object of the type picked (e.g. Node.Pick returns one node), the Select

function has no return value – instead, it sets a flag for all the entities selected.

The flag is an input to the Select function:

var my_flag = AllocateFlag();

m.ClearFlag(my_flag);

Node.Select(my_flag,“Select Nodes to be processed”);

var n = Node.First(m);

while (n)

{

if (n.Flagged(my_flag)) (do something);

n = n.Next();

}

LS-DYNA ENVIRONMENT

Slide 111

Exercise - Select

• Complete the script select.js – add a step to

select parts.

• Test the script by running it, use the object

menu to filter the parts by material type, choose

MAT_RIGID, select all the parts, Apply.

• You should see in the dialog box that 15 parts

were selected. The rigid parts should be moved,

and put in a new set.

In case of problems with this exercise, look at select_complete.js

LS-DYNA ENVIRONMENT

Slide 112

• Some ready-made windows are available: look in the PRIMER JavaScript manual

in the Window Class. For example, Window.Message:

var Answer = Window.Message("Menu name","OK?“, Window.YES | Window.NO);

if (Answer == Window.NO) Exit();

GUI: Ready-made windows

List of buttons to appear on menu, separated by | (bitwise “or”).

The menu will disappear when one of these buttons is pressed.

YES and NO are Class Constants. The available constants are

shown in the manual.

Return value is the Constant belonging to the button that was pressed

LS-DYNA ENVIRONMENT

Slide 113

GUI: Ready-made windows

• A simpler example uses only one button. In this case, the function’s return value

can be ignored (the script does not need to know which button was pressed:

Window.Error("Error message", “Cannot continue”, Window.OK);

LS-DYNA ENVIRONMENT

Slide 114

GUI: Ready-made windows

• By default, these windows prevent access to other functions in Primer until the

user presses a button. However, this can be changed using the Constant

NONMODAL.

• In this way the script can guide a user through an interactive process:

Window.Information("Instructions", “Step 1 – Model Check",

Window.OK | Window.NONMODAL);

Window.Information("Instructions", "Step 2 - Create a Part",

Window.OK | Window.NONMODAL);

Window.Information("Instructions", "Step 3 - Create a Part Set",

Window.OK | Window.NONMODAL);

LS-DYNA ENVIRONMENT

Slide 115

Exercise – using ready-made windows.

• Start from ready_made_windows.js.

• Add a check that model m exists. If not, use Window.Error to inform the user

and then exit from the script. The window should contain an “OK” button only.

Test this by deleting all models from Primer and running the script.

• After the user has picked a part, use Window.Question to check whether the

user wants to move that part. In the script, the character-string forming the

question is already done for you.

• The window should have “Yes” and “No” buttons. If the user presses “No”, exit.

In case of problems with this exercise, look at ready_made_windows_complete.js

LS-DYNA ENVIRONMENT

Slide 116

Model Selection

• Most of the scripts in this training course assume that the model will be M1, e.g.

var m = Model.GetFromID(1);

• It is more convenient to use Model.Select:

var m = Model.Select(“Select a model”);

• If there is only one model present in PRIMER, that model will be selected without

asking the user any questions. This will still work if the model is M2 or M3, etc.

• If there are no models in PRIMER, an error message will be issued.

• If more than one model is present, the user will be asked to select a model.

• Please use this function in your script and test it:

– a) when no models are present

– b) when one model is present

– c) when two or more models are present.

LS-DYNA ENVIRONMENT

Slide 117

Issuing Command-line commands

• Any PRIMER capability that can be accessed via command line (commands

typed in the dialog box, or written in a command file) can be issued from a

JavaScript, using the functions DialogueInput or DialogueInputNoEcho.

• For example:

DialogueInput(“/CHECK checkfile check.dat apply”);

• After each call to DialogueInput (or DialogueInputNoEcho), PRIMER returns

automatically to the main menu. If you need to issue a sequence of commands

without returning to the main menu, use a single call to with multiple arguments

(separated by commas):

DialogueInputNoEcho("/mech point “ + pt_name,

"position “ + points[i].x + " * " + points[i].z,

"done", "accept")

LS-DYNA ENVIRONMENT

Slide 118

Exercise: Command-line commands

• In Primer’s dialog box, type H (that means Help), to see the available command-

line commands.

• We will use the command PART_INFO to write the part table data to a csv file.

• Make sure that you have a Model 1 in Primer.

• Try typing this into Primer’s dialog box:

/PART_INFO WRITE data.csv 1

• Check the csv file using Excel.

• In your script ready_made_windows.js, add a call to DialogueInput to use the

above command.

• It is better to use m.number rather than assuming that Model 1 will be present:

DialogueInput(“/PART_INFO WRITE data.csv “ + m.number);

LS-DYNA ENVIRONMENT

Slide 119

Common mistakes and recommendations

• JavaScript is case sensitive. Node is not the same as node.

• When testing to see if something is equal you must use ==. i.e.

if (i == 10) // This tests if i is 10

if (i = 10) // This sets i to 10.

// The test is then if(10) which is always true

• Do not forget semi-colon after each line

• Remember that the first member of an array is array[0], not array[1]

• Always declare variables with var or you may overwrite variables by mistake.

• If you read data from a file then you are reading strings. If you want numbers you

need to use parseInt() and parseFloat() to read the number from the string.

• When calling Extension functions, check carefully whether the input arguments

and return values should be entity labels or objects.

• Do not mix up Member functions and Class functions:

n = Node.Next(); // Wrong – Next is a Member function! Needs a

node

// object, not the class name

n = n.Next(); // Correct

LS-DYNA ENVIRONMENT

Slide 120

• When calling Class functions, don’t omit the class

PropagateFlag(my_flag); // wrong

m.PropagateFlag(my_flag); // correct

• Include lines of code to check the return values from functions. Many
functions return null if something cannot be found or done.
na = Node.Pick(“Pick Node A”);

Message (“Node ID = “ + na.nid);

na = Node.Pick(“Pick Node A”);

if (na) Message (“Node ID = “ + na.nid);

• Do not create an infinite loop with while:
n = Node.First(m);

while (n)

{

Message (“Node ID = “ + n.nid);

}

• And finally - always write lots of comments!

Common mistakes and recommendations

Wrong - if the user presses Cancel on the picking

menu, na will be null. This will cause an error.

Correct - na is tested for null value

before being used

Wrong – the line n = n.Next(); has been

forgotten. Each time through the loop, n is still

the first node in the model! If you run this script,

you will have to crash Primer to escape.

LS-DYNA ENVIRONMENT

Slide 121

Exercise – debugging a script

• Try to run the script script_with_errors.js

• When the script asks you to select a file, find nodes.csv (as used in the

read-from-file example.

• Find and correct the errors. After correcting an error, try to run the script

again.

• In case of trouble with this exercise, check the next slides or compare with

script_with_errors_corrected.js.

LS-DYNA ENVIRONMENT

Slide 122

Exercise – debugging - answers

var filename = Window.Getfilename("Select file", "CSV file?", "csv");

wrong spelling of function name – F should be upper-case

// Create node

var n = new Node(model,label,x,y,z); variable name was m, not model

// Get the node label from the first word

var label = words[0]; words[0] is a string. Need parseInt(words[0])

// Close the file

f.Close() missing semi-colon

LS-DYNA ENVIRONMENT

Slide 123

Exercise – debugging - answers

var n1 = node.First(m); mis-spelling of Node class name

var node1 = n.nid; variable name was n1, not n

Message ("Node label and x-coordinate: " + node1 + ", " + node1.x);

need the node object, not its label

// Loop through nodes, printing labels and incrementing x-coord

while(n1)

{

Message("Node label = " + n1.nid);

n1.x = n1.x + 100.0; infinite loop – missing n1 = n1.Next();

}

while(n1)

{

Message("Node label = " + n1.nid);

n1.y = n1.y + 100.0;

n1 = Node.Next(); Next is a Member function, not a Class function

}

LS-DYNA ENVIRONMENT

Slide 124

Exercise – debugging - answers

// Get all nodes into an array

var nodes = Node.GetAll(m);

// Create a shell element using the 1st, 2nd, 12th and 11th node

var s = new Shell(1001,100,nodes[1],nodes[2],nodes[12],nodes[11]);

Visibility("Node", true);

UpdateGraphics(); UpdateGraphics is a Member function in the

Model class – needs m.UpdateGraphics();

Model object is

needed here

First node is

nodes[0], not [1]

Need node IDs

not node objects

(e.g. nodes[0].nid)

LS-DYNA ENVIRONMENT

Slide 125

PRIMER JavaScript – Part 3

LS-DYNA ENVIRONMENT

Slide 126

Sets

• Look at the Set class in the PRIMER JavaScript manual.

• To create a set and add some entities to it (this can be done only for

SET_..._LIST, not _GENERATE, _ADD, etc).

var s = new Set(m, 100, Set.PART); s is a Set object

s.Add(part_id_1);

s.Add(part_id_2);

• To loop through the entities in an existing set (this works with all set types,

including _GENERATE, _ADD, etc)

var s = Set.GetFromID(m, 100, Set.PART); Find the *SET_PART with ID 100

s.StartSpool();

while (part_id = s.Spool()) Loop through all the parts in the set

{

do something

}

LS-DYNA ENVIRONMENT

Slide 127

Writing new functions (subroutines)

• Functions are blocks of code that may be called from your main program or from

other functions – in some languages, these would be called subroutines.

• Functions may be added to your script, after the main body of the script.

• Functions are often used to avoid repeating the same code several times.

…

var z_axis = new Array();

z_axis = CrossProd(x_axis,y_axis);

y_axis = CrossProd(z_axis,x_axis);

…

function CrossProd(a,b)

{

var c = new Array();

c[0] = a[1]*b[2] - a[2]*b[1];

c[1] = a[2]*b[0] - a[0]*b[2];

c[2] = a[0]*b[1] - a[1]*b[0];

return c;

}

Main body of the script

Function named CrossProd is within

the same text file, after the end of the

main body of the script. It can be

called from the main body of the

script, or from within another function.

No semi-colon

Braces

LS-DYNA ENVIRONMENT

Slide 128

Inputs to functions via argument list

• Variables, arrays, and objects may be input to a function via the list of arguments:

z_axis = CrossProd(x_axis, y_axis);

y_axis = CrossProd(z_axis, x_axis);

function CrossProd(a, b)

{

var c = new Array(3);

c[0] = a[1]*b[2] - a[2]*b[1];

…

return c;

}

• An input argument does not have to have the same name within the function as
in the main body of the script.

• The types of the arguments do not have to be declared within the function – the
interpreter knows these automatically from the type of the arguments where the
function is called.

LS-DYNA ENVIRONMENT

Slide 129

• Alternatively, input may be variables (constants, arrays, or objects) that were

declared in the main body of the script – these are “global”, i.e. they can be

“seen” by all functions within the same text file.

var x_axis = new Array();

var y_axis = new Array();

…

var z_axis = CrossProdXY();

function CrossProdXY()

{

var c = new Array(3);

c[0] = x_axis[1]*y_axis[2] – x_axis[2]*y_axis[1];

…

return c;

}

Inputs to functions via global variables

Because x_axis and y_axis are

declared in the main body of the

script, they are automatically visible to

all functions within the same text file.

Brackets are still needed even when

there are no arguments

LS-DYNA ENVIRONMENT

Slide 130

• The return statement allows a single variable (e.g. a constant, array, or object) to

be passed back to the calling statement:

z_axis = CrossProd(x_axis, y_axis);

y_axis = CrossProd(z_axis, x_axis);

function CrossProd(a, b)

{

var c = new Array(3);

c[0] = a[1]*b[2] - a[2]*b[1];

…

return c;

}

• The type of the return value does not have to be declared – the interpreter knows

what type of variable is being returned by the function. For example, in this case

z_axis and y_axis are arrays because the returned variable, c, is an array.

Output from functions via return statement

LS-DYNA ENVIRONMENT

Slide 131

• If an array appears in the argument list, and its members are changed by the

function, the new values are passed back to the calling statement, e.g. in the

example below, z_axis and then y_axis will take the values calculated for the

array c in the function:

CrossProd(x_axis, y_axis, z_axis);

CrossProd(z_axis, x_axis, y_axis);

function CrossProd(a, b, c)

{

c[0] = a[1]*b[2] - a[2]*b[1];

…

}

• Objects can be passed in the same way, and their properties assigned within the

function. For example, a node object could be passed into a function via the

argument list, and its coordinates could be changed within the function.

Output from functions via argument list

LS-DYNA ENVIRONMENT

Slide 132

• This does not work if the input variables are constants, e.g.

var x = 1.0;

AddOne(x);

Message(“x = “ + x);

function AddOne(value)

{

value = value + 1.0;

Message (“value = “ + value);

}

• This behaviour is similar to C and some other languages – it occurs because what

is passed to the function is the value of the variable, rather than the variable itself.

Output from functions via argument list

The result of this will be “x = 1.0” – the

change to x that occurred within the

function AddOne is not passed back to

the calling statement.

LS-DYNA ENVIRONMENT

Slide 133

• Global variables, even if they are constants, may be changed within a function;

the changed values are visible in the main body and all other functions. For

example:

Output from functions via Global variables

var x = 1.0;

AddOneToX();

Message(“x = “ + x);

function AddOneToX()

{

x = x + 1.0;

Message (“x = “ + x);

}

The result of this will be “x = 2.0” – the

change to global variable x that

occurred within the function

AddOneToX is visible everywhere.

LS-DYNA ENVIRONMENT

Slide 134

Variable scope

• The scope of a variable is the region of the program in which it is defined.

A global variable has global scope; it is defined everywhere in your JavaScript

code. Variables declared in a function are defined only within the body of the

function. They are local variables and have local scope.

• In a function a local variable takes precedence over a global variable with the

same name. If you declare a local variable with the same name as a global

variable you hide the global variable. e.g.

var scope = “global”;

function checkscope()

{

var scope = “local”;

Message(scope);

}

checkscope(); // prints “local”

Message(scope); // prints “global”

LS-DYNA ENVIRONMENT

Slide 135

Variable scope

• Always use var to declare variables. If you don’t use it for local variables you will

overwrite the global variable e.g.

scope = “global”; // variable declared without var is

global

function checkscope()

{

scope = “local”; // we have changed global variable, not

local one

Message(scope);

}

checkscope(); // prints “local”

Message(scope); // prints “local”

LS-DYNA ENVIRONMENT

Slide 136

Exercise - functions

• Starting from function.js, write a new function to count the selected parts. Most
of the code for this is already included at the bottom of the file.

• Call your new function where indicated in the main body of the script.

• Run the script. Check that the correct number of selected parts was echoed to
the dialog box.

In case of problems with this exercise, look at function_complete.js

LS-DYNA ENVIRONMENT

Slide 137

Creating your own GUI

• New menus may be created using the Window and Widget classes.

– “Window” = the window containing a floating menu

– “Widget” = buttons, text boxes, text labels, checkboxes, etc

• See PRIMER Javascript manual for details.

• The functions and techniques are identical in D3PLOT and PRIMER

Window

Window title
Text box widget - the user

can type in the box

Label widget – text with

no user interaction

Checkbox widget - the user

can click to make it checked

or unchecked

Button widget - the

interpreter can execute a

function when the button is

clicked

LS-DYNA ENVIRONMENT

Slide 138

Creating a window

0.2 0.4 1.0

0.3

0.5

Y

X0.0

1.0

var w = new Window("Input reorientation data", 0.2, 0.4, 0.3, 0.5);

Window title

X1 X2 Y1 Y2

LS-DYNA ENVIRONMENT

Slide 139

Adding Label and Textbox Widgets to a Window

var w = new Window("Input reorientation data", 0.2, 0.4, 0.3, 0.5);

var label_X = new Widget(w, Widget.LABEL, 1, 30, 1, 7, "Vector X:");

var text_X = new Widget(w, Widget.TEXTBOX, 31, 60, 1, 7, "");

var label_Y = new Widget(w, Widget.LABEL, 1, 30, 8, 14, "Vector Y:");

var text_Y = new Widget(w, Widget.TEXTBOX, 31, 60, 8, 14, "");

x
1 30 31 60

1
7

8

14

y

Dimensions are dependent on ‘Display Factor’ in Menu Attributes.

Initial value of text

X1 X2 Y1 Y2

All widgets have a type (e.g. Widget.TEXTBOX)

and (X,Y) coordinates within the window.

Note that each widget is a variable with a name

(e.g. text_X) – the variable names will be used

later to identify the user’s input.

LS-DYNA ENVIRONMENT

Slide 140

var text_R = new Widget(w, Widget.LABEL, 1, 30, 22, 28, "Reorient Normals:");

var chkbx_R = new Widget(w, Widget.CHECKBOX, 31, 37, 22, 28);

var s_button = new Widget(w, Widget.BUTTON, 31, 60, 29, 35, "Select Shells");

var a_button = new Widget(w, Widget.BUTTON, 1, 30, 36, 42, "Apply");

var q_button = new Widget(w, Widget.BUTTON, 31, 60, 36, 42, "Quit");

Adding Checkbox and Button Widgets to a Window

Text on button
1 30 31 60

y

X1 X2 Y1 Y2

LS-DYNA ENVIRONMENT

Slide 141

Creating a GUI

• To display the menu and wait for user input, use the function Show (Window class):

w.Show();

• To make something happen when the user presses a button, set the property

onClick for each button. This should reference the name of a function without

arguments. The functions referenced can be either existing JavaScript functions

(e.g. Exit) or functions included within your script.

var s_button = new Widget(w, Widget.BUTTON, 31, 60, 29, 35, "Select Shells");

s_button.onClick = MySelectFunction;

var q_button = new Widget(w, Widget.BUTTON, 31, 60, 36, 42, "Quit");

q_button.onClick = Exit;

• To change the colour of a button, use the property background. The colour of the

text can be changed using the property foreground:

a_button.background = Widget.DARKRED;

a_button.foreground = Widget.WHITE;

LS-DYNA ENVIRONMENT

Slide 142

Creating a GUI

• As explained above, the function called when a button is pressed cannot

have any arguments.

• If you want to call a function that does have arguments, use a “wrapper”

function as in this example:

var my_flag = AllocateFlag();

apply_button = new Widget(w, Widget.BUTTON, 31, 60, 29, 35, “Apply");

apply_button.onClick = MyApplyFunction;

function MyApplyFunction()

{

MyOtherFunction(my_flag);

}

Variable my_flag is global (declared in main body of

the script), so is “visible” to all functions below

MyApplyFunction has no arguments, and so can be

called by the Apply button. It calls MyOtherFunction

using global variables as arguments.

LS-DYNA ENVIRONMENT

Slide 143

Creating a GUI

• To read the contents of a text box, use the property text, which is a character

variable (string). To convert to a number, use parseInt or parseFloat:

var input_X = new Widget(w, Widget.TEXTBOX, 31, 60, 1, 7, "");

var x = parseFloat(input_X.text);

• Note that the user is expected to change the contents of the text box. The user

might do this several times. We need to use the final value only. One way to

achieve this is to read from the text box in the function that is activated by the

Apply button:

var a_button = new Widget(w, Widget.BUTTON, 31, 60, 29, 35, “Apply");

a_button.onClick = MyApplyFunction;

function MyApplyFunction()

{

var x = parseFloat(input_X.text);

(do something with x)

}

LS-DYNA ENVIRONMENT

Slide 144

Creating a GUI

• It is often useful to write a function that can be called whenever the user changes

any input (text box, checkbox, etc). Purposes of the function may include:

– Read numerical values from text boxes

– Count and display how many items the user has selected

– Make buttons active or inactive according to what inputs have been supplied

input_X.onChange = MenuUpdate;

input_Y.onChange = MenuUpdate;

function MenuUpdate()

{

if (input_X.text != “” && input_Y.text != “”)

{

x = parseFloat(input_X.text);

y = parseFloat(input_Y.text);

apply_button.active = true;

}

}

LS-DYNA ENVIRONMENT

Slide 145

Creating a GUI

• If the same function is used for the ‘onClick’ or ‘onChange’ property on several

Widgets how can you tell which Widget the user has clicked or changed? The

answer is to use a special JavaScript keyword called ‘this’ which is set to the
Widget. e.g. If we wanted to change the background colour of the input_X

widget to be red if the user changes it.

input_X.onChange = MenuUpdate;

input_Y.onChange = MenuUpdate;

function MenuUpdate()

{

if (this == input_X) input_X.background = Widget.DARKRED;

if (input_X.text != “” && input_Y.text != “”)

{

x = parseFloat(input_X.text);

y = parseFloat(input_Y.text);

apply_button.active = true;

}

}

LS-DYNA ENVIRONMENT

Slide 146

Exercise – create a GUI

• We will add a GUI to an existing script.

• The function of the script is similar to the

previous example on Selection: selected parts

will be moved by a distance in X, and put in a

new Part Set.

• User inputs will be:

– Translation distance for the selected parts

– ID of part set to be created

– Button “Select” for the user to Select Parts

– Button “Apply” to perform the moving and set

creation

– Button “Quit” to leave the menu without performing

any action

• The first step is to sketch the menu and annotate

the position of the Widgets

Example sketch – decide

your own menu layout

LS-DYNA ENVIRONMENT

Slide 147

Exercise – create a GUI

• Start from script_GUI.js

• Add code where indicated to create a window with title “My Menu”.

• Try to make the menu appear in the bottom-right corner of the screen.

• At this stage, do not add any other code to the script.

• What happens when you run it?

• Add w.Show(); to display the window.

• Run the script. What happens?

– If there are no Widgets on the menu, there is no way for the user to supply input. The
w.Show function waits indefinitely for input. You will have to crash out of PRIMER.

• Add a Quit or Cancel button. When this button is clicked, it should call the function
Exit (use the onClick property of the Quit button).

• Run the script and check that the menu appears, and disappears when you press
Quit.

• Next, add the other widgets and check that they appear in the correct places.

LS-DYNA ENVIRONMENT

Slide 148

Exercise – create a GUI

• For the Select button, write a “wrapper” function that calls Part.Select using the

existing flag my_flag

• When the Apply button is pressed, call the existing function MoveParts

• Add code to function MoveParts to read the input values of Distance (variable

x_trans) and Set ID (variable setID_start) from the text boxes.

• Add code to check that neither of the text boxes is blank; if so, return to the main

body of the script and wait for further user input.

• The function already counts how many parts were selected (variable

num_selected). Add code so that if no parts were selected, issue an error

message (function Error) and return to the main menu an wait for further user

input.

In case of problems with this exercise, look at script_GUI_complete.js

LS-DYNA ENVIRONMENT

Slide 149

Exercise – create a GUI (Part 2)

• If time allows…

• Add colour to the buttons (suggestion: make the Apply button DARKRED with

WHITE text)

• Make the Apply button inactive (greyed out) initially (use the property active).

Whenever a text box is changed, and after the Select function has been used,

call a new function MenuUpdate that checks the input. If OK, then make the

Apply button active.

– Checks are: the text in the text boxes is not blank; at least one part has

been selected.

In case of problems with this exercise, look at script_GUI_2_complete.js

LS-DYNA ENVIRONMENT

Slide 150

Further topics for Self-Study

LS-DYNA ENVIRONMENT

Slide 151

Garbage collection

• When variables are created memory is used in the computer to store the data.

Strings, arrays and objects do not have fixed size so storage must be allocated

for them when one is created.

• In some programming languages this memory must be freed manually. In

JavaScript this is done automatically for you using a technique called garbage

collection. For example:

var s = “Hello, world!”; // memory allocated for

string

var n = new Node(m, 100, 20, 40, 10); // memory allocated for Node

object

s = n; // Overwrite s with

n

• After this has run the string “Hello, world!” is no longer reachable (there are no

references to it). The interpreter detects this and frees up the space to be used

again.

• This means that you can create a script that makes lots of temporary objects,

arrays or strings without worrying about memory.

LS-DYNA ENVIRONMENT

Slide 152

Creating your own objects

• New objects may be created, and properties added to them, as shown below.

• The type of contents or list of properties does not have to be defined in advance.

var my_object = new Object();

my_object.title = “Checking information”;

my_object.ID = 3;

my_object.node = new Node(m,1000,10.0,20.0,30.0);

Message(“X-ccord of my node = “ + my_object.node.x);

• It is also possible to add new properties to existing objects, such as node or

element objects. These properties have no effect on the model data in PRIMER,

they exist only temporarily while the script is being run.

var s = Shell.GetFromID(m,1001);

s.Checked = “no”;

LS-DYNA ENVIRONMENT

Slide 153

Using Xrefs

• The Xrefs class is used to find the references from one entity to others.

– To find nodes connected to a shell, the information is already there (s.n1 etc).

– To find the shells connected to a node, we need to use Xrefs.

• In this example, we start with a Node object (my_node) and set the flag my_flag

for all the shells attached to my_node.

var xrefs = my_node.Xrefs();

num = xrefs.GetTotal(“SHELL”);

for (count=0; count<num; count++)

{

var id = xrefs.GetID(“SHELL”, count);

var shl = Shell.GetFromID(model, id);

shl.SetFlag(my_flag);

}

Get the Xrefs object for this node

How many Xrefs are of type SHELL?

Get the ID of each shell

Get the shell object and

set the flag

LS-DYNA ENVIRONMENT

Slide 154

Using the XML parser

• XML is often used for data files as it is flexible and can be extended as

necessary. e.g. perhaps there is a connection file with the format:

<connections>

<connection type=“spotweld”>

<position>10, 20, 30</position>

</connection>

<connection type=“rivet”>

<position>20, 20, 30</position>

</connection>

</connections>

• This is a basic XML file that contains elements, attributes and text.

• PRIMER implements a simple stream-oriented parser where you declare

functions to call when things are found in the XML file. e.g.

– The start of an element

– The end of an element

– Text

LS-DYNA ENVIRONMENT

Slide 155

Using the XML parser

• For example this will print the contents of a basic XML file

// Create a new parser object

var p = new XMLParser();

// assign handlers

p.startElementHandler = startElem;

p.endElementHandler = endElem;

p.characterDataHandler = text;

// parse the file

p.Parse("/data/test.xml");

function startElem(name, attr)

{

// handler to be called when the start of an element is found

Println("START: " + name);

// Print attributes

for (n in attr)

{

Println(" attr: " + n + "=" + attr[n]);

}

}

LS-DYNA ENVIRONMENT

Slide 156

Using the XML parser

function endElem(name)

{

// handler to be called when the end element of an element is

// found

Println("END: " + name);

}

function text(str)

{

// handler to be called when text is found

Println("TEXT: '" + str + "'");

}

• If a handler is not defined then that part of the XML document is skipped.

• For example if the characterDataHandler was not defined the text in the

XML file would be skipped.

• For more details see the XMLParser class or contact Oasys

LS-DYNA ENVIRONMENT

Slide 157

Regular expressions

• JavaScript has regular expressions to allow you to do pattern matching on

strings. e.g.

var s = “node 10 x=1.2 y=20 z=0”;

var regex = /(\d+)\s+x=(.+)\s+y=(.+)\s+z=(.+)/

var result = s.match(regex);

if (result != null)

{

var fullmatch = result[0]; // contains “10 x=1.2 y=20

z=0”

var id = result[1]; // contains “10”

var x = result[2]; // contains “1.2”

var y = result[3]; // contains “20”

var z = result[4]; // contains “0”

}

• ‘\d’ means “match a digit”, ‘\s’ means “match whitespace” (space or tab), ‘.’

means “any character”, ‘+’ means “one or more of the previous thing” and ()

means “save what you have matched”.

• For more details see a good JavaScript textbook.

LS-DYNA ENVIRONMENT

Slide 158

Primitive types and reference types

• Numbers and booleans (true/false) are “primitive types” in JavaScript.
A primitive type has a fixed size in memory. For example a number occupies 8
bytes of memory in JavaScript.
If each variable in JavaScript reserves 8 bytes of memory, the variable can
directly store the primitive value.

• Objects, arrays and functions are reference types.
Objects, for example, can be any length. They do not have a fixed size.
Since they do not have a fixed size, the data cannot be stored directly in the 8
bytes of memory for the variable.
Instead the variable stores a reference to the data (a pointer or an address where
the data can be found)

• Strings are a special case. They do not have a fixed size but they can be treated
as a primitive type (see a good JavaScript book for more details)

• The reason this is important is that primitive types and reference types behave
differently when they are copied or passed to functions.
Primitive types are manipulated by value.

Reference types are manipulated by reference.

LS-DYNA ENVIRONMENT

Slide 159

Primitive types

• Primitive types are copied by value

var m = 1; // variable m holds the value 1

var n = m; // Copy by value. n holds a distinct value 1

• Primitive types are passed by value. This could cause functions to work

differently to what you expect.

var total = 0;

var m = 1;

function add_value(total, num)

{

total = total + num;

}

add_value(total, m);

Println(total) // prints 0, not 1

• This is because when passing by value, the value is copied, so the variable total

above used in the function is a copy and you only change the internal value of

the copy, not the original variable.

LS-DYNA ENVIRONMENT

Slide 160

Reference types

• Reference types are copied by reference

var a = new Array(1,2,3); // a is an Array so is a reference type

var b = a; // Copy reference to new variable

a[0] = 99; // Change original array

Println(b) // prints 99,2,3

• This may not be what you expected!

• Remember that a contains a reference to where the array data is stored.

After the second line there is still only one array object, but b now also contains

the reference to the same array.

• If you want to make a distinct copy of an array you have to do something like

var a = new Array(1,2,3);

var b = new Array();

for (var i=0; i<a.length; i++) b.push(a[i]);

LS-DYNA ENVIRONMENT

Slide 161

Reference types

• Reference types are passed by reference.

var totals = new Array(1,2,3);

var num = 10;

function add_to_totals(totals, num)

{

totals[0] += num;

}

add_to_totals(totals, num);

Println(totals) // prints 11,2,3

• In the above example a reference to totals is passed to the function

add_to_totals, so updating totals in the function updates the same array.

LS-DYNA ENVIRONMENT

Slide 162

Training course

JavaScript for

Oasys PRIMER and D3PLOT

